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Abstract

In situations where a sequence of forecasts is observed, a common strategy is to

examine ‘rationality’ conditional on a given loss function. We examine this from a

different perspective - supposing that we have a family of loss functions indexed by

unknown shape parameters, then given the forecasts can we back out the loss function

parameters consistent with the forecasts being rational even when we do not observe

the underlying forecasting model? We establish identification of the parameters of

a general class of loss functions that nest popular loss functions as special cases and

provide estimation methods and asymptotic distributional results for these parameters.

This allows us to construct new tests of forecast rationality that allow for asymmetric

loss. The methods are applied in an empirical analysis of IMF and OECD forecasts of

budget deficits for the G7 countries. We find that allowing for asymmetric loss can

significantly change the outcome of empirical tests of forecast rationality.
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1 Introduction

That agents are rational when they construct forecasts of economic variables is an important

assumption maintained throughout much of economics and finance. Considerable effort

has been devoted to empirically testing the validity of this proposition using survey data

on forecasts in areas such as efficient market models of stock prices, models of the term

structure of interest or currency rates, inflation forecasting and tests of the Fisher equation.1

Interpretation of this work is tempered by the fact that properties of rational forecasts can

only be established jointly with a maintained loss function. Typically the empirical literature

has tested rationality of forecasts in conjunction with the assumption that mean squared

error (MSE) loss adequately represents the forecaster’s objectives. Under this loss function

forecasts are easy to compute through least squares methods and have well established

properties such as unbiasedness and lack of serial correlation at the single-period horizon,

c.f. Diebold and Lopez (1996). Inference about the optimality of a particular forecast series

is easy and can be based directly on the observable forecast errors which do not depend on

any unknown parameters of the forecasters’s loss function.

Mean squared error loss, albeit a widely used assumption, is, however often difficult to

justify on economic grounds and is certainly not universally accepted. Granger and Newbold

(1986, page 125) argue that “An assumption of symmetry for the cost function is much less

acceptable [than an assumption of a symmetric forecast error density].” Consequently, in

economics and finance forecasting performance is increasingly evaluated under more general

loss functions that account for asymmetries, c.f. Christoffersen and Diebold (1996, 1997),

Granger and Newbold (1986), Granger and Pesaran (2000), West, Edison and Choi (1993)

and Zellner (1986). Frequently used loss functions include lin-lin and linex loss which allow

for asymmetries through a single shape parameter. Under these more general loss functions,

the forecast error no longer retains the optimality properties that are typically tested in

empirical work. This raises the possibility that many of the rejections of forecast optimality

reported in the empirical literature may simply be driven by the assumption of MSE loss

rather than by the absence of forecast rationality per se. Indeed, if we are not sure that the

loss function is of the MSE type, a key question then becomes what inference we can draw

1For references to numerous papers on forecast rationality see www.Phil.frb.org/econ/spf/spfbib.html.
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from empirical inspection of a sequence of point forecasts.

This paper develops new methods for testing forecast optimality under general classes of

loss functions that include mean absolute error (MAE) or MSE loss as a special case. This

allows us to separate the question of forecast rationality from that of whether MAE or MSE

loss accurately represents the decision maker’s objectives. Instead our results let us test

the joint hypothesis that the loss function belongs to a more flexible family and that the

forecast is optimal.2 In each case the family of loss functions is indexed by a single unknown

parameter. We establish conditions under which this parameter is identified. Since first

order conditions for optimality of the forecast take the form of moment conditions, exact

identification corresponds to the situation where the number of moment conditions equals the

number of parameters of the loss function. When there are more moments than parameters,

the model is overidentified and the null hypothesis of rationality can be tested through

a J-test. Our approach essentially reverses the usual procedure - which conditions on a

maintained loss function and tests rationality of the forecast - and instead asks what sort of

parameters of the loss function would be most consistent with forecast rationality. We treat

the loss function parameters as unknowns that have to be estimated and effectively ‘back out’

the parameters of the loss function from the observed time-series of forecast errors. These

parameters are potentially of great economic interest as they provide information about the

forecaster’s objectives. For instance, if the mean forecast error is strongly negative, it could

either be that the forecaster has MSE loss and is irrational or that loss is asymmetric and

the forecaster rationally overpredicts due to higher costs associated with positive than with

negative forecast errors.

The idea of backing out the parameter values that are most consistent with an optimizing

agent’s objective function has, in a different framework, been considered by Hansen and

Singleton (1982). These authors study a representative investor with power utility and

develop methods for estimating preference parameters from the investor’s Euler equations.

2In general decision problems the forecasting and decision problem cannot be separated and an examina-

tion of the decision maker’s action rule and full density forecast is required to test rationality, c.f. Diebold,

Gunther and Tay (1998). Neither of these is, in general, observable and the vast majority of empirical

data takes the form of point forecasts. Decision rules and utility functions giving rise to the loss function

entertained in this paper can be established, however, c.f. Elliott, Komunjer and Timmermann (2004).
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There is a major difference between this work and our approach, however, which has to do

with the fact that Hansen and Singleton treat consumption and asset returns as observable

state variables. When backing out the parameters of the forecaster’s loss function from

a sequence of point forecasts, this approach is less attractive, however. There is the real

possibility that the forecasts are based on a misspecified model and this may well rule out

identification of the parameters of the forecaster’s loss function. Excluding this possibility

requires carefully establishing conditions on the model used by the forecaster and the sense in

which it may be misspecified. We develop new theoretical results that allow us to identify the

source of rejection by establishing conditions on the decision maker’s forecasting model under

which the parameters of the loss function are identified and can be consistently estimated.

An area where asymmetric loss may play an important role is in the generation of gov-

ernment budget deficit forecasts by central banks and international organizations such as

the IMF and OECD that are subject to political pressures from member countries but also

play a role in imposing budgetary discipline. In an empirical analysis of forecasts generated

by these organizations, we find evidence of systematic overpredictions of government budget

deficits. This is inconsistent with forecast rationality and MSE loss. However, when we allow

for asymmetric loss we can no longer reject forecast rationality. This suggests that unless

it is known that forecast producers such as the IMF and OECD have symmetric loss, it is

important to account for the possible effects of asymmetric loss. Furthermore, unless the

forecast user happens to have the exact same loss function as the producer of the forecast,

the raw forecasts cannot be used uncritically since they are only constructed to be optimal

with respect to the forecast producer’s loss. Knowing the direction of possible asymmetries

in the loss function underlying the observed forecast - as can be obtained by estimating the

loss function parameters - is thus important information to users of such forecasts.

The plan of the paper is as follows. Section 2 outlines the conditions for optimality of

forecasts under a general class of loss functions. Section 3 develops the theory for identifica-

tion and estimation of loss function parameters and also derives tests for forecast optimality

in overidentified models. Section 4 explores the small sample performance of our methods

in a Monte Carlo simulation experiment, while Section 5 provides an application to fore-

casts of government budget deficits. Section 6 concludes. Technical details are provided in
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appendices at the end of the paper.

2 Asymmetric Loss and Optimal Forecasts

In this section we examine families of loss functions which nest common ones as special

cases. We study the forecasters’ optimal problem and establish conditions under which we

can identify the parameters describing the loss function from a sequence of observed rational

forecasts.

Our setup is as follows: let X ≡ {Xt : Ω −→ Rm+1,m ∈ N, t = 1, . . . , n + 1} be a
stochastic process defined on a complete probability space (Ω,F , P ) where F = {Ft, t =

1, . . . , n + 1} and Ft is the σ-field Ft ≡ σ{Xs, s 6 t}. Denote by Yt the component of

interest of the observed vector Xt, Yt ∈ R, and interpret the remaining components as being
an m-vector of other variables. We assume Yt is continuous. The distribution function F (·)
of Yt+1, its density f(·), and the expectation E[·] are subscripted by a t to show that they
are conditional on the information set Ft.3 The forecasting problem considered here involves

forecasting the variable Yt+s, where s is the prediction horizon of interest, s > 1. In what
follows, we set s = 1 and examine the one-step-ahead predictions of the realization yt+1,

knowing that all results can readily be generalized to any s > 1.
Let ft+1 ≡ θ0Wt be the forecast of Yt+1 conditional on the information set Ft in which θ

is an unknown k-vector of parameters, θ ∈ Θ, with Θ compact in Rk, and Wt is an h-vector

of variables that are Ft-measurable.4 When constructing optimal forecasts we assume that,

given Yt+1 and Wt, the forecaster has in mind a generalized loss function L defined by

L(p, α, θ) ≡ [α+ (1− 2α) · 1(Yt+1 − ft+1 < 0)]|Yt+1 − ft+1|p, (1)

where p ∈ N∗, the set of positive integers, α ∈ (0, 1), θ ∈ Θ and Yt+1 − ft+1 corresponds

to the forecast error εt+1. We let α0 and p0 be the unknown true values of α and p used

3Upper and lower case letters denote random variables and their realizations, respectively.
4Both the functional form of ft+1 and the vector Wt are specified by the agent producing the forecast.

Wt includes variables that are observed by the forecaster at time t thought to help forecast Yt+1 and which

need not be known to the forecast user. If Wt fails to incorporate all the relevant information in Ft or if the
functional form of ft+1 is misspecified, we say that the forecasting model is wrongly specified.
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by the forecaster. Hence, the loss function in (1) is a function of not only the realization

of Yt+1 and the forecast ft+1, but also of the shape parameters α and p of L. Special cases

of L include: (i) squared loss function L(2, 1/2, θ) = (Yt+1 − ft+1)
2, (ii) absolute deviation

loss function L(1, 1/2, θ) = |Yt+1−ft+1|, as well as their asymmetrical counterparts obtained
when α 6= 1/2, i.e. (iii) quad-quad loss, L(2, α, θ), and (iv) lin-lin loss, L(1, α, θ).5 We shall
take p as given and focus on estimating α.

Given p0 and α0, the forecaster is assumed to construct the optimal one-step-ahead

forecast of Yt+1, f∗t+1 ≡ θ∗0Wt, by solving

min
θ∈Θ

E[L(p0, α0, θ)]. (2)

We let ε∗t+1 be the optimal forecast error, ε
∗
t+1 ≡ yt+1−f∗t+1 = yt+1−θ∗0wt, which depends on

the unknown true values p0 and α0. Optimal forecasts have properties that follow directly

from the construction of the forecasts. In the general case, the relevant optimality condition

is the one given in the following Proposition. Assumptions referred to in the propositions

are listed in Appendix A and proofs are provided in Appendix B.

Proposition 1 (Optimality Condition) Under assumptions (A0)-(A2), and for given

(p0, α0) ∈ N∗ × (0, 1) in (2), the forecast f∗t+1 is optimal if and only if

E[Wt(1(Yt+1 − f∗t+1 < 0)− α0)|Yt+1 − f∗t+1|p0−1] = 0. (3)

Moreover, given p0 ∈ N∗, for any realization of Wt, the solution f∗t+1 to the orthogonal-

ity condition (3) is unique, and the implicit function f∗t+1 = θp0(α0)
0Wt is a continuously

differentiable one-to-one mapping from (0, 1) to R.

Proposition 1 shows that under fairly weak assumptions on θ∗, Wt and Yt+1, the se-

quence of optimal forecast errors ε∗t+1 satisfies the moment conditions E[Wt(1(ε
∗
t+1t < 0) −

α0)|ε∗t+1|p0−1] = 0. When the forecasts are optimal, then any information must be correctly
5Linex loss is not a special case of (1). We chose not to focus on linex since the expected loss does

not exist under linex loss for a wide class of distributions of the forecast error (e.g. student-t with finite

degrees of freedom). Furthermore, linex loss only nests symmetric losss as a limiting case in the parameter

space where loss is not defined. Obtaining symmetry only for a parameter on the boundary creates serious

estimation problems and means that linex loss is not well-suited for our purpose.
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included in f∗t+1 which is orthogonal to the forecast errors and the quantity in (3) is a vector

martingale difference sequence. If for given p0 and α0 the forecaster uses (3) to determine

f∗t+1, then for a given f∗t+1 we can back out α0 by using the same condition. However, this

approach is valid only if knowing a solution to (3) allows the forecast user to identify p0 and

α0.

The second part of Proposition 1 shows that identification of α0 holds for fixed values of

p0. The result establishes a unique solution f∗t+1 that in turn, knowing p0 and f∗t+1, yields a

unique value for α. Without this relationship we would not be able to identify α.

In the case of a nonlinear forecasting model ft+1 ≡ f(θ,Wt), where the function f :

Θ× Rh → R is continuously differentiable, the expression in (3) holds provided we replace

Wt with the gradient of f with respect to θ, evaluated at (θ
∗,Wt). If in addition f(θ,Wt) is

twice continuously differentiable and concave in the parameter θ on Θ, for any realization

of Wt, then f∗t+1 is an optimal forecast. Provided the forecasting model is identifiable,

so that f(θ1,Wt) = f(θ2,Wt) for any realization of Wt implies θ1 = θ2, we can replace

Wt by the gradient of f with respect to θ in the assumptions (A0)-(A2) and show that

f∗t+1 = f(θp0(α0),Wt) is still a continuously differentiable one-to-one mapping from (0, 1) to

R.

Returning to the linear model, now suppose that the user of the forecast observes a d-

vector of variables Vt that were available to the forecast producer at the time f∗t+1 was made.

Assuming that the forecaster is rational this implies that Vt is a subvector of Wt. For given

values of (α0, p0) Proposition 1 then ensures that the following condition holds

E[Vt(1(Yt+1 − f∗t+1 < 0)− α0)|Yt+1 − f∗t+1|p0−1] = 0. (4)

Our next result shows that moment conditions (4) based on an observed subvector Vt of Wt

are sufficient to identify α0.

Lemma 2 Under Assumptions (A0)-(A3), given p0 ∈ N∗ and given a solution f∗t+1 to (3),

the true value α0 ∈ (0, 1) is the unique minimum of a quadratic form

Q0(α) ≡ E[Vt(1(Yt+1 − f∗t+1 < 0)− α)|Yt+1 − f∗t+1|p0−1]0 ·

S−1E[Vt(1(Yt+1 − f∗t+1 < 0)− α)|Yt+1 − f∗t+1|p0−1] ,

where Vt is a sub-vector of Wt and S is any positive definite weighting matrix.
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An important implication of the result of Lemma 2 is that, in order to back out α0,

the forecast user does not require the full vector of variables used by the forecaster Wt, but

rather a subvector of these variables, Vt. This is a rather strong result which grants that

with only a subvector of Wt we can identify the loss function parameter α0, even though we

cannot recover even a subset of θ∗ or know the full forecasting model used to generate the

forecast.

In practical applications, Lemma 2 is particularly relevant as we would generally ex-

pect that forecasters have access to not only publicly available information but also private

information which is outside the information set of the forecast user. For example, it is a

reasonable assumption that the IMF uses publicly available information provided by member

governments in forecasting government budget deficits as well as private information gleaned

from their country visits and discussions with finance ministers. However, even with only

the public information available, the identification of α0 is still feasible.

It is this practical concern that limits our focus to linear models. The results established

here continue to hold for nonlinear forecasting rules provided that Vt is a subvector of the

gradient of f with respect to the parameter θ, evaluated at (θ∗,Wt). In the linear case

this gradient simplifies to Wt and is therefore independent of θ
∗. In the nonlinear models,

however, the gradient of f potentially depends on bothWt and the entire vector of parameter

values θ∗. To calculate Vt we would therefore need to know the forecasting model f , its true

parameters θ∗ as well as the values of all the variables Wt that were used to construct the

forecast.

There are special cases (examples of nonlinear models) in which one can proceed in the

same way as in Section 3 below. If the model is partially linear and Vt is a subset of the linear

terms, then the gradient of f with respect to θ includes the vector Vt and the orthogonality

conditions (4) still hold. In other nonlinear models it is also possible that separability of the

model would allow specification of Vt with only partial knowledge of the model and variables.

In these cases the results below would continue to hold with the appropriate redefinitions.
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3 Estimating Loss Function Parameters

We now turn to the problem of recovering the true value α0 used in the loss minimization

problem (2) assuming again that the value of p0 is already known by the forecast user. If we

observed the sequence {f∗t+1} of optimal one-step-ahead point forecasts f∗t+1 ≡ θ∗0wt provided

by the forecaster, α0 could be estimated directly from

α0 =
E[Vt|Yt+1 − f∗t+1|p0−1]0S−1E[Vt1(Yt+1 − f∗t+1 < 0)|Yt+1 − f∗t+1|p0−1]

E[Vt|Yt+1 − f∗t+1|p0−1]0S−1E[Vt|Yt+1 − f∗t+1|p0−1]
, (5)

where S ≡ E[VtV
0
t (1(Yt+1− f∗t+1 < 0)−α0)

2|Yt+1− f∗t+1|2p0−2]. In practice, however, we only
observe the sequence {f̂t+1} where f̂t+1 ≡ θ̂

0
twt and θ̂t is an estimate of θ

∗ obtained by using

the data up to time t. Let n + 1 be the total number of periods available and assume that

the first τ observations are used to produce the first one-step-ahead forecast f̂τ+1. There

are n − τ + 1 ≡ T forecasts available, starting at t = τ + 1 and ending at n + 1 = T + τ .

These are assumed to be constructed recursively so that the parameter estimates use all

information prior to the period covered by the forecast. In particular, the one-step-ahead

forecast f̂τ+i+1 of the random variable Yτ+i+1 is constructed using the data from s = 1 to

s = τ + i, i.e. (y2, w01, . . . , yτ+i, w
0
τ+i−1)

0 to compute an estimate θ̂τ+i of θ
∗. The forecast

of yτ+i+1 is then given by f̂τ+i+1 = θ̂
0
τ+iwτ+i, i = 1, ..., n − 1. Our approach allows for the

possibility that the agent is recursively learning the parameters of the forecasting model.

In many macroeconomic applications with small samples this is clearly more realistic than

assuming that the agent’s learning process has been completed.

Having observed the sequence of forecasts {f̂t+1}τ6t<T+τ , we now construct an estimator
for α0 based on equation (5). Given the T observations (v0τ , . . . , v

0
T+τ−1)

0 of the d-vector Vt,

we consider a linear Instrumental Variable (IV) estimator of α0, α̂T , defined as

α̂T ≡
[ 1
T

T+τ−1P
t=τ

vt|yt+1 − f̂t+1|p0−1]0Ŝ−1[ 1T
T+τ−1P
t=τ

vt1(yt+1 − f̂t+1 < 0)|yt+1 − f̂t+1|p0−1]

[ 1
T

T+τ−1P
t=τ

vt|yt+1 − f̂t+1|p0−1]0Ŝ−1[ 1T
T+τ−1P
t=τ

vt|yt+1 − f̂t+1|p0−1]
, (6)

where Ŝ is a consistent estimate of S. The consistency result for α̂T is as follows:

Proposition 3 (Consistency) Given p0 = 1, 2, let α̂T be the linear IV estimator defined in

(6). Under Assumptions (A0)-(A6), α̂T exists with probability approaching one and α̂T
p→ α0.
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In other words, even with the domain of α0 not being compact, the linear IV estimator

is consistent for the true value α0. When the forecast rule is nonlinear, Vt is now a subvector

of the gradient of f with respect to θ, ∇θf , evaluated at (θ∗,Wt) where θ∗ is unknown.

Assuming one can observe a subvector v̂t of ∇θf evaluated at (θ̂t,Wt), where θ̂t is some

consistent estimate of θ∗, the results of Proposition 3 would still apply by replacing vt with

v̂t in the expression (6) for α̂T .6

Results on the asymptotic distribution of α̂T can be established under a set of stronger

mixing conditions:7

Proposition 4 (Asymptotic Normality) Given p0 = 1, 2, let α̂T be the linear IV esti-

mator defined in (6). Under Assumptions (A0)-(A4), (A5’) and (A6)-(A7), α̂T exists with

probability approaching one and

T 1/2(α̂T − α0)
d→ N (0, (h∗0S−1h∗)−1),

where S is defined after equation (5) and h∗ ≡ E[Vt · |Yt+1 − f∗t+1|p0−1].

The linear IV estimator α̂T is asymptotically normal with asymptotic variance that does

not depend on either Wt or θ
∗, both of which are a priori unknown to the forecast user.

Indeed, the asymptotic variance of α̂T is identical to that obtained with a standard GMM

estimator. This stems from the slightly faster rate at which the forecaster’s sample grows

relative to the evaluator’s sample. The result requires that the forecaster uses a consistent

estimator, but not neccessarily an optimal one.

In practice, the computation of the linear IV estimator α̂T is done iteratively. Estimation

of α̂T requires a consistent estimator of S−1, which in turn depends on α0. S can however be

consistently estimated by replacing the population moment by a sample average and the true

parameter by its estimated value, for example, Ŝ(ᾱT ) ≡ T−1
PT+τ−1

t=τ vtv
0
t(1(yt+1 − f̂t+1 <

6Note that the assumptions (A1), (A3) and (A5) used in the proof of Proposition 3 need to be appropri-

ately modified.
7For general results on asymptotic inference in the presence of parameter uncertainty, see West (1996),

West and McCracken (1998), McCracken (2000) and Corradi and Swanson (2002). Propositions 3 and 4

focus on the cases where p0 = 1, 2. These are likely to be the cases most useful in empirical analysis as they

nest MAE and MSE loss. The results are extendable to p0 > 2 using the same approach.
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0) − ᾱT )
2|yt+1 − f̂t+1|2p0−2, where ᾱT is a consistent initial estimate of α0, or by using a

robust estimator, such as Newey and West’s (1987) estimator.8 Computation of α̂T is then

carried out by first choosing S = Id×d and using (6) to compute the corresponding α̂T,1. The

resulting new weight matrix Ŝ−1(α̂T,1) is more efficient than the previous one, which when

plugged into (6) leads to a new estimator α̂T,2. The last two steps can then be repeated

until α̂T,j equals its previous value α̂T,j−1. Consistent estimates of the asymptotic variance

of α̂T,j are obtained by replacing S and h∗ in Proposition 4, with their consistent estimates

Ŝ(α̂T,j) and ĥT ≡ T−1
PT+τ−1

t=τ vt|yt+1 − f̂t+1|p0−1, respectively.
In the single instrument case (d = 1), α̂T can be interpreted as justifying biased forecasts

by adjusting the loss function to make them optimal.9 However if indeed the forecasts are

rational, then Vt is a subvector of Wt and all moment conditions must hold simultaneously.

Thus a test for overidenfication when d > 1 provides a joint test of rationality of the forecasts

and the more flexible loss function. One degree of freedom is used in the estimation of the

loss parameter, α̂T , so, from the results of Proposition 4, we have

Corollary 5 (Rationality Test) Under the assumptions of Proposition 4, for a given value

p0 = 1, 2, a joint test of forecast rationality and the flexible loss function (1) can be conducted

with d > 1 instruments through the test statistic

J =
1

T

"Ã
T+τ−1X
t=τ

vt[1(yt+1 − f̂t+1 < 0)− α̂T ]|yt+1 − f̂t+1|p0−1
!0

Ŝ−1

·
Ã

T+τ−1X
t=τ

vt[1(yt+1 − f̂t+1 < 0)− α̂T ]|yt+1 − f̂t+1|p0−1
!#
∼ χ2d−1. (7)

Tests based on an assumption of MSE loss are closely related to this test when p0 is

chosen to be equal to 2. The difference is that if indeed α0 = 0.5, tests based on MSE loss

impose this restriction, whereas our test uses a consistent estimate of α which is treated

as unknown. However, if α0 6= 1/2 then standard tests would have power in this direction.
Our use of a consistent test avoids this problem and controls for size if the forecaster’s loss

function reflects a different value of α0. Asymptotically there is no loss from relaxing the

8Consistency of Ŝ(ᾱT ) can be shown by an argument analogous to the one in the proof of Proposition 3.
9When d = 1 the estimator is independent of S and a closed form solution exists. For example, when

p0 = 1 and Vt = 1 the estimator is simply the proportion of negative forecast errors.
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assumption that α0 = 0.5, but there is clearly a gain in terms of directing power in the

desired direction.

Different choices of Vt in the construction of our estimator α̂T result in different as-

ymptotic variances, which naturally raises the question of how to optimally choose the in-

struments. It is possible to show that α̂T is asymptotically optimal - in the sense that its

asymptotic variance is minimal - when Vt =Wt, i.e. when the forecast user has all the infor-

mation used by the forecaster. Outside this situation, one could attempt to use data-based

methods for selection of moment conditions using criteria such as those proposed by Donald

and Newey (2001), replacing their MSE loss with our loss L in (1) evaluated at (p0, α̂T )

where α̂T is a consistent estimate of α0.

4 Simulation Results

We briefly examine the behavior of the proposed estimator (6) and test (7) in a Monte Carlo

experiment. Random data samples were generated by a linear forecasting model

Yt+1 = θ0Wt + Ut

with the vector Wt ≡ (1,W1t,W2t)
0 where W1t ∼ N(1, 1),W2t ∼ N(−1, 1), θ = [1, 0.5, 0.5]

and Ut ∼ N(0, 0.5). 5000 Monte Carlo simulation experiments were undertaken for different

numbers of initial values available for estimating θ recursively (such data are available to the

forecaster before the initial forecast is recorded), denoted by n0, and for different numbers of

data available for estimation of α0 and testing, denoted by nf . For p0 = 1 recursive forecasts

were computed using quantile regression methods and for p0 = 2 the nonlinear least squares

estimation method of Newey and Powell (1987) was used to estimate θ recursively.

Panel A in Table 1 examines, for various sample sizes and values of α0, the size of t-

tests testing α̂ = α0 (i.e. the true value) against two sided alternatives for a size of 5%.

Results are reported for p0 = 1 (lin-lin) and p0 = 2 (quad-quad) using only a constant as an

instrument, i.e. Vt = 1. Size is well controlled overall, even when α0 is far from one half (on

average). Size is less well controlled for the quad-quad loss function. The reason for this is

straightforward: for the asymmetric models the forecast ‘errors’ are less well balanced above

and below the true value so we obtain asymmetric small sample distributions and require
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a larger n for the central limit theorem to provide a good approximation.10 Additional

in-sample or out-of-sample observations help to control the size.

Panel B employs the two time-varying instruments, W1t,W2t in addition to the constant,

i.e. Vt = Wt. Including extra instruments results in larger size distortions across the board.

The problem is again more of an issue for the quad-quad than for the lin-lin loss function.

As expected, size distortions are less of a problem when more observations are available. As

before, additional out-of-sample observations play a particularly important role in controlling

size. Problems are again greater, the further α0 is from one half.

The proposed tests for overidentification that examine whether the moment conditions are

compatible with some α0 are reported in Panel C. Size is generally well controlled although

the tests tend to be undersized rather than oversized, and departures from nominal size (5%)

are larger when α0 is further away from one half. When α0 = 1/2, empirical size is very

close to nominal size for all samples. Increasing the sample helps, adding more out of sample

observations once again appearing to be more useful.

5 Government Deficit Forecasts

In this section we apply our estimation methods and tools for inference to the optimality of

forecasts of government budget deficits for the G7 countries produced by two international

organizations, namely the IMF and the OECD. This application is well suited to demonstrate

our methods since, as pointed out by Artis and Marcellino (2001) “the political context in

which fiscal deficit forecasts emerge may well be one in which the costs of forecast misses

are not symmetric.” (Artis and Marcellino, page 20). A similar point is made by Campbell

and Ghysels (1995) in the context of an analysis of federal budget projections.

Our data comprises budget deficit forecasts, reported as a percentage of GDP, for the

G7 countries and is reported as budget surpluses so that a budget deficit takes a negative

value.11 Forecast errors are defined as realizations minus predicted values. Since almost all

realizations and predictions are negative, a positive forecast error corresponds to a larger

10This is identical to the usual result in applying the central limit theorem to Bernoulli outcomes.
11We are grateful to Massimiliano Marcellino for providing the first part of the data. The data source is

the IMF’s World Economic Outlook and the OECD’s Economic Outlook.
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predicted deficit than the one that actually occurred. We refer to this as an overprediction

of the budget deficit (underprediction of the budget surplus). In all cases the data comprises

current year (published in May each year) and year-ahead forecasts (published in October of

year t for year t+ 1). The OECD data cover France, Germany, Italy and the UK, contains

between 24 and 27 data points and goes from 1975 - 2001. The IMF sample has information

on all G7 countries, goes from 1976 to 2000 and thus contains 25 observations. These are

not large samples, so some caution should be exercised in the interpretation of the results.

In our empirical tests we first assume that the loss function is lin-lin (p0 = 1). Authors

such as Granger and Newbold (1986) have argued that lin-lin loss approximates other classes

of asymmetric loss functions. For robustness we report results for four separate sets of

instruments: (i) a constant; (ii) a constant and the lagged forecast error; (iii) a constant and

the lagged budget deficit; (iv) a constant, the lagged forecast error and the lagged budget

deficit. Given the small sample size, we do not consider more than three instruments. For

robustness we also conduct empirical tests under the assumption of quad-quad loss (p0 = 2).

5.1 Evidence of Asymmetric Loss

Inspection of the forecast errors showed that overpredictions of budget deficits (positive

average forecast errors) are most common - between 19 and 21 of 25 current-year IMF

forecast errors are positive for Italy, Japan, UK and the US - although for Canada we found

evidence of underpredictions (negative average forecast errors). Under the assumption that

the loss function is piecewise linear (lin-lin), Table 2 presents the estimated asymmetry

parameter (α̂) along with its standard error and p-values for tests of the null hypothesis

of symmetric loss, i.e. α = 0.5. The parameter estimates and test results are of separate

economic interest since they are indicative of the forecaster’s objectives.

First consider the current-year IMF forecasts when the model is exactly identified and a

constant is the only instrument. Five of seven countries generate α-estimates below one-half,

one country (France) has an estimate (0.52) close to one-half and another country (Canada)

has an α−estimate of 0.60. The null of symmetry (α = 0.5) is strongly rejected for Italy,
Japan, UK and the US. Similar results are obtained for the 1-year-ahead IMF predictions,

where the α-estimates are significantly different from one-half for Italy, UK and the US. In
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the overidentified models with two or three instruments the current-year results tend to be

even stronger since the standard errors for α̂ tend to decline. Hence, the null of symmetric

loss is rejected with p-values less than 0.01 for Italy, Japan, UK and the US. In each case the

point estimates for these four countries are below 0.25, thus suggesting economically strong

evidence of asymmetry. At the 1-year horizon the null of symmetric loss continues to be

rejected at or below the 5% level for Italy, Japan, UK and the US.

Turning to the OECD forecasts, for the current year predictions all four countries gen-

erate estimates of α below one half. Irrespective of the set of instruments used, the null of

symmetric loss is rejected at the five percent significance level for France, Germany and Italy

although the evidence of asymmetric loss is somewhat weaker at the 1-year horizon.

These results suggest that the IMF and OECD systematically overpredict government

budget deficits. This is consistent with a loss function that penalizes underpredictions more

heavily than overpredictions. The point estimates of α suggest strong asymmetries in the

loss function both from an economic and a statistical point of view. For some countries they

indicate that under-predictions of budget deficits are viewed as up to three times costlier

than over-predictions.

5.2 Tests of Forecast Rationality

The shape parameters of the loss function provide important information about the fore-

caster’s objectives. Ultimately, however, we are interested in testing whether the IMF and

OECD forecasts are consistent with rationality. To test this, and to investigate what is

driving our empirical results, we first conduct our tests under the assumption of symmetric

loss. This is the null hypothesis that has been maintained throughout the literature, so it

seems a natural starting point for our analysis. We can test this hypothesis by imposing

α = 1/2 and examining the J-test (7) which follows a χ2d-distribution under this restriction.

The outcome of the joint tests of rationality and α = 1/2 is reported in panel A of Table

3. The null hypothesis is rejected at the 5% level in exactly half of the tests (44 out of 88

cases). In the IMF data there is strong evidence against the composite null hypotheses for

Italy, Japan, UK and the US, while the OECD data leads to rejections of the null in the

current-year data for France, Germany and Italy and, in the 1-year forecasts, for Germany.
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Since the rejection of symmetric loss and forecast rationality may well be due to the

symmetry assumption, we next test whether forecast rationality gets rejected once we allow

for asymmetric loss (α 6= 1/2). The results - shown in Panel B of Table 3 - are very

interesting and in complete contrast to those found in panel A. There is only very weak

evidence against the composite null hypothesis of forecast rationality and a loss function

belonging to the family (1). Overall there are only six cases where the null gets rejected at

the 5% significance level. The only cases where two instrument sets lead to a rejection for the

same country are Japan (1-year IMF forecasts) and France (current-year OECD forecasts).

Comparing the results in Panels A and B it appears that the systematic rejections of the

composite null hypothesis of symmetric loss and forecast optimality can be attributed to

asymmetric loss in the current-year forecasts for Italy, Japan, the UK and the US and, in

the case of 1-year forecasts, for Italy, UK and the US.

To check the robustness of our findings with respect to the assumed shape of the loss

function and to consider a family of loss functions that embeds MSE loss, Table 4 reports

empirical results for the quad-quad loss function. In the current-year IMF forecasts the joint

hypothesis of MSE loss and rationality (Panel A) is strongly rejected for Italy, Japan, UK

and the US. This null gets rejected for France, Germany and Italy in the current-year OECD

forecasts. At the 1-year horizon the evidence against the null hypothesis is even stronger

and the null gets rejected in the IMF data for Canada, France, Italy, Japan, UK and the US

and, in the OECD data, also for Germany. Overall, the null continues to get rejected at the

5 percent level in nearly half of all tests (42 of 88 cases). Allowing for asymmetric quadratic

loss (Panel B), the evidence against rationality is far weaker. The null gets rejected at the

5% level for the current-year data only in a single case. At the 1-year horizon, the null is

strongly rejected by the IMF predictions only in three cases and in a single case in the OECD

data. In total the null is only rejected at the 5% level in five cases.

Overall our conclusions thus appear to be robust with respect to the assumed class of loss

functions. This is fortunate since, in the absence of a more detailed analysis of the political

pressures facing the international organizations, it is difficult to choose one class over the

other. Consistent with our findings under lin-lin loss, the tests of forecast rationality are

significantly changed once we allow for asymmetric loss. While the joint null hypothesis of
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MSE loss and forecast rationality is strongly rejected in a large number of cases, there is far

weaker evidence against this null under asymmetric quadratic loss.

6 Conclusion

This paper provided theory for identification and estimation of the parameters of loss func-

tions applicable to situations where time-series data on point forecasts is available but the

underlying model used by the forecaster is unknown. We also provided test statistics that

can be used when testing the composite null that loss belongs to a general family of loss

functions and that information is used efficiently in the computation of the forecasts.

Our estimator and test statistics are easy to compute and should find a number of prac-

tical applications. Once the limitations and restrictiveness of MSE loss are acknowledged, it

clearly becomes more attractive to allow for more general classes of loss when testing forecast

rationality. Most often the forecast producer’s loss function is unobserved and a reasonable

approach will not want to impose too much structure on this unknown loss function. Since

the vast majority of work in the empirical forecasting literature has maintained MSE loss,

many empirical results need to be revisited using methods such as those advocated here.

16



Appendix A: Assumptions and Notation

Notation:

Given p0 ∈ N∗, for every t, τ 6 t 6 T + τ − 1, and any (θ, α0) ∈ Θ× (0, 1), we let Gt+1(θ) ≡
Vt1(Yt+1 − θ0Wt < 0)|Yt+1 − θ0Wt|p0−1, Ht+1(θ) ≡ Vt|Yt+1 − θ0Wt|p0−1 and Mt+1(θ, α0) ≡
Gt+1 − α0Ht+1, and denote by gt+1, ht+1 and mt+1, respectively, their realizations. Further,

we let gT , hT and mT denote the sample means of Gt+1, Ht+1 and Mt+1, respectively, i.e.

gT ≡ T−1
PT+τ

s=τ+1 gs, hT ≡ T−1
PT+τ

s=τ+1 hs and mT ≡ T−1
PT+τ

s=τ+1ms, and we denote by g, h

and m the expected values of Gt+1, Ht+1 and Mt+1, respectively. To shorten the notation:

when θ = θ̂t we add a “hat” to all the above quantities, i.e we use the notation Ĝt+1 (ĝT ),

Ĥt+1 (ĥT ) and M̂t+1 (m̂T ). Also, we let ĝ ≡ E[Ĝt+1], ĥ ≡ E[Ĥt+1] and m̂ ≡ E[M̂t+1].

Similarly, when θ = θ∗ we add a “star” to Gt+1, Ht+1 and Mt+1 and their sample means, i.e

we use the notation G∗t+1 (g
∗
T ), H

∗
t+1 (h

∗
T ) and M∗

t+1 (m
∗
T ). In that case, the expected values

are denoted g∗ ≡ E[G∗t+1], h
∗ ≡ E[H∗

t+1] and m∗ ≡ E[M∗
t+1].

Assumptions:

(A0) Θ is a compact subset of Rh and θ∗ is interior to Θ, i.e. θ∗ ∈ Θ̊;

(A1) the h-vectorWt (with the first component 1) is such that, given p0 ∈ N∗, for any θ∗ ∈ Θ̊,

E[Wt|Yt+1− θ∗0Wt|p0−1] 6= 0 element by element and E[WtW
0
t ] exists and is positive definite;

(A2) for every t, τ 6 t 6 T + τ − 1, the density of Yt+1 conditional on Ft is strictly positive,

i.e. for every y ∈ R, f0t (y) > 0;
(A3) the d-vector Vt is a sub-vector of the h-vectorWt (d 6 h) with the first component 1 and

there exists a constant K > 0 such that for every t, τ 6 t 6 T + τ − 1, |Wt|2 =W 0
tWt 6 K,

a.s.− P ;

(A4) for every t, τ 6 t 6 T + τ − 1, θ̂t is a consistent estimator of θ∗, with θ∗ ∈ G ⊆ Θ̊;

(A5) the stochastic processes {Yt} and {Wt} are strictly stationary and α-mixing with mixing
coefficient α of size −r/(r − 1), r > 1, and, given p0 ∈ N∗, there exist some δY > 0 and

∆Y > 0 such that supθ∈ΘE[(Yt+1 − θ0Wt)
2(r+δY )(p0−1)] 6 ∆Y < ∞ and some δW > 0 and

∆W > 0 such that E[|Wt|2(r+δW )] 6 ∆W <∞;
(A5’) the stochastic processes {Yt} and {Wt} are strictly stationary and α-mixing with

mixing coefficient α of size −r/(r − 2), r > 2, and, given p0 ∈ N∗, there exist some ∆Y > 0

such that supθ∈ΘE[(Yt+1−θ0Wt)
2r(p0−1)] 6 ∆Y <∞ and some∆W > 0 such that E[|Wt|2r] 6
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∆W <∞;
(A6) for every t, τ 6 t 6 T + τ − 1, the density of Yt+1 conditional on Ft is bounded, i.e.

there exists some C > 0 such that supy∈R f
0
t (y) 6 C <∞;

(A7) for some small ε, ε ∈ (0, 1): (i) τ 1−2ε/T →∞ and (ii) supτ6t6T+τ−1 |t1/2−ε(θ̂t−θ∗)|
p→ 0,

as τ →∞ and T →∞.

Appendix B: Proofs

Proof of Proposition 1. We first show that (3) is a necessary condition for opti-

mality of f∗t+1 = θ∗0Wt. From (2) we know that θ∗ ∈ Θ̊ is a solution to minθ∈ΘΣ(θ), where

Σ(θ) ≡ E[Σt+1(θ)] and Σt+1(θ) ≡ [α0 + (1 − 2α0)1(Yt+1 − θ0Wt < 0)]|Yt+1 − θ0Wt|p0. The
function Σt+1(θ) is continuously differentiable on Θ\At+1 where At+1 ≡ {θ ∈ Θ : Yt+1 =

θ0Wt}. Let ∇θΣt+1(θ) be the gradient of Σt+1(θ) on Θ\At+1. By the law of iterated ex-

pectations Σ(θ) = E{Et+1[Σt+1(θ)]}, so that ∇θΣ(θ) = E{∇θΣt+1(θ)Et+1[1(θ ∈ Ac
t+1)]}

+E{∇θΣt+1(θ)Et+1[1(θ ∈ At+1)]}, where Et+1[1(θ ∈ Ac
t+1)] = 1 and Et+1[1(θ ∈ At+1)] = 0.

Hence, Σ(θ) is continuously differentiable onΘ and we have∇θΣ(θ) = (1−2α0)E[∇θ1(Yt+1−
θ0Wt < 0)|Yt+1 − θ0Wt|p0] +p0E[Wt(1(Yt+1 − θ0Wt < 0) − α0)|Yt+1 − θ0Wt|p0−1]. Note

that ∇θ1(Yt+1 − θ0Wt < 0) = Wt · δ(θ0Wt − Yt+1) where δ is the Dirac function, so that

E[Wt · δ(θ0Wt − Yt+1) · |Yt+1 − θ0Wt|p0 ] = 0, for any non-zero p0. Thus,

∇θΣ(θ) = p0E[Wt(1(Yt+1 − θ0Wt < 0)− α0)|Yt+1 − θ0Wt|p0−1]. (8)

For given values of p0, p0 ∈ N∗, and α0, α0 ∈ (0, 1), if θ∗ ∈ Θ̊ is the minimum of Σ(θ), then

θ∗ is a solution to ∇θΣ(θ
∗) = 0 (c.f. Theorem 3.7.13 in Schwartz, 1997, vol 2, p 168), i.e. (3)

holds for f∗t+1 = θ∗0Wt, which completes the neccessity part of the proof. We now derive a

set of sufficient conditions for θ∗ ∈ Θ̊ to be a solution to the minimization problem (2). We

know that θ∗ is a strict local minimum of Σ(θ) on Θ̊ if ∇θΣ(θ
∗) = 0 and ∆θθΣ(θ

∗) positive

definite (see, e.g., Theorem 3.7.13 in Schwartz, 1997, vol 2, p 169). The first order condition

∇θΣ(θ
∗) = 0 is implied by the orthogonality condition (3). We now show that ∆θθΣ(θ

∗) is

positive definite. By an argument similar to that above we have

∆θθΣ(θ) = p0E[WtW
0
t · δ(θ0Wt − Yt+1) · |Yt+1 − θ0Wt|p0−1]

+p0(p0 − 1)E{WtW
0
t [α0 + (1− 2α0)1(Yt+1 − θ0Wt < 0)]|Yt+1 − θ0Wt|p0−2}.

(9)
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Consider the following two cases separately: p0 = 1 and p0 > 1. When p0 = 1 then∆θθΣ(θ) =

E[WtW
0
t ·δ(θ0Wt−Yt+1)] = E[WtW

0
t ·f0t (θ0Wt)], where f0t is the density of Yt+1 conditional on

Ft. By (A2) f0t > 0 and by (A1) E[WtW
0
t ] is positive definite giving the result. For any θ ∈ Θ̊

the matrix ∆θθΣ(θ) is positive definite, therefore it is positive definite at θ∗. When p0 > 1,

∆θθΣ(θ) = p0(p0−1)E{WtW
0
t ·Et[(α0+(1−2α0)1(Yt+1−θ0Wt < 0))|Yt+1−θ0Wt|p0−2]}, with

Et[(α0+(1−2α0)1(Yt+1−θ0Wt < 0))|Yt+1−θ0Wt|p0−2] > 0, a.s.−P , for any (α0, θ) ∈ (0, 1)×Θ.
So by this and (A1) for every θ ∈ Θ̊ the matrix ∆θθΣ(θ) is positive definite, then so must be

for θ∗. Thus any f∗t+1 = θ∗0Wt which satisfies the moment condition (3) is a solution to (2),

which completes the sufficiency part of the proof. We now use the implicit function theorem

to show that for any realization ofWt, the function f∗t+1 = θp0(α)
0Wt defined implicitly by (3)

is a one-to-one mapping from the set of asymmetry parameters (0, 1) to the set of forecasts R.

Given p0 = 1, 2, define ϕp0(α, θ) ≡ E[Wt(1(Yt+1 − θ0Wt < 0)− α)|Yt+1 − θ0Wt|p0−1], so (3) is
ϕp0(α0, θ

∗) = 0. The function ϕp0 : (0, 1)×Θ→ Rk is continuously differentiable on (0, 1)×Θ,
and we have ∂ϕ(α, θ)/∂α = −E[Wt|Yt+1 − θ0Wt|p0−1], and ∂ϕp0(α, θ)/∂θ = ∆θθΣ(θ) where

∆θθΣ(θ) as in (9). For every α0 ∈ (0, 1), the Rk ×Rk-matrix ∂ϕp0(α0, θ
∗)/∂θ is nonsingular,

given that ∆θθΣ(θ
∗) is positive definite. We can now apply the implicit function theorem

(Theorem 3.8.5. in Schwartz, 1997, vol 2, p 185) to show that for every α0 ∈ (0, 1) there exists
an open interval E0 containing α0 and an open set G0 containing θ

∗, G0 ≡ {θ ∈ Θ̊ : |θ−θ∗| <
δ0} with δ0 > 0, such that for every α ∈ E0, the equation ϕp0(α, θ) = 0 has a unique solution

θ in G0, and the function θ = θp0(α) defined implicitly by ϕp0(α, θp0(α)) = 0 is continuously

differentiable from E0 toG0 with dθp0(α)/dα = −[∂ϕp0(α, θp0(α))/∂θ]
−1 ·∂ϕp0(α, θp0(α))/∂α,

i.e.

dθp0(α)/dα = [∆θθΣ(θp0(α))]
−1E[Wt|Yt+1 − θp0(α)

0Wt|p0−1]. (10)

We now extend the previous implicit function argument by continuity to the entire open

interval (0, 1). Let G ≡
S

α0∈(0,1)G0. G being a union of open sets is an open subset of Θ̊.

Hence, we have shown that given p0 ∈ N∗, for every α0 ∈ (0, 1), the equation ϕp0(α0, θ) =

0 has a unique solution θ∗ in G and the implicit function θ∗ = θp0(α0) is continuously

differentiable from (0, 1) to G with dθp0(α)/dα as given in (10). In particular, for any

realization of Wt, the function f∗t+1 = θp0(α0)
0Wt is continuously differentiable from (0, 1)

to R. Finally, we show that θp0(α) is a one-to-one mapping (or bijective) from (0, 1) to
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G. It is surjective by construction, so we only need to show that it is injective on (0, 1),

i.e. θp0(α1) = θp0(α2) implies α1 = α2. If θp0(α1) = θp0(α2) then from (3) we know 0 =

(α2−α1)E[Wt|Yt+1−θp0(α2)
0Wt|p0−1], which, by (A1), implies α1 = α2. Using identifiability

of a linear forecast rule, we know that for any realization ofWt, there exists a unique θ∗ ∈ G

such that f∗t+1 = θ∗0Wt, hence by using the previous result there is a unique α0 ∈ (0, 1) such
that f∗t+1 = θp0(α0)

0Wt. This completes the proof of Proposition 1

Proof of Lemma 2. If S (and hence S−1) is positive definite, then by using convexity

we have that Q0(α) ≡ m∗0S−1m∗ admits a unique minimum in (0, 1). It follows directly

that α∗ = (h∗0S−1h∗)−1(h∗0S−1g∗). We need to verify that α∗ lies in (0, 1). First, we show

that α∗ ∈ (0, 1) holds if all the elements of the d-vector Vt are strictly positive, i.e. Vt > 0d,
a.s. − P . In that case we have 0 6 G∗t+1 6 H∗

t+1, a.s. − P , so that 0 6 g∗ 6 h∗. Using

(A1) we know that 0 < g∗ since Vt is a sub-vector of Wt. Knowing that S−1 is positive

definite, we then have 0 < g∗S−1g∗ 6 g∗S−1h∗ 6 h∗S−1h∗. Hence α∗ > 0. Also, for

all α ∈ (0, 1), Q0(α) > 0 so that the reduced discriminant of Q0(α) is negative. Hence,

h∗S−1g∗ <
p
h∗S−1h∗g∗S−1g∗ 6 h∗S−1h∗ so α∗ < 1. So, if Vt > 0d, then α∗ ∈ (0, 1). Now

consider a case where the first element of Vt is a constant 1 and there exists some constant

c > 0 such that Vt > −c · 1d, a.s. − P , where 1d is a d-vector of ones. This inequality is

implied by (A3). Now, consider the rotation of the d-vector Vt,

V̄t = KVt =

⎛⎝ 1 0

c Id−1

⎞⎠Vt,

where now V̄t = KVt > 0, a.s. − P . As K is positive definite, (K−1)0S−1K−1 is positive

definite if S−1 is positive definite. Now, note that

α∗ =
E[V̄t|Yt+1 − f∗t+1|p0−1]0(K−1)0S−1K−1E[V̄t1(Yt+1 − f∗t+1 < 0)|Yt+1 − f∗t+1|p0−1]

E[V̄t|Yt+1 − f∗t+1|p0−1]0(K−1)0S−1K−1E[V̄t|Yt+1 − f∗t+1|p0−1]
,

so if α∗ is the minimum of Q0(α) then α∗ is also a minimum of the quadratic form Q̄(α), with

Q̄(α) ≡ E[V̄t(1(Yt+1 − f∗t+1 < 0)− α)|Yt+1 − f∗t+1|p0−1]0 K−1S−1(K−1)0 E[V̄t(1(Yt+1 − f∗t+1 <

0)−α)|Yt+1− f∗t+1|p0−1]. From the results above we then know that α∗ ∈ (0, 1) since V̄t > 0,
a.s.−P . Hence, under (A0)-(A3), Q0(α) is uniquely minimized at α∗ ∈ (0, 1). We now show
that α0 is also a minimum of Q0(α): given concavity of Q0(α), any solution to the first order
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condition 0 = h∗S−1h∗ − αh∗S−1g∗ = h∗0S−1m∗ is a minimum of Q0(α). We know that if Vt

is a sub-vector ofWt (A3) then h∗ 6= 0 (A1). Moreover, S−1 is nonsingular, so h∗0S−1m∗ = 0

implies m∗ = 0. We know from (3) that α0 satisfies m∗ = 0, so α0 is a minimum of Q0(α).

By uniqueness, we conclude that α0 = α∗, which completes the proof.

Proof of Proposition 3. First, let us show that S is positive definite. Given p0 ∈ N∗,
we have S ≡ E[M∗

t+1M
∗0
t+1] = E[VtV

0
t (1(Yt+1 − f∗t+1 < 0)− α)2|Yt+1 − f∗t+1|2p0−2], so that for

every ξ ∈ Rd we have ξ0Sξ = E[ξ0VtV
0
t ξ(1(Yt+1−f∗t+1 < 0)−α)2|Yt+1−f∗t+1|2p0−2]. Note that

(1(Yt+1−f∗t+1 < 0)−α)2|Yt+1− f∗t+1|2p0−2 > 0, a.s.−P , so ξ0Sξ = 0⇒ ξ0VtV
0
t ξ = 0, a.s.−P

⇒ ξ0E[VtV
0
t ]ξ = 0. The positive definiteness of E[WtW

0
t ] (A1) implies E[VtV

0
t ] is positive

definite, hence ξ0E[VtV 0
t ]ξ = 0 ⇒ ξ = 0, which shows that S is positive definite. Recall from

(6) that we have α̂T ≡ (ĥT Ŝ−1ĥT )−1ĥT Ŝ−1ĝT . To show α̂T
p→ α0 it is sufficient to show that:

(i) ĥT − ĥ
p→ 0, and (ii) ĝT − ĝ

p→ 0. Then, by using Lemma 2, the consistency of Ŝ, Ŝ
p→ S,

the positive definiteness of S (and thus of S−1), (A1) and (A3) which ensure that ĥ 6= 0 and
ĝ 6= 0, and the continuity of the inverse function (away from zero), we have that α̂T

p→ α0.

By the triangle inequality we have |ĝT−g∗| 6 |ĝT−ĝ|+|ĝ−g∗| and |ĥT−h∗| 6 |ĥT−ĥ|+|ĥ−h∗|.
We first show that as T →∞, |ĝT − ĝ|

p→ 0 and |ĥT − ĥ|
p→ 0 by using a law of large numbers

(LLN) for α-mixing sequences (e.g., Corollary 3.48 in White 2001). From Theorem 3.49 in

White (2001) measurable functions of mixing processes are mixing of the same size. Hence,

by (A5) we have {θ̂t}, {Ĥt+1} and {Ĝt+1} are α-mixing of size −r/(r− 1) with r > 1. Note

that if θ̂t were constructed with a rolling window, i.e. as a function of a constant number

of past observations, then Theorem 3.35 in White (2001) would apply and we could also

say that {θ̂t}, {Ĥt+1} and {Ĝt+1} are strictly stationary. Let δH ≡ min(δY , δW )/2 > 0.

By (A5), the Cauchy-Schwartz inequality, and using E[|Vt|2(r+δH)] 6 E[|Wt|2(r+δH)], we
know that for any t, τ 6 t 6 T + τ − 1, E[|Ĥt+1|r+δH ] 6 (E[|Vt|2r+2δH ])1/2(E[(Yt+1 −
f̂t+1)

2(r+δH)(p0−1)])1/2 6 (E[|Vt|2r+2δH ])1/2max(1, {supθ∈ΘE[(Yt+1 − θ0Wt)
2(r+δH)(p0−1)]}1/2).

Hence E[|Ĥt+1|r+δH ] 6 max(1,∆1/2
W )max(1,∆

1/2
Y ) <∞, for any t, τ 6 t 6 T + τ − 1. Simi-

larly, let δG ≡ min(δY , δW )/2 > 0. We then have E[|Ĝt+1|r+δG ] 6 (E[|Vt1(Yt+1 − f̂t+1 <

0)|2r+2δG])1/2(E[(Yt+1 − f̂t+1)
2(r+δG)(p0−1)])1/2, and, since E[|Vt1(Yt+1 − f̂t+1 < 0)|2(r+δG)]

6 E[|Vt|2(r+δG)], by the same reasoning as previously, we get E[|Ĝt+1|r+δG] < ∞, for any
t, τ 6 t 6 T + τ − 1. Hence, ĝT

p→ g∗ and ĥT
p→ h∗ as T →∞. Next we need to show that
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the same holds for |ĝ− g∗| p→ 0 and |ĥ− h∗| p→ 0. We treat the two cases p0 = 1 and p0 = 2

separately. When p0 = 1 we have ĥ = h∗. By the triangular and Cauchy-Schwartz inequali-

ties, we have |ĝ − g∗|2 6 T−1
PT+τ−1

t=τ E[|Vt|2]E[(1(Yt+1 − f̂t+1 < 0)− 1(Yt+1 − f∗t+1 < 0))
2].

For every t, τ 6 t < T + τ , we have E{[1(Yt+1 − f̂t+1 < 0) − 1(Yt+1 − f∗t+1 < 0)]2}
= E{Et[1(f

∗
t+1 6 Yt+1 < f̂t+1) + 1(f̂t+1 6 Yt+1 < f∗t+1)]}, where Et[1(f

∗
t+1 6 Yt+1 <

f̂t+1) + 1(f̂t+1 6 Yt+1 < f∗t+1)] = |
R θ̂0tWt

θ∗0Wt
ft(y)dy| 6 |θ̂t− θ∗| · |Wt| · supy∈R ft(y). By (A3) and

(A6) |ĝ − g∗|2 6 T−1
PT+τ−1

t=τ E[|Vt|2]E[|θ̂t − θ∗|] ·K · C 6 K3 · C · T−1
PT+τ−1

t=τ E[|θ̂t − θ∗|]
which shows that when, for every t, τ 6 t 6 T + τ − 1, θ̂t is a consistent estimate of
θ∗ (A4), |ĝ − g∗| p→ 0 as τ → ∞. Hence, when p0 = 1, we have shown that α̂T

p→ α0

as both τ → ∞ and T → ∞. When p0 = 2, by the triangular and Cauchy-Schwartz in-

equalities, |ĥ− h∗| 6 T−1
PT+τ−1

t=τ |E[Vt|f∗t+1 − f̂t+1|]| 6 T−1
PT+τ−1

t=τ E[|Vt| · |Wt| · |θ̂t − θ∗|]
6 K2 · T−1

PT+τ−1
t=τ E[|θ̂t − θ∗|], so that by the same argument as previously, |ĥ − h∗| p→ 0

as τ → ∞. Moreover |ĝ − g∗| 6 K · T−1
PT+τ−1

t=τ {E[1(f∗t+1 6 Yt+1 < f̂t+1)|Yt+1 − f̂t+1|]
+E[1(f̂t+1 6 Yt+1 < f∗t+1)|Yt+1− f∗t+1|]}. By the Cauchy-Schwartz inequality, (A4) and (A5)
E[1(f∗t+1 6 Yt+1 < f̂t+1)|Yt+1 − f̂t+1|] 6 (E[1(f∗t+1 6 Yt+1 < f̂t+1)])

1/2max(1,∆
1/2
Y ), for any

t, τ 6 t 6 T + τ − 1. As previously, by (A3) and (A6) we have E[1(f∗t+1 6 Yt+1 < f̂t+1)] 6
K · C · E[|θ̂t − θ∗|] so that |ĝ − g∗|2 6 K3 · C · max(1,∆Y ) · T−1

PT+τ−1
t=τ E[|θ̂t − θ∗|], and

so |ĝ − g∗| p→ 0 as τ → ∞ when (A4) holds. Hence, for p0 = 2 we have α̂T
p→ α0, as both

τ →∞ and T →∞, which completes the proof.

Proof of Proposition 4. To show that T 1/2(α̂T − α0) is asymptotically normal, note
√
T (α̂T − α0) = (ĥ

0
T Ŝ

−1ĥT )
−1ĥ0T Ŝ

−1{
√
Tm∗

T +
√
Tm̂+

√
T (m̂T − m̂−m∗

T )}. (11)

The idea then is to show that the second and third terms in the curly brackets are op(1).We

first show that the second term in the curly brackets is o(1). A mean value expansion around

θ∗ yields 0 =
√
Tm∗ =

√
Tm̂ − E[T−1

PT+τ−1
t=τ (∂M̃t+1/∂θ)

0√T (θ̂t − θ∗)], where for every t,

τ 6 t 6 T + τ −1, we have θ̃t ≡ ctθ̂t+(1− ct)θ
∗ with ct ∈ (0, 1) and where M̃t+1 denotes the

value ofMt+1 obtained when θ = θ̃t. We now show that T−1/2
PT+τ−1

t=τ (∂M̃t+1/∂θ)
0(θ̂t−θ∗)

p→
0 as τ →∞ and T →∞: we have

|T−1/2
PT+τ−1

t=τ (∂M̃t+1/∂θ)
0(θ̂t − θ∗)| = |T−1/2

PT+τ−1
t=τ t−1/2+ε(∂M̃t+1/∂θ)

0t1/2−ε(θ̂t − θ∗)|

6 sup
τ6t6T+τ−1

|t1/2−ε(θ̂t − θ∗)|T−1/2
PT+τ−1

t=τ (|∂M̃t+1/∂θ|t−1/2+ε).
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Note that (A2), (A3) and (A5’) imply E(supθ∈Θ̊ |∂Mt+1/∂θ|) < ∞, so that, for any given
ν > 0, by (A7) and Chebyshev’s inequality we have

P (T−1/2
PT+τ−1

t=τ |∂M̃t+1/∂θ|t−1/2+ε > ν) 6 E(sup
θ∈Θ̊

|∂Mt+1/∂θ|)/ν · T−1/2
PT+τ−1

t=τ t−1/2+ε

6 E(supθ∈Θ̊ |∂Mt+1/∂θ|)/ν · (T/τ 1−2ε)1/2 → 0

as τ → ∞ and T → ∞. Hence
√
Tm̂ → 0 as τ → ∞ and T → ∞. The third term in the

curly brackets in (11) is op(1) provided that mt satisfies a certain Lipshitz condition (given

below) and θ̂t
p→ θ∗ for all t > τ , as τ → ∞. This follows because for any given η > 0 and

ε > 0, there exists δτ > 0 such that

limτ,T→∞ P (
√
T |m̂T − m̂−m∗

T | > η)

6 limτ,T→∞ P (
√
T |m̂T − m̂−m∗

T | > η, supτ6t6T+τ−1 |θ̂t − θ∗| 6 δτ )

+ limτ,T→∞ P (supτ6t6T+τ−1 |θ̂t − θ∗| > δτ )

6 limτ,T→∞ P (
√
T |m̂T − m̂−m∗

T | > η, supτ6t6T+τ−1 |θ̂t − θ∗| 6 δτ ),

where the last inequality uses (A4). Now, let rT (δτ ) ≡ sup|θ̂t−θ∗|6δτ ,τ6t6T+τ−1 rt+1(θ̂t),where
for all θ ∈ Θ̊ we let

rt+1(θ) ≡ |mt+1 −m∗
t+1 −∆∗t+1 · (θ − θ∗)|/|θ − θ∗|, (12)

where ∆∗t+1 is as defined as

∆∗t+1 ≡ vtw
0
t · δ(θ∗0wt − yt+1) · |yt+1 − θ∗0wt|p0−1

+(p0 − 1){vtw0t[α0 + (1− 2α0)1(yt+1 − θ∗0wt < 0)]|yt+1 − θ∗0wt|p0−2}.

Then, by the definition of rt+1(θ)

√
T |m̂T − m̂−m∗

T | 6
√
T{| 1

T

PT+τ−1
t=τ ∆∗t+1(θ̂t − θ∗)−E[∆∗t+1(θ̂t − θ∗)]|

+
1

T

PT+τ−1
t=τ rt+1(θ̂t)|θ̂t − θ∗|+E[rt+1(θ̂t)|θ̂t − θ∗|]}

6
√
T{ 1

T

PT+τ−1
t=τ |∆∗t+1 −E[∆∗t+1]| supτ6t6T+τ−1 |θ̂t − θ∗|

+[rT (δτ ) +E(rT (δτ))] supτ6t6T+τ−1 |θ̂t − θ∗|}.

Using standard arguments for stochastic equicontinuity such as those given in Andrews

(1994), we can show that for any θ ∈ Θ̊, rt+1(θ) → 0 as θ → θ∗, so that rT (δτ) → 0 with
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probability one, which by the dominated convergence theorem ensures E(rT (δτ )) → 0 as

δτ → 0. Next, we show that locally at any θ∗ ∈ Θ̊, the sample mean of {∆∗t+1} converges in
probability to its expected value. By (A5’) we know that for every θ∗ ∈ Θ̊, {∆∗t+1} is strictly
stationary and α-mixing with α of size −r/(r − 2) with r > 2 (see Theorems 3.35 and 3.49

in White, 2001). (A2), (A3) and (A5’) moreover imply E(supθ∗∈Θ̊ |∆∗t+1|r+ ) <∞, for all t,
τ 6 t 6 T+τ−1. Using the weak LLN for α-mixing sequences (e.g., Corollary 3.48 in White,
2001) then gives T−1

PT+τ−1
t=τ ∆∗t+1

p→ ∆∗ ≡ E[∆∗t+1] as T →∞, locally at θ∗, for all θ∗ ∈ Θ̊.

Then, by using the Markov inequality limT→∞ P (
√
T |m̂T − m̂−m∗

T | > η, supτ6t6T+τ−1 |θ̂t−
θ∗| 6 δτ) = 0 and the third term in (11) is op(1) as τ → ∞ and T → ∞. Next we use the
central limit theorem (CLT) for strictly stationary and α-mixing sequences (e.g., Theorem

5.20 inWhite, 2001) to show that
√
Tm∗

T
d→ N (0, S). Using Theorems 3.35 and 3.49 inWhite

(2001), which together show that time-invariant measurable functions of strictly stationary

and mixing sequences are strictly stationary and mixing of the same size, we know by (A5’)

that {M∗
t+1} is strictly stationary and α-mixing with mixing coefficient of size −r/(r −

2), r > 2. The Cauchy-Schwartz inequality and (A5’) imply E[|M∗
t+1|r] 6 (E[|Vt|2r])1/2 ·

(E[(Yt+1−f∗t+1)
2r(p0−1)])1/2 6 (E[|Vt|2r])1/2max(1, {supθ∈ΘE[(Yt+1− θ0Wt)

2r(p0−1)]}1/2) 6 ∆,

for ∆ ≡ max(1,∆1/2
W )max(1,∆

1/2
Y ) > 0, ∆ < ∞. The CLT (e.g., Theorem 5.20 in White,

2001) then ensures
√
Tm∗

T =
√
T (g∗T − h∗T · α0)

d→ N (0, S). (13)

The remainder of the asymptotic normality proof is similar to the standard case: the positive

definiteness of S−1, Ŝ
p→ S and ĥT

p→ h∗ as τ → ∞ and T → ∞, together with (A1)
and (A3), ensure that h∗0S−1h∗ 6= 0 and ĥ0T Ŝ

−1ĥT 6= 0 with probability one, so by using
√
T (α̂T −α0) = (ĥ0T Ŝ−1ĥT )−1ĥ0T Ŝ−1{

√
Tm∗

T +op(1)}, the limit result in (13) and the Slutsky
theorem we have

√
T (α̂T − α0)

d→ N (0, (h∗0S−1h∗)−1), which completes the proof.
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Table 1: Size of two-sided t-tests and j-tests (nominal size 5%) 
A. Lin-Lin (p0 = 1) 

t-test, only a constant as instrument 
N0 nf  0.2 0.4 0.5 0.6 0.8 
50 50  0.053 0.059 0.061 0.064 0.057 
50 100  0.066 0.050 0.057 0.052 0.060 

100 50  0.056 0.056 0.066 0.066 0.049 
100 100  0.063 0.055 0.057 0.052 0.058 
100 200  0.061 0.053 0.053 0.055 0.054 

t-test, two instruments 
n0 nf  0.2 0.4 0.5 0.6 0.8 
50 50  0.144 0.094 0.078 0.090 0.098 
50 100  0.090 0.073 0.064 0.072 0.069 

100 50  0.162 0.095 0.083 0.091 0.106 
100 100  0.096 0.076 0.063 0.068 0.072 
100 200  0.077 0.065 0.055 0.063 0.065 

j-test, two instruments 
n0 nf  0.2 0.4 0.5 0.6 0.8 
50 50  0.029 0.047 0.049 0.048 0.036 
50 100  0.044 0.048 0.047 0.047 0.044 

100 50  0.033 0.047 0.046 0.049 0.033 
100 100  0.041 0.052 0.049 0.047 0.041 
100 200  0.049 0.047 0.048 0.052 0.047 

B. Quad-Quad (p0 = 2) 
t-test, only a constant as instrument 

n0 nf  0.2 0.4 0.5 0.6 0.8 
50 50  0.065 0.069 0.071 0.071 0.063 
50 100  0.082 0.062 0.063 0.061 0.074 

100 50  0.063 0.068 0.072 0.072 0.065 
100 100  0.077 0.057 0.059 0.057 0.068 
100 200  0.127 0.055 0.057 0.052 0.121 

t-test, two instruments 
n0 nf  0.2 0.4 0.5 0.6 0.8 
50 50  0.105 0.121 0.118 0.120 0.102 
50 100  0.076 0.083 0.087 0.085 0.077 

100 50  0.109 0.120 0.116 0.121 0.113 
100 100  0.080 0.077 0.080 0.080 0.073 
100 200  0.104 0.066 0.069 0.066 0.102 

j-test, two instruments 
n0 nf  0.2 0.4 0.5 0.6 0.8 
50 50  0.020 0.038 0.043 0.040 0.023 
50 100  0.032 0.044 0.045 0.042 0.026 

100 50  0.026 0.042 0.041 0.040 0.022 
100 100  0.033 0.049 0.050 0.046 0.030 
100 200  0.030 0.046 0.051 0.050 0.035 

Note: n0 is the initial sample used to estimate the parameters of the forecasting model while nf is 
the size of the out-of-sample forecasting period used to test the model. 0.2, 0.4, 0.5, 0.6 and 0.8 
are the values of αο,, the population asymmetry parameter. 
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