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Abstract. We present the autoregressive Hilbertian with exogenous variables model (ARHX) which in-

tends to take into account the dependence structure of random curves viewed as H-valued random vari-

ables, whereH is a Hilbert space of functions, under the influence of explanatory variables. Limit theorems

and consistent estimators are derived from an autoregressive representation. A simulation study illustrates

the accuracy of the estimation by making a comparison on forecasts with other functional models.
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1. Introduction

Autoregressive Hilbertian processes (ARH) and autoregressive Hilbertian
processes with exogenous variables (ARHX) can be viewed as extensions of
real valued discrete time standard autoregressive processes (AR) and auto-
regressive processes with exogenous variables (ARX). The popular ARX
model already showed better descriptive and forecasting properties for phe-
nomena influenced by explanatory variables than the classical AR model.
Several applications were carried out in various fields including pollution
assessment [2, 26] or engineering [32, 35]. ARX or autoregressive moving-
average with exogenous variables (ARMAX) models have been investigated
by [1, 6, 11, 15, 17, 18, 20, 25, 27, 33] among others. Bosq and Shen [10],
Chen and Shen [13], Cai and Masry [12] removed the linearity specifications,
using nonparametric techniques such as kernel estimation, method of sieves
or local polynomial fitting.
As noticed by Bondon [7], if one wants to forecast more than one step

ahead, the ‘plug-in’ method may show some defectiveness. Indeed, replacing
the first future values of a time series by predicted ones may affect badly the
forecasted ones afterwards because errors are made in the substitution.
Moreover, when discrete time series are made of observations of a continu-
ous-time process, it is appealing to use this feature. In that case, one
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approach is then to make a division of R into intervals of length �, and view
our discrete time series xi; i 2 Zð Þ as observations of only a few values of
functions Xk; k 2 Zð Þ whose argument is in 0; �½ �, in the following sense:
XkðtÞ ¼ xk�þt. Predictions are then naturally �-step ahead ones and a great
part of the dynamic is taken into consideration.
Bosq [8] was the first to propose to regard the link between those functions

as an autoregressive dependence whose autocorrelation is a linear operator –
allowing a possibly nonlinear behavior of the underlying discrete time series –
on an appropriate function space, making thus autoregressive Hilbert or
Banach valued time series. As a matter of fact, this theory belongs to
‘functional data analysis’, as presented in [31] or [30] except that indepen-
dence is not assumed. Nevertheless the estimation of the covariance structure
is also a efficient tool. Benyelles and Mourid [3], Mas [21], Merlevède [22],
Mourid [23] and Pumo [28,29], worked on estimation procedures, asymptotic
normality, estimation of �, prediction and simulation as well as on extensions
of the ARH model. Bosq [9] is an up-to-date reference for a statement on
linear processes taking their values in function spaces. Note that Besse and
Cardot [4] and Besse et al. [5] introduced the use of smoothing splines in that
framework and illustrated the quality of their predictions in comparison with
the seasonal autoregressive integrated moving-average (SARIMA) para-
metric model on real data sets such as traffic or climatic variations. One of
their findings is that for some real life forecasting problems, functional time
series improves upon SARIMA models. Indeed, using the great bulk of
information entails better predictions, especially when the stochastic process
holds some functional properties such as some particular smoothness – a
Sobolev space is then a natural framework – or a typical variation. Bosq [9]
also points out that the aforementioned functional discretization of a con-
tinuous-time process with seasonality yields a stationary Hilbertian process,
when the discretization is carried out with respect to the period �.
The simulation of such processes is really a hard task due to the infinite

dimensional distributions involved in the model. However, Besse and Cardot
[4] and Pumo [28] managed to make simulations by means of the Karhunen–
Loève expansion or Brownian motion simulation.
The purpose of this paper is to present theARHXmodel. Thus,we generalize

both parametric ARX models and nonparametric ARH models. In Section 2,
the law of large numbers and the central-limit theorem are discussed and the
estimation procedure is shown to be consistent. The key tool is the autore-
gressive representationof such processes, and the proofs are stated inAppendix
A. In Section 3, a general simulationmethod is provided. It extends [4] and [28]
since we embrace the non-Gaussian case and we do not assume that the func-
tional correlation operator is diagonal. We illustrate the efficiency of the esti-
mation procedure by a Monte-Carlo study. A few examples are given, and
comparisons are made on forecasts with some other functional procedures
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(ARH, functional kernel). Our model presented the best predictive skills on
those simulations. Note that Damon and Guillas [14] applied the ARHX
modeling to forecast ground level ozone, and showed that on that particular
real data set, theARHXpredictionsweremore accurate than those given by the
ARH or the functional kernel.

2. Autoregressive Representation

LetH be a real and separable Hilbert space. Let �; a1; . . . ; aq be bounded linear
operators on H. Let "nð Þn2Z be a strong Hilbertian white noise (SWN) i.e. a
sequence of i.i.d. H-valued random variables satisfying E"n ¼ 0;
0 < E "nk k2¼ �2 < 1; n 2 Z. We consider the following autoregressive Hil-
bertian with exogenous variables of order one model, denoted by ARHX(1):

Xn ¼ �ðXn�1Þ þ a1ðZn;1Þ þ � � � þ aqðZn;qÞ þ "n; n 2 Z; ð1Þ

where Zn;1; . . . ;Zn;q are q autoregressive of order one exogenous variables
associated respectively with operators u1; . . . ; uq and strong white noises
�n;1
� �

; . . . ; �n;q
� �

, i.e. Zn;i ¼ uiðZn�1;iÞ þ �n;i. We suppose that the noises "nð Þ,
�n;1
� �

,. . ., �n;q
� �

are independent and that there is a n such that uni
�� ��

L< 1.
This way, for all i ¼ 1; . . . ; q; the whole processes "nð Þ and ðZn;iÞ are inde-
pendent since Zn;i can be expressed as a infinite moving average of the �n�p;1;
p ¼ 0; . . . ;1.
Consider the Cartesian product Hqþ1, separable Hilbert space equipped

with the scalar product x1; . . . ; xqþ1

� �
; y1; . . . ; yqþ1

� �� �
qþ1

¼
P

xi; yih i. The
spaces of bounded linear operators and Hilbert–Schmidt operators on Hqþ1

will be denoted respectively by Lqþ1 and Sqþ1.
Let us denote

Tn ¼

Xn

Znþ1;1

..

.

Znþ1;q

0BBB@
1CCCA; "0n ¼

"n
�n;1

..

.

�n;p

0BBB@
1CCCA and �0 ¼

� a1 � � � � � � aq
0 u1 0 � � � 0

0 0 u2 0 ..
.

..

. ..
. . .

.
0

0 0 0 0 uq

0BBBBBB@

1CCCCCCA:

When Xnð Þ is an ARHX(1) defined by Equation (1), then Tnð Þ is aHqþ1-valued
ARH(1) process, as we see in the following autoregressive representation

Tn ¼ �0ðTn�1Þ þ "0n; n 2 Z : ð2Þ

Remark 2.1. A natural extension would be to consider a higher order of
autoregression. The model is then written

Xn ¼ �1ðXn�1Þ þ � � � þ �p Xn�p

� �
þ a1ðZn;1Þ þ � � � þ aqðZn;qÞ þ "n; n 2 Z :

ð3Þ
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Accordingly, the representation is now built with

Tn ¼

Xn

..

.

Xn�pþ1

Znþ1;1

..

.

Znþ1;q

0BBBBBBBB@

1CCCCCCCCA
; "0n ¼

"n
0

..

.

0

�n;1

..

.

�n;p

0BBBBBBBBBB@

1CCCCCCCCCCA
, �0 ¼

�1 � � � � � � �p a1 � � � � � � aq
I 0 � � � � � � � � � � � � � � � 0

0 I 0 � � � � � � � � � � � � ..
.

0 � � � I 0 � � � � � � � � � 0

0 � � � � � � 0 u1 0 � � � 0

0 � � � � � � � � � 0 u2 0 ..
.

..

.
� � � � � � � � � ..

.
0 . .

.
0

0 � � � � � � � � � 0 0 0 uq

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
:

Remark 2.2. We can also consider the case where there are some kind of
‘feedback’ properties, i.e. when there occurs causality in two directions. For
example with q ¼ 1, if Zn ¼ bðXnÞ þ uðZn�1Þ þ �n, with b a bounded operator
on H, we write

Tn ¼ �0ðTn�1Þ þ "0n with �0 ¼ � a
b u

� �
.

The results presented below do not apply to that case, but the estimation
procedure is relatively robust with respect to the hypothesis b ¼ 0.
In the rest of the paper, we assume that the following condition (C) holds.

9j0; �0j0
�� ��

Lqþ1
< 1: ðCÞ

Remark 2.3. (C) may hold with �0k k ¼ 1. For instance, with one exoge-
nous variable we have

�0 ¼ � a
0 u

� �
and �02 ¼ �2 �aþ au

0 u2

� �
.

So �02
�� �� may be strictly less than 1 with appropriate �; a; u (e.g.

� ¼ a ¼ u; �2 ¼ 0).
Denote by Pi the projection operators x1; . . . ;xqþ1

� �
7!xi.

PROPOSITION 2.1 Equation ð1Þ has a unique stationary solution given by

Xn ¼
X1
j¼0

ðP1�
0jÞð"0n�jÞ; n 2 Z:

The series converges a.s. and in L2
Hð�;A;PÞ.

The covariance operator CX;Y of two H-valued r.v. X and Y is

CX;YðxÞ :¼ E½ X; xh iY�; x 2 H;

and CX stands for CX;X. The autocovariance of a stationary process Xnð Þ is
the sequence Ch; h 2 Zð Þ of operators defined by Ch ¼ CX0;Xh ; h 2 Z. Note
that C0 is generally denoted by C or CX. Those operators are involved in the
estimation procedure of � (see Section 2.2). We can easily show that
C�h ¼ C�

h, and the following relations between the Ch for h 2 Z.
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PROPOSITION 2.2 If Xnð Þ is an ARHX(1) process following (1), then

Ch ¼ �Ch�1 þ
Xq
j¼1

ajC
X0;Zh;j ; h � 1; C0 ¼ �C�1 þ

Xq
j¼1

ajC
X0;Z0; j þ C":

2.1. LIMIT THEOREMS

Let us denote Sn ¼ X1 þ � � � þ Xn. From the results in [9, Chapter. 3], we
derive easily the following result.

THEOREM 2.1 Let Xnð Þ be an ARHX(1) process. Then

(i)

n1=4

ln nð Þ�
Sn

n
!

n!1
0 a.s.; � > 1=2:

(ii)

nE
Sn

n

���� ����2 !
n!1

Xþ1

h¼�1
E X0;Xhh i:

(iii) If E e
� "0

0k k2

qþ1

� �
< 1 for some � > 0,

Sn

n

���� ���� ¼ O
ln n

n

� �1=2
 !

a.s.

We now examine the central-limit Theorem. Iqþ1 stands for the identity
operator on Hqþ1.

THEOREM 2.2 (CLT) Let Xnð Þ be an ARHX(1) process. Then, if Iqþ1 � �0

is invertible in Hqþ1

Snffiffiffi
n

p !D
n!1

Nð0;�Þ;

with

� ¼ P1ðIqþ1 � �0Þ�1C"0 ðIqþ1 � �0�Þ�1P1:

Moreover, if conditions (i) and (ii) of Lemma A.2 in Appendix A hold, then

� ¼ I� �ð Þ�1C" I� ��ð Þ�1þ
Xq
i¼1

ai I� �ð Þ�1 I� uið Þ�1C" I� u�i
� ��1

I� ��ð Þ�1a�i :

2.2. AUTOCOVARIANCE ESTIMATION

We suppose that

E T0k k4qþ1< 1: ð4Þ

Recall that for any u; v in H, u� v is the operator such that for all x in H,
u� vðxÞ ¼ u; xh iv. Now we define the following empirical covariance
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operators (respective estimators of CT;CX ¼ C;CZj ;CX;Zþ
j ), where

Zþ
j ¼ Ziþ1; j

� �
i2Z :

CT
n ¼ 1

n

X
Ti � Ti; Cn ¼ CX

n ¼ 1

n

X
Xi � Xi;

CZj
n ¼ 1

n

X
Zi; j � Zi; j; C

XZþ
j

n ¼ 1

n

X
Xi � Ziþ1; j:

We set Við:Þ ¼ Ti; :h iqþ1Ti � CT. Vi is a Sqþ1-valued process. Using [9,
Chapter 4] we get the following results about the rates of convergence of
Cnð Þ, denoting by �k; k � 1ð Þ the sequence of strong mixing coefficients of
Tnð Þ and �V

j ; j � 1
	 


the sequence of eigenvalues of the covariance operator
of V0.

PROPOSITION 2.3 Under (4), we have

(i)

lim sup
n!1

nE Cn � Ck k2S �
Xþ1

h¼�1
E V0;Vhh iSqþ1

;

(ii)

n1=4 log nð Þ�� Cn � Ck kS ! 0 a.s., � > 1=2:

(iii) If T0k k is bounded,

Cn � Ck kS¼ O
log n

n

� �1=2
 !

a.s.

(iv) If E e� T0k k2
	 


< 1 for some � > 0, and if there exist a > 0 and r 2 0; 1� ½ such that

�k � ark; k � 1,�V
j � arj; j � 1;

then

Cn � Ck kS¼ O
log nð Þ5=2

n1=2

 !
a.s.

Remark 2.4. We could have chosen to consider the following
representation of the ARHX(1) process with q exogenous variables, say
Un ¼ �00ðUn�1Þ þ "00n with

Un ¼

Xn

Xn�1

Znþ1;1

..

.

Znþ1;q

0BBBBB@

1CCCCCA; "00n ¼

"n
0

�n;1

..

.

�n;p

0BBBBB@

1CCCCCA and �00 ¼

� 0 a1 � � � � � � aq
I 0 0 0 0 0

0 0 u1 0 � � � 0

0 0 0 u2 0 ..
.

..

. ..
. ..

. . .
.

0

0 0 0 0 0 uq

0BBBBBBBB@

1CCCCCCCCA
:

This way, we would have obtained similar results for the cross-covariance
estimator Dn ¼ 1

n�1

Pn�1
i¼1 Xi � Xiþ1 of D ¼ C1 ¼ CX0;X1 :
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2.3. ESTIMATION

We now make use the autoregressive representation in order to construct
theoretical estimators of the functional parameters of model (1). Indeed, we
can consider the estimator �0n of �0 in the simple ARH context.

Denote by vj
� �

, and �T
j

	 

the eigenelements of CT. Denote by ~	kn the

orthogonal projection over the subspace kn spanned by the kn eigenvectors
v1;n; :::; vkn;n of CT

n associated with the kn greatest eigenvalues �T
1;n; . . . ; �

T
kn;n

( knð Þ is a sequence of integers such that kn � n for all n � 1 and kn ! 1). We
make the following assumptions:

– E T0k k4< 1,

– �T
1 > �T

2 > � � � > �T
j > � � � > 0;

– �T
kn;n

> 0; n � 1 (a.s.).

We define the following estimators of the covariance and of its inverse

~CT
n ¼ ~	knCT

n ¼
Xkn
j¼1

�T
j;nvj;n � vj;n and ~CT

n

� ��1¼
Xkn
j¼1

�T
j;n

	 
�1

vj;n � vj;n:

The estimator of �0 is then �0n ¼ ~	knDT
n

~CT
n

� ��1
~	kn . Define

�n ¼ P1�
0
nP1; ai;n ¼ P1�

0
nPiþ1; i ¼ 1; :::; q; ui;n ¼ Piþ1 �

0
nPiþ1; i ¼ 1; :::; q:

THEOREM 2.3 If �0 is an Hilbert–Schmidt operator, and [9, Equation
(8.65)] holds for the eigenvalues of CT then

�n � �k kL !
n!1

0 a.s., ai;n � ai
�� ��

L !
n!1

0 a.s., ui;n � ui
�� ��

L !
n!1

0 a.s.

Guillas [16] obtained rates of convergence in the L2 sense for the estimation
of the autocorrelation operator � in the ARH model. We can apply those
results to our context using the same arguments as previously. Whether the
eigenvectors of CT are known or unknown, we get then respectively up to
n�1=3- and up to n�1=4-rates of convergence depending of the previous
knowledge of the decreasing speed of the eigenvalues of CT.

3. A Simulation Study

To be able to simulate ARHX processes we may simply simulate an ade-
quate ARH process in Hqþ1, based on relation (2). Pumo [28] used the
Karhunen–Loève theorem to simulate both Wiener processes and contin-
uous ARH. Working with Wiener processes, he constructed the orthonor-
mal basis associated with the Karhunen–Loève decomposition and decided
to simulate continuous ARH by using a simple � operator in this basis. As
ARH processes do not suppose especially Wiener noises, we choose to
generalize this simulation to a larger class of processes by employing strong
white noises.
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We developed one specific library in the statistical software R (see [19]),
which might be soon available at the CRAN (http://cran.r-project.org).

3.1. SIMULATION PRINCIPLE

Since it is more rational to work with finite dimensional processes, a natural
way to simulate an ARH process is to consider a m-dimensional subspace of
H, denoted by Hm, and to create Xnð Þ as an ARH process in Hm. We project
Xnð Þ in the chosen discretization scheme to obtain our observations. We work
with a number of discretization points d inferior to m in order to reason as if
Hm approximates H. The larger m is, the closer we are to a functional
modeling. Numerical applications were carried out with m ¼ 100 and d ¼ 10
discretization points. As we expected, to obtain optimal kn smaller than 5 in
the estimation, 10 discretization points were sufficient enough to measure the
influence of kn on our estimates.
Concretely, we simulated ARHX processes Xnð Þ with one exogenous var-

iable Znð Þ (q ¼ 1, dropping consequently in this section the i index, i.e.
Zn ¼ uðZn�1Þ þ �n) as ARH processes T in H2

m, using the representation (2).
To do so, we needed to choose a basis ofHm in which are expressed �0 and the
simulated strong white noise "0n

� �
. The way to obtain those elements is ex-

posed in the sequel, and the simulation is then straightforward.
The main advantage of this approach, in comparison to [4] and [28] is that

we are able to simulate ARH processes with a non Gaussian noise or a
nondiagonal correlation operator �. Figure 1 displays two examples of sim-
ulated processes: the first one with a uniform noise over ½�

ffiffiffi
3

p
;
ffiffiffi
3

p
� and a

diagonal correlation operator �, and the second one with a nondiagonal � in
the basis given by the eigenvectors of the covariance operator with a Gaussian
noise. On the first hand, when � is diagonal, the effect is somehow repro-
ductive as shown in Figure 1(a). On the other hand, when � is non diagonal,
we may observe as in Figure 1(b) an asymmetric effect, especially on peaks. In
this latter case, the curves are more difficult to forecast because of cross-
correlations. Consequently, the method introduced in this paper is able to
cover a broader variety of continuous-time processes.

– The basis can be constructed from a arbitrary noncollinear family of
vectors, using the Gram–Schmidt orthonormalization. This technique
enables us to control the shape of the first eigenvectors of the covariance
operator. We noticed that the choice of the basis does not really influence
the quality of the estimation. Accordingly, we opted for sinusoidal
functions as first vectors of the basis.

– �0 is written

�0 ¼ � a
0 u

� �
ð5Þ
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Figure 1. Two simulated sample paths of an ARH(1) process: (a) with a Uni-
form(½�

ffiffiffi
3

p
;
ffiffiffi
3

p
�) noise, and (b) with a nondiagonal correlation operator.
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in the induced basis of H2
m. In the following, the numerical expressions of

�0 will not be given in this basis, but in the basis constructed with the first
eigenvectors of CT.

– The relation [9, 3.13] C" ¼ CX � �CX��, is useful for simulating the noise
adapted to a given covariance operator CX. Pumo [28] simulated an ARH
model, using this formula when all the operators are diagonals. We also
apply this result to Tnð Þ in the nondiagonal case with the covariance
operator

CT ¼ CX CXZþ

CZþX CZ

� �
:

The inner components of CT verify the following relation

CX;Zþ ¼ uCX;Zþ
�� þ uCZa�: ð6Þ

Indeed, for all x in H,

CX;ZþðxÞ ¼ E Xn; xh iZnþ1½ � ¼ E � Xn�1ð Þ þ aðZnÞ þ "n; xh i uðZnÞ þ �nð Þ½ �
¼ E � Xn�1ð Þ; xh iuðZnÞ½ � þ E aðZnÞ; xh iuðZnÞ½ �
¼ E Xn�1; �

�ðxÞh iuðZnÞ½ � þ E Zn; a
�ðxÞh iuðZnÞ½ �:

With this knowledge, we proceed in four steps:

1. choose the parameters �, a, u, CX and CX;Zþ
, or more precisely their matrix

representation in Hm,
2. compute from (6) the matrix representation of the operator CZ, and

therefore obtain CT knowing that CZþ;X ¼ CX;Zþ� ��
,

3. determine C"0 using the relation C"0 ¼ CT � �0CT�0�.
4. Simulate the noise "0n

� �
from an i.i.d. sequence 
nð Þ of random variables in

H2
m using the relation "0n ¼ C"0

� �1
2
n, n � 1:

As one may notice, those different computations are not always possible due
to non invertible matrices and the fact that the final matrix associated with
C"0 needs to be positive definite.

3.2. MODELS

In Section 3.3, we compared the forecasting properties of the ARHX model
to the ones issued from the ARH and the functional kernel models which
both do not include the exogenous variable. Moreover, we distinguished two
different implementations of the ARHX estimation. Those models are pre-
sented below, except the aforementioned ARH.

3.2.1. Functional kernel model

One nonparametric way to deal with the conditional expectation �ðxÞ ¼
E Xi Xi�1 ¼ xj½ �, where Xið Þ is a H-valued process, is to consider a predictor
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inspired by the classical kernel regression, as in [24] and [34]. It is a
general estimation procedure because linearity of � is not assumed. Ref. [5]
already considered the following functional kernel estimator of �:

�̂hnðxÞ ¼

Pn�1

i¼1

Xiþ1 � K Xi�xk kH
hn

	 

Pn�1

i¼1

K
Xi�xk kH

hn

	 
 ; x 2 H; ð7Þ

where hn is the bandwidth, :k kH is the norm of H (H is chosen to be L2 0; d½ � in
our simulation), andK is the usualGaussian kernel. Hencewe get the predicted
value ofXnþ1 given by X̂nþ1 ¼ �̂hnðXnÞwhere hn is obtained by cross-validation.

3.2.2. Autoregressive Hilbertian process with exogenous variables

Two approaches are at least possible, in order to estimate an ARHX process.
The first one is simply to apply the theoretical techniques exposed previously.
This model will be denoted by the acronym ARHX(a).
The second – denoted by the acronym ARHX(b) – deals with situations

where the endogenous process hides the exogenous influence. An empirical
answer to this problem is then to impose to the eigenvectors forming the basis
of the autocovariance operator CT to be built with eigenvectors of the au-
tocovariance operators CX, CZ1 , ..., CZn and naturally blocks of 0. This might
seem very restrictive, but this construction can induce a better behavior than
the usual one in some situations as shown in Section 3.3. The cross-validation
procedure is leading to multiple selection of dimension reduction for each of
the variables and is therefore more complex. Applying this method to an real
forecasting problem leads to a model choice criterion by using a cross vali-
dation technique (see [14]). Indeed, if a variable is not worth introducing, its
associated dimension will be 0.

3.3. RESULTS

Let Xi;j be the ith coordinate of the jth observation of Xnð Þ and X̂i; j the
prediction of Xi;j. In order to compare the curves, we compute for integers
p ¼ 1; 2 respectively the following empirical Lp-errors and the L1-errors on a
sample of n observations based on the discretization scheme

X̂� X
�� ��

Lp ¼
1

n

Xn
j¼1

1

d

Xd�1

i¼0

X̂i; j � Xi; j

�� ��p !1=p

; p ¼ 1; 2; ð8Þ

X̂� X
�� ��

L1 ¼ 1

n

Xn
j¼1

sup
i¼0;...;d�1

X̂i; j � Xi; j

�� ��:
In the numerical applications, we used the method described in Section 3.1
with a Gaussian sequence 
nð Þ and diverse sets of coefficients. For each
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simulation, we did not choose all the matrix coefficients but only those in the
first block. The other coefficients were null except on the diagonal of �, u , CX

and CX;Zþ
where we put a decreasing sequence of numbers, e.g. �i :¼ �i�2,

� > 0, � smaller than the other coefficients.

3.3.1. Efficiency of estimation

A simple Monte-Carlo study showed us that the estimation of the
parameters is efficient for relatively small size of samples. For instance, we
considered ARHX processes in H100 estimated by the ARHX(a) model.
We used a training sample size varying from 10 to 200, by steps of size 10,
on which we estimated the models. Ten complementary observations were
used to benchmark on. We simulated 200 processes for each value of the
sample size and computed the mean of the 200 L2-errors between ARH-
X(a) forecasts and observations on the benchmark set.
In Figure 2, we see that L2-errors become almost constant from a

sample size of approximately 50. In the following, we systemati-
cally simulated processes with a sample size of 400 to ensure a good
estimation.
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Figure 2. Monte Carlo estimation of the L2 error, 200 replications for each sample size
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3.3.2. Parameters estimation: an example

Once the size of sample was determined by the precedent study, we needed to
validate that the quality of estimation is good with a sample size of 400.
Therefore, we considered the following simulation of an ARHX process.
To make things clearer, we only give in the following lines the parameters

involved in Equation (2) associated with our model. Their calculation is
straightforward using formulae (5) and (6), starting from a set of coefficients
for the matrices of �, u , CX and CX;Zþ

.
The first four eigenvalues of the matrix associated with the covariance oper-

atorCT are denoted �0 in a vectorial form, and the matrix expression of �0 in the
basis of the four eigenvectors associated with �0 is denoted by R0. The optimal
value ofknwasobtainedusing cross-validationover the 80 last observations (the
fifth of the sample size). As it appears in Table I, the minimum is obtained for
kn ¼ 4, according to the theoretical structure of our simulated model. Notice
that if we over-estimate this dimension, the loss of precision is moderate. The
estimation performed with kn ¼ 4 yields the following estimates b�0 and bR0 of �0

and R0 respectively. The coefficients are well approximated, especially for the
first components which contain the great bulk of the information.

�0 ¼

0:4150

0:1890

0:1150

0:0090

0BBBB@
1CCCCA; R0 ¼

0:672 �0:134 0 0

0:366 0:228 0 0

0 0 0:9 0

0 0 0 0:34

0BBBB@
1CCCCA;

b�0 ¼

0:3800

0:1871

0:1197

0:0094

0BBBBBB@

1CCCCCCA; bR0 ¼

0:615 0:196 �0:053 �0:046

�0:404 0:317 �0:009 �0:131

�0:001 0:067 0:904 �0:033

0:005 �0:013 �0:001 0:342

0BBBBBB@

1CCCCCCA:

Table I. Example of cross-validation for the ARHX model

kn L1 L2 L1 kn L1 L2 L1

1 0.518 0.604 0.94 11 0.405 0.467 0.709

2 0.47 0.542 0.834 12 0.405 0.466 0.708
3 0.401 0.462 0.703 13 0.406 0.467 0.709
4 0.401 0.462 0.7 14 0.408 0.47 0.713

5 0.402 0.463 0.702 15 0.409 0.47 0.713
6 0.404 0.465 0.706 16 0.415 0.477 0.724
7 0.405 0.466 0.707 17 0.412 0.474 0.718
8 0.405 0.466 0.707 18 0.412 0.475 0.72

9 0.405 0.467 0.708 19 0.412 0.475 0.72
10 0.406 0.468 0.71 20 0.412 0.475 0.72
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Moreover, we provided in Figure 3 the theoretical and estimated eigen-
vectors of the matrix associated with the covariance operator CT. The
similarity between the two sets of curves is very good. Note that we actually
estimate the eigenvector space, and therefore on Figure 3, �v3 and not v3 is
estimated.

3.3.3. Comparison

Finally, Monte-Carlo simulations show us how the inclusion of exogenous
variables in functional time series can improve the predictions.We provide two
sets of parameters which will be referred as S1 and S2. As we explained in
Section 3.1, a simulation is characterized by the choice of a basis and the
coefficients of the matrix associated with �, a, u,CX andCX;Zþ

. We precise here
those latter parameters as the choice of the basis is not crucial. The notation
diag is used to refer to the diagonal elements of a diagonalmatrix. The influence
of the exogenous variable on the endogenous one is stronger when the ratio of
the norms of CX;Zþ

and CX is larger.

S1. A model with a strong influence of the exogenous variable:

� ¼ diagð0:6; 0:5; �1; :::Þ; u ¼ diagð0:1; 0:1; 0:7; 0:7; �1; :::Þ;
CX ¼ diagð30; 30; �1; :::Þ;
a ¼ diagð0:8; 0:8; 0:1; 0:1; 0; :::Þ; CX;Zþ ¼ diagð2; 2; 10; 10; 0; :::Þ:

In its two first directions, the exogenous variable exert a strong influence on
the endogenous variable and its autocorrelation is weak. In the third and
fourth directions, the exogenous variable exert a weak influence on the
endogenous variable and its autocorrelation is strong.
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Figure 3. Estimated versus theoretical eigenvectors of CT.
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S2. A model with a little influence of the exogenous variable:

� ¼ diagð0:3; 0:7; 0:2; �1; :::Þ; u ¼ diagð0:7; 0:4; �1; :::Þ;
CX ¼ diagð3; 2; 1; �1; :::Þ;

a ¼

0:6 0:2 0 0

0:1 0:5 0 0

0 0 �1 0

0 0 0 . .
.

0BBBB@
1CCCCA; CX;Zþ ¼

0:5 0:3 0 0

0:2 0:5 0 0

0 0 0 0

0 0 0 . .
.

0BBBB@
1CCCCA:

Here, the exogenous variable combines in its two first directions a strong
influence on the endogenous variable with a strong autocorrelation.
Ten thousand replications for each simulation set were computed. For each

replication, we used the 320 first observations to calibrate the various models
(using cross-validation for certain parameters) and the 80 other to compute
the forecasts and contrast the errors.
Table II completes the validation of our methodology. One may notice, in

addition to the ARHX supremacy, a better behavior of the ARH model
comparing to the functional kernel. This might be explained by the fact that
ARHX models may be interpreted as ARH models with a non independent
noise or by the better predictive skills of ARH models over functional kernel
in common situations, see e.g. [5].
Finally, we observe a good fitting of the exogenous influence by ARHX

models, with a distinction between the (a) and (b) versions. This latter model is
a little bit more accurate when the exogenous variable is hidden by the endoge-
nousone(S1case),becausetheestimatorfocusesmoreontheeigenvectorsofCZ.
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Appendix A. Proofs

Proof of Proposition 2.1. First, we know that Equation (2) has a unique sta-
tionary solution Tn ¼

P
j�0 �

0jð"0n�jÞ; n 2 Z, applying [9, Theorem 3.1] to the
caseH ¼ Hqþ1 where the series converges a.s. and in L2

Hð�;A;PÞ. It suffices to
remark for existence thatXn ¼ P1Tn. For uniqueness, let us suppose thatXn;1 is
another stationary solution of Equation (1). Then we can define
Tn;1 ¼ Xn;1;Znþ1ð Þ0, which is a stationary solution of Equation (2), and by
uniqueness of this solution, Tn;1 ¼ Tn a.s., so Xn;1 ¼ Xn a.s.

Table II. Mean of L2-errors computed on 10,000 ARHX(1) replications

Parameters ARH ARHX(a) ARHX(b) Kernel Persistence

S1 5.616 2.532 2.513 5.831 6.204

S2 1.586 1.395 1.396 1.680 1.787
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Proof of Proposition 2.2. For any integer h we have for all x in H

C�hðxÞ¼E Xh;xh iX0½ �

¼E �ðXh�1Þ;xh iX0½ �þE
Xq
j¼1

ajðZh;jÞ;x
* +

X0

" #
þE "h;xh iX0½ �

¼E Xh�1;�
�ðxÞh iX0½ �þ

Xq
j¼1

E Zh;j;a
�
j ðxÞ

D E
X0

h i
þE "h;xh iX0½ �:

So

C�h ¼ C�hþ1�
� þ

Xq
j¼1

CZh;j;X0a�j þ �h0C
"; where �h0 ¼

0 if h ¼ 0;
1 otherwise.

�

Indeed, by Proposition 2.1 Xn ¼
P1
j¼0

ðP1�
0jÞð"0n�jÞ, and because of the indepen-

dence of the noises "nð Þ and �n;i
� �

we can claim that E "h; :h iX0½ � ¼ �h0C
". Thus

Ch ¼ �Ch�1 þ
Xq
j¼1

ajC
X0;Zh;j ; h � 1; C0 ¼ �C�1 þ

Xq
j¼1

ajC
X0;Z0;j þ C"; h ¼ 0:

LEMMA A.1. Let Xnð Þ be an ARHX(1) defined by Equation (1) then

E X0;Xhh ij j � �0h
�� ��

Lqþ1
ðE X0k k2þ

Xq
i¼1

E Z0;i

�� ��2Þ þXq
i¼1

uhi
�� ��

LE Z0;i

�� ��2; h � 1:

Proof of Lemma A.1. Tn is an ARHqþ1ð1Þ, so by [9, Lemma 3.2]

E T0;Thh iqþ1

��� ��� � �0h
�� ��

Lqþ1
E T0k k2qþ1; h � 1;

i.e.

E X0;Xhh i þ
Xq
i¼1

E Z0;i;Zh;i

� ������
����� � �0h

�� ��
Lqþ1

E X0k k2þ
Xq
i¼1

E Z0;i

�� ��2 !
; h � 1:

But

E X0;Xhh ij j ¼ E X0;Xhh i þ
Xq
i¼1

E Z0;i;Zh;i

� �
�
Xq
i¼1

E Z0;i;Zh;i

� ������
�����

� �0h
�� ��

Lqþ1
E X0k k2þ

Xq
i¼1

E Z0;i

�� ��2 !
þ E Z0;i;Zh;i

� ��� ��
� �0h
�� ��

Lqþ1
ðE X0k k2þ

Xq
i¼1

E Z0;i

�� ��2Þ þXq
i¼1

uhi
�� ��

LE Z0;i

�� ��2;
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since by [9, Lemma 3.2], for all i

E Z0;i;Zh;i

� ��� �� � uh
�� ��

LE Z0;i

�� ��2; h � 1:

Proof of Theorem 2.1. (i) The proof relies upon Lemma A.1 and is similar to
[9, Theorem 3.7].

(ii) By [9, Theorem. 3.8],

nE
T1 þ � � � þ Tn

n

���� ����2
qþ1

!
n!1

Xþ1

h¼�1
E T0;Thh iqþ1

and we have

nE
T1 þ � � � þ Tn

n

���� ����2
qþ1

¼ 1

n

X
1�i;j�n

E Ti;Tj

� �
qþ1

¼ nE
X1 þ � � � þ Xn

n

���� ����2þXq
i¼1

nE
Z1;i þ � � � þ Zn;i

n

���� ����2;
but for all i

nE
Z1;i þ � � � þ Zn;i

n

���� ����2 !
n!1

Xþ1

h¼�1
E Z0;i;Zh;i

� �
by [9, Theorem. 3.8]. Accordingly

nE
X1 þ � � � þ Xn

n

���� ����2 !
n!1

Xþ1

h¼�1
E T0;Thh iqþ1�

Xq
i¼1

Xþ1

h¼�1
E Z0;i;Zh;i

� � !

¼
Xþ1

h¼�1
E X0;Xhh i:

(iii) The result is based on [9, Cor. 3.2] and the relation

T1 þ � � � þ Tn

n

���� ����
qþ1

¼ X1 þ � � � þ Xn

n

���� ����þXq
i¼1

Z1;i þ � � � þ Zn;i

n

���� ����:
LEMMA A.2. Suppose that

(i) �; a1; :::; aq; u1; :::; uq commute
(ii) I� �; I� u1; :::; I� uq are invertible,

then Iqþ1 � �0 is invertible in Hqþ1 and

Iqþ1��0
� ��1¼

I��ð Þ�1 a1ðI��Þ�1ðI�u1Þ�1 � � � � � � aqðI��Þ�1ðI�uqÞ�1

0 ðI�u1Þ�1 0 � � � 0

..

.
0 . .

. . .
. ..

.

..

. ..
. . .

. . .
.

0
0 0 � � � 0 ðI�uqÞ�1

0BBBBBB@

1CCCCCCA:
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Proof of Lemma A.2. Consider the case q ¼ 1 for simplicity. We calculate the
following product

I� � �a1

0 I� u1

� �
I� �ð Þ�1 a1ðI� �Þ�1ðI� u1Þ�1

0 ðI� u1Þ�1

 !

¼ I� �ð Þ I� �ð Þ�1 a1ðI� u1Þ�1 � a1ðI� u1Þ�1

0 ðI� u1ÞðI� u1Þ�1

 !
¼

I 0

0 I

� �
:

Proof of Theorem 2.2.

T1 þ � � � þ Tnffiffiffi
n

p !D
n!1

Nð0;�0Þ;

where

�0 ¼ ðIqþ1 � �0Þ�1C"0 ðIqþ1 � �0�Þ�1

because Tnð Þ is an ARH(1) such that (C) holds. By continuity of weak
convergence with respect to continuous transformation,

Snffiffiffi
n

p ¼ P1
T1 þ � � � þ Tnffiffiffi

n
p

� �
!D

n!1
Nð0;P1�

0P1Þ:

Since the noises are independent, we may write

C"0 ¼

C" � � � � � � 0
..
.

C�1 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 C�q

0BBB@
1CCCA:

We are interested in the first block of �0 ¼ ðIqþ1 � �0Þ�1C"0 ðIqþ1 � �0�Þ�1. But
a general matrix product ABC when B is diagonal leads to
ABCð Þ11 ¼

Pqþ1
k¼1A1kBkkCk1. In our situation, B22 ¼ 0, and when

�; a1; :::; aq; u1; :::; uq commute then by the previous lemma we get (knowing
that Ck1 ¼ A�

1k)

� ¼ I� �ð Þ�1C" I� ��ð Þ�1þ
Xq
i¼1

ai I� �ð Þ�1 I� uið Þ�1C" I� u�i
� ��1

I� ��ð Þ�1a�i :

Proof of Proposition 2.3. For point ðiÞ, we write CT and CT
n in a block form

CT ¼

CX CX;Zþ
1 � � � CX;Zþ

q

CZþ
1
;X CZ1 ..

.

..

. ..
. . .

.

CZþ
q ;X � � � CZq

0BBB@
1CCCA; CT

n ¼

CX
n C

X;Zþ
1

n � � � C
X;Zþ

q
n

C
Zþ

1
;X

n CZ1
n

..

.

..

. ..
. . .

.

C
Zþ

q ;X
n � � � C

Zq
n

0BBBBB@

1CCCCCA:
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Thus,

CT
n � CT

�� ��2
Sqþ1

� Cn � Ck k2Sþ
Xq
j¼1

CZj
n � CZj

�� ��2
Sþ
Xq
j¼1

C
X;Zþ

j
n � CX;Zþ

j

��� ���2
S
: ð9Þ

But by [9, Theorem 4.1],

lim sup
n!1

nE CT
n � CT

�� ��2
Sqþ1

¼
Xþ1

h¼�1
E V0;Vhh iSqþ1

:

This point entails easily part ðiÞ of the proposition. For ðiiÞ and ðiiiÞ, we use
(9) and the results in [9, Chapter 4].

Proof of Theorem 2.3. It suffices to remark that for all i and j

Pi �
0
n � �0

� �
Pj

�� ��
L� Pik kL �0n � �0

�� ��
L Pj

�� ��
L� �0n � �0

�� ��
L

and then apply [9, Theorem. 8.7], knowing that

�n � � ¼ P1 �0n � �0
� �

P1;

ai;n � ai ¼ P1 �0n � �0
� �

Piþ1;ui;n � ui ¼ Piþ1 �0n � �0
� �

Piþ1, i ¼ 1; :::; q:
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