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1. Introduction

The reliability function R(t) is defined as the probability of failure-free opera-
tion until time t. Thus, if the random variable (rv) X denotes lifetime of an
item or system, then R(t) = P (X > t). Another measure of reliability under
stress-strength set-up is the probability P = P (X > Y ), which represents the
reliability of item or system of random strength X subject to random stress Y .
A lot of work has been done in the literature for the point estimation of R(t)
and ‘P’ under censoring and complete sample cases for individual distributions.
For a brief review, one may refer to Pugh (1963), Basu (1964), Bartholomew
(1957, 1963), Tong (1974, 1975), Johnson (1975), Kelley et al. (1976), Sathe
and Shah (1981), Chao (1982), Constantine et al. (1986), Awad and Gharraf
(1986), Tyagi and Bhattacharya (1989a,b), Chaturvedi and Rani (1997, 1998),
Chaturvedi and Surinder (1999), Chaturvedi and Tomer (2002); Chaturvedi et al.
(2002); Chaturvedi and Tomer (2003),Chaturvedi and Singh (2006, 2008) and
others.
Various authors have considered inferential problems related to different ex-
ponentiated distributions.To cite a few, we refer to Mudholkar and Srivastava
(1993); Mudholkar et al. (1995),Mudholkar and Hutson (1996), Jiang andMurthy
(1999), Nassar and Eissa (2003, 2004), Pal et al. (2006, 2007), Gupta et al.
(1998),Gupta and Kundu (1999, 2001a,b, 2002, 2003a,b), Gupta et al. (2002),
Kundu et al. (2005), Kundu and Gupta (2005), Raqab and Ahsanullah (2001),
Raqab (2002), Abdel-Hamid and Al-Hussaini (2009), AL-Hussaini (2010), AL-
Hussaini and Hussein (2011), Shawky and Abu-Zinadah (2009),Kundu and Raqab
(2005), Abdul-Moniem and Abdel-Hameed (2012), Tadikamalla (1980), Lai et al.
(2003), Xie et al. (2002),Ljubo (1965) and others.
If F (x) is the cumulative distribution function(cdf) of a positive random vari-
able(rv) X , then for a parameter α(> 0),

G(x) = [F (x)]α (1)
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is also a cdf. Such distributions are referred to as exponentiated distributions
denoting by f(x), the probability distributions function(pdf) corresponding to
F (x),the pdf for the model (1) is

g(x;α) = α[F (x)]α−1f(x) (2)

The purpose of this paper is many-fold. For the family of exponentiated dis-
tributions (2), we consider estimation and testing procedures for ‘α’, R(t) and
‘P’ under type I and type II censoring. As far as estimation procedures are
concerned, UMVUES and MLES are derived.
In Section 2 and Section 3, respectively, we provide point estimators under type
II and type I censoring. In Section 4, we propose testing procedures.Finally
in Section 5, we present numerical findings and in section 6, we propose some
remarks and conclusions.

2. Point estimators under type ii censoring

Let n items are put an a life test and failure times of first r units are observed.
Let X(1) ≤ X(2) ≤ X(3) ≤ ... ≤ X(r), (0 < r ≤ n) be the lifetimes of first r units.
Obviously, (n− r) items survived until X(r). The joint pdf of n order statistics
X(1) ≤ X(2) ≤ X(3) ≤ ... ≤ X(n) is

g∗(x(1), x(2), ..., x(n);α) = n!αn

n∏

i=1

f(x(i))F (x(i))
α−1

or alternatively, we can write

g∗(x(1), x(2), ..., x(n);α) = n!αn

n∏

i=1

exp(−α
{
−logF (x(i))

}
)

{
f(x(i))

F (x(i))

}
. (3)

Let us make the transformation y(i) = −logF (x(i)). The Jacobian J of transfor-
mation is

|J | =
F (x(i))

f(x(i))

From(3), the joint pdf of Y(1) ≤ Y(2) ≤ Y(3) ≤ ... ≤ Y(n) is

h∗(y(1), y(2), ..., y(n);α) = n!αnexp(−α

n∑

i=1

y(i)). (4)

The joint pdf of Y(1) ≤ Y(2) ≤ Y(3) ≤ ... ≤ Y(r) is obtained by integrating out
Y(r+1) ≤ Y(r+2) ≤ ... ≤ Y(n), which leads us to

h∗∗(y(1), y(2),..., y(r);α)

=n(n− 1)....(n− r + 1)αrexp

{
−α(

r∑

i=1

y(i) + (n− r)y(r))

}
.

(5)

Since F (xi) is uniform over (0, 1),−logF (xi) follows exponential distribution
with mean life (1/α.
Lest us consider the tranformation Zi = (n− i+1)

{
Y(i) − Y(i−1)

}
, i = 1, 2, ..., r
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obviously,
∑r

i=1 Zi = Sr, say,
where Sr =

∑r

i=1 y(i) + (n− r)y(r).
Since Z ′

is are exponential random variables with mean life unity, from (5), the
pdf of Sr is

f1(sr;α) =
αr

Γ(r)
sr−1
r exp(−αsr). (6)

The following theorem provides UMVUES of powers of α.

Theorem 1. For p ∈ (−∞,∞)(p 6= 0), the UMVUE of αp is given by

α̃p
II =





{
Γ(r)

Γ(r−p)

}
S−p
r (p < r)

0, otherwise.

Proof. From (6) and Fisher-Neymann factorization theorem[(see Rohtagi
and Saleh, 2012,p.347)] Sr is sufficient for α. Moreover, since the distribution of
Sr belongs to exponential family, it is also complete [see Rohtagi (1976,p.347)].
The theorem now follows from the fact that

E(S−p
r ) =

{
Γ(r − p)

Γ(p)

}
αp

In the following theorem we derive the UMVUE of R(t).

Theorem 2. The UMVUE of R(t) is given by

R̃II(t) =

{
1−

[
1 + logF (t)

Sr

]r−1

,−logF (t) < Sr

0 otherwise.

Proof. We can write
R(t) = 1− [F (t)]α

= 1− exp[αlogF (t)]

= 1−

∞∑

i=0

{logF (t)}
i

i!
αi.

Thus,

R̃II(t) = 1−

∞∑

i=0

{logF (t)}
i

i!
α̃i
II

Applying Theorem 1,

R̃II(t) = 1−

r−1∑

i=0

{logF (t)}
i

i!
α̃i
II

= 1−
r−1∑

i=0

{logF (t)}
i

i!

{
Γ(r)

Γ(r − i)

}
S−i
r

= 1−

r−1∑

i=0

(
r−1
i

){
logF (t)

Sr

}i

and the theorem follows.
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The UMVUE of the pdf g(x;α) given at (2) is provided in the following corollary.

Corollary 3. The UMVUE of g(x;α) at a specified point ‘x’ is

g̃II(x;α) =

{
(r − 1)

[
1 + logF (x)

Sr

]r−2 {
f(x)

SrF (x)

}
,−logF (x) < Sr

0, otherwise.

Proof. The expectation of
∫
∞

t
g̃II(x;α)dx with respect to Sr is R(t). Thus,

R̃II(t) =

∫
∞

t

g̃II(x;α)dx

or,

g̃II(t;α) = −
dR̃II(t)

dt
(7)

The result now follows from Theorem 2 and (7).
Let X and Y be two independent random variables following the classes of dis-
tributions g1(x;α1) and g2(y;α2),respectively, where

g1(x;α1) = α1[F1(x)]
α1−1f1(x)

g2(y;α2) = α2[F2(y)]
α2−1f2(y)

Let n items on X and m items on Y are put on life tests and the truncation
numbers for X and Y are r1 and r2, respectively. Denoting by

Y1(i) = −logF1(x(i)), i = 1, 2, ..., r1,

Y2(j) = −logF2(y(j)), j = 1, 2, ..., r2

Sr1 =

r1∑

i=1

Y1(i) + (n− r1)Y1(r1)

and

Tr2 =

r2∑

j=1

Y2(j) + (m− r2)Y2(r2).

The UMVUE’s of g1(x;α1) and g2(y;α2) are given respectively, by

g̃1II(x;α1) =





(r1 − 1)
[
1 + logF1(x)

Sr1

]r1−2 {
f1(x)

Sr1F1(x)

}
, −logF1(x) < Sr1

0, otherwise

g̃2II(y;α2) =





(r2 − 1)
[
1 + logF2(y)

Tr2

]r2−2 {
f2(y)

Tr2F2(y)

}
, −logF2(y) < Tr2

0, otherwise

In what follows we derive the UMVUE of ‘P’. We denote by F−1(.), the inverse
function of F(.).
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Theorem 4. The UMVUE of ‘P’ is given by

P̃II =





(r2 − 1)
∫
−T−1

r2
logF2(F

−1
1 (e−Sr1 ))

o
(1− z)r2−2

[
1−

{
1 +

logF1(F
−1
2 (exp(−zTr2 )))

Sr1

}r1−1
]
dz,

F−1
1 (e−Sr1 ) > F−1

2 (e−Tr2 )

(r2 − 1)
∫ 1

o
(1 − z)r2−2

[
1−

{
1 +

logF1(F
−1
2 (e−zTr2 ))
Sr1

}r1−1
]
dz,

F−1
2 (e−Tr2 ) > F−1

1 (e−Sr1 ).

Proof. From the arguments similar to those adopted in corollary 3,

P̃II =

∫
∞

y=0

∫
∞

x=y

g̃1II(x;α1)g̃2II(y;α2)dxdy

=

∫
∞

y=0

R̃1II(y)

{
−d

dy
R̃2II(y)

}
dy

=(r2 − 1)

∫
∞

y=M

[
1−

{
1 +

logF1(x)

Sr1

}r1−1
]

[{
1 +

logF2(y)

Tr2

}r2−2 {
f2(y)

Tr2F2(y)

}]
dy (8)

where M = max
{
F−1
1 (exp(−Sr1)), F

−1
2 (exp(−Tr2))

}

when M = F−1
1 (exp(−Sr1)) putting z = −logF2(y)

Tr2
in (8),

P̃II =(r2 − 1)

∫
−T−1

r2
logF2(F

−1
1 (exp(−Sr1)))

0

(1 − z)r2−2

[
1−

{
1 +

logF1(F
−1
2 (exp(−zTr2)))

Sr1

}r1−1
]
dz (9)

when max
{
F−1
1 (exp(−Sr1)), F

−1
2 (exp(−Tr2))

}
= F−1

2 (exp(−Tr2), for the same
transformation of variables,

P̃II = (r2 − 1)

∫ 1

0

(1− z)r2−2

[
1−

{
1 +

logF1(F
−1
2 (exp(−zTr2)))

Sr1

}r1−1
]
dz

(10)

The theorem now follows on combining (9) and (10).

Corollary 5. When X and Y belong to the same families of distributions
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(X and Y are independent random variables),

P̃II =






(r2 − 1)
∫ Sr1

Tr2
o

(1− z)r2−2

[
1−

{
1−

Tr2

Sr1
z
}r1−1

]
dz,

if Sr1 < Tr2

(r2 − 1)
∫ 1

o
(1− z)r2−2

[
1−

{
1−

Tr2

Sr1
z
}r1−1

]
dz,

if Sr1 > Tr2 .

In the following theorem, we derive the MLES of powers of α.

Theorem 6. For p ∈ (−∞,∞)(p 6= 0),the MLE of αp is given by

α̂p
II =

(
r

Sr

)p

.

Proof. Taking natural logarithm of the both sides of (5), differentiating it
with respect to α, equating the differential coefficient equal to zero and solving
for α, we get

α̂II =
r

Sr

The result now follows from the invariance property of MLES.

Theorem 7. The MLE of the Reliability function is

R̂II(t) = 1− [F (t)]
r
Sr .

Proof. The result follows from the expression of R(t), Theorem 6 and the
invariance property of the MLE.

Corollary 8. The MLE of the pdf g(x;α) at a specified point ‘x’ is

ĝII(x;α) = α̂II [F (x)]α̂II−1 f(x).

Proof. The proof is similar to that of Corollary 3.

Theorem 9. The MLE of ‘P’ is given by

P̂II =
r2
Tr2

∫ 0

1

{
1− exp(logF1(F

−1
2 (z)))

r1
Sr1

}
z

r2
Tr2

−1
dz.

Proof.

P̂II =

∫
∞

y=0

∫
∞

x=y

ĝ1II(x;α1)ĝ2II(y;α2)dxdy

=

∫
∞

y=0

R̂1II(y)

{
−dR̂2II(y)

dy

}
dy

=

∫
∞

y=0

{
1− exp

[
−r1
Sr1

logF1(y)

]}{
r2
Tr2

[F2(y)]
r2
Tr2

−1
f2(y)

}
dy
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The result now follows on substituting F2(y) = z

Corollary 10. When X and Y belong to same families of distributions(X
and Y are independent random variables),

P̂II =
(r1/Sr1)

(r1/Sr1 + r2/Tr2)
.

3. Point estimators under type i censoring

Let 0 ≤ X(1) ≤ X(2) ≤ .... ≤ X(n) be the failure times of n items under test
from (2).Test begins at time 0 and operates till X(1) = x(1), the first failure time.
Failed item is replaced by a new one and system operates further till X(2) = x(2),
and so on.The experiment is terminated at time to.

Theorem 11. Let N(to) be the number of items that failed before time to.
Then, N(to) follows the Poisson distribution.

Proof. For Y ′

(i)s, i = 1, 2, ..., n defined in section 2, lest us make the trans-
formation W1 = Y(1),W2 = Y(2) − Y(1), ...,Wn = Y(n) − Y(n−1).
We have shown that W ′

is are i.i.d. rv’s having exponential distribution with
mean α. By the definition of N(to),

P [N(to) = r]

=P [X(r) ≤ to]− P [X(r+1) ≤ to]

=P [Y(r) ≤ −logF (to)]− P [Y(r+1) ≤ −logF (to)]

=P [nα

r+1∑

i=1

Wi ≥ −nαlogF (to)]− P [nα

r∑

i=1

Wi ≥ −nαlogF (to)]

=
1

Γ(r + 1)

∫
∞

−nαlogF (to)

ure−udu−
1

Γ(r)

∫
∞

−nαlogF (to)

ur−1e−udu

Hence,

P [N(to) = r] =
exp {−nαlogF (to)} {−nαlogF (to)}

r

r!
(11)

and the theorem follows.

Theorem 12. For p ∈ (0,∞), the UMVUE of αp is given by

α̃p
I =





r!
(r−p)!

{
−nlogF(to)

}
−p

, if p ≤ r

0, otherwise.

Proof. It follows from (11) and factorization theorem that r is complete
and sufficient for α. The theorem now follows from the result that

E [r(r − 1)...(r − p+ 1)] = {−nαlogF (to)}
p
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Theorem 13. The UMVUE of R(t) is given by

R̃I(t) =





1−
[
1− logF (t)

nlogF (to)

]r
, if F (t) > F (to)

n

0, otherwise.

Proof. Using theorem 8,

R̃I(t) = 1−
r∑

i=0

α̃i
I

i!
{logF (t)}i

= 1−
∑r

i=0(−1)i
(
r

i
) [

logF (t)
nlogF (to)

]i

and the theorem follows.

Corollary 14. The UMVUE of the sampled pdf at a specified point ‘x’ is

g̃I(x;α) =





[
−rf(x)

nlogF (to)F (x)

]{
1− logF (x)

nlogF (to)

}r−1

, if F (x) > F (to)
n

0, otherwise.

Proof. The result follows from Theorem 13 on using the techniques adopted
in the proof of corollary 3.
As in section 2, let X and Y be two independent rv’s following the classes of dis-
tributions g1(x;α1) and g2(y;α2), respectively. Let n items on X and m items
on Y are put on life tests and r1 and r2 be the number of failures before time to
and too, respectively.It follows from corollary 14 that the UMVUE’s of g1(x;α1)
and g2(y;α2) at a specified point ‘x’ and ‘y’ respectively, are given by

g̃1I(x;α1) =

{ [
−r1f1(x)

nlogF1(to)F1(x)

]{
1− logF1(x)

nlogF1(to)

}r1−1

, if F1(x) > F1(to)
n

0, otherwise.

and

g̃2I(y;α2) =

{ [
−r2f2(y)

mlogF2(too)F2(y)

]{
1− logF2(y)

mlogF2(too)

}r2−1

, if F2(y) > F2(too)
m

0, otherwise.

Theorem 15. The UMVUE of ‘P’ is given by

P̃I =





r2
∫ logF2(F−1

1
(F1(to))n)

mlogF2(too)

o
(1 − z)r2−1

[
1−

{
1−

logF1(F
−1
2 (exp(mlogF2(too)z)))

nlogF1(to)

}r1]
dz,

if F−1
1 (F1(to))

n > F−1
2 (F2(too))

m

r2
∫ 1

o
(1− z)r2−1

[
1−

{
1−

logF1(F
−1
2 (exp(mlogF2(too)z)))

nlogF1(to)

}r1]
dz,

if F−1
1 (F1(to))

n < F−1
2 (F2(too))

m.
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Proof. We have

P̃I =

∫
∞

y=0

∫
∞

x=y

g̃1I(x;α1)g̃2I(y;α2)dxdy

=

∫
∞

y=0

R̃1I(y)

{
−d

dy
R̃2I(y)

}
dy

=

∫
∞

y=max{F−1
1 (F1(to))n,F

−1
2 (F2(too))m}

{
1−

[
1−

logF1(y)

nlogF1(to)

]r1}

.

{
f2(y)

−logF2(too)F2(y)

[
1−

logF2(y)

mlogF2(too)

]r2−1
}
dy

The theorem now follows on putting z = logF2(y)
mlogF2(too)

Corollary 16. When X and Y belong to the same families of distribu-
tions(X and Y are independent random variables),

P̃I =

{
r2

∫ n
m

o
(1− z)r2−1

[
1−

{
1− m

n
z
}r1]

dz, if m < n

r2
∫ 1

o
(1− z)r2−1

[
1−

{
1− m

n
z
}r1]

dz, if m > n.

Theorem 17. For p ∈ (−∞,∞) (p 6= 0), the MLE of αp is given by

α̂p
I =

{
r

−nlogF (to)

}p

.

Proof. Taking logritham of (11), differentiating with respect to α, equating
the differential coefficient to zero and solving for α, we get

α̂I =
r

−nlogF (to)

The theorem now follows from the invariance property of the MLE.

Theorem 18. The MLE of the reliability function is given by

R̂I(t) = 1− [F (t)]
−r

nlogF (to) .

Corollary 19. The MLE’s of the sampled pdf’s g1(x;α1) and g2(y;α2), at
specified points ‘x’ and ‘y’, respectively, are given by

ĝ1I(x;α1) =

{
r1

−nlogF1(to)

}
[F1(x)]

{

r1
−nlogF1(to)

−1
}

f1(x)

and

ĝ2I(y;α2) =

{
r2

−mlogF2(too)

}
[F2(y)]

{

r2
−mlogF2(too)

−1
}

f2(y).

Theorem 20. The MLE of ‘P’ is given by

P̂I =

{
−r2

mlogF (too)

}∫ 1

0

{
1−

(
F1

(
F−1
2 (z)

)) −r1
nlogF1(to)

}
z

−r2
mlogF (too)

−1dz.
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Corollary 21. When X and Y belong to same families of distributions(X
and Y are independent random variables),

P̂I =
r1/nlogF (to)

r1/nlogF (to) + r2/mlogF (too)
.

4. Testing procedures for different statistical hypotheses

In this section, we develop the test procedure for testing statistical hypotheses
for the parameter α and ‘P’.
Suppose we want to test the hypothesis Ho : α = αo against the alternative
H1 : α 6= αo under type II censoring. From (5)

Supαo
L(α |x) = n(n− 1)....(n− r + 1)αr

oexp(−αoSr)

and

SupαL(α |x ) = n(n− 1)....(n− r + 1)

(
r

Sr

)r

exp(−r)

The likelihood ratio is given by

λ(x) =

(
Srαo

r

)r

exp(−αoSr + r) (12)

The first term on the right side of (12) is monotonically increasing in Sr, whereas,
the second one is monotonically decreasing. Using the fact that 2αoSr follows
χ2
2r and denoting by β- the probability of Type I error, the critical region is

given by,

{0 < Sr < ko}
⋃{

ḱo < Sr < ∞
}

where,

ko =
1

2αo

χ2
2r

(
1−

β

2

)

and

ḱo =
1

2αo

χ2
2r

(
β

2

)

For type I censoring, a similar procedure can be used to find the critical region.
Denoting by r, a poisson rv with parameter nαlogF (to).

The critical region is given by
{
r < k1 or r > ḱ1

}
, r follows Poisson(nαlogF (to))

Now suppose we want to test the null hypothesisHo : α ≤ αo againstH1 : α > αo

under type II censoring. It is easy to see that the family of sampled pdf has
monotonic likelihood in Sr. Thus, the uniformly most powerful critical region is
given by

Sr ≤
1

2αo

χ2
2r(1− β)

Under type I censoring, the critical region is r ≥
´́
k1, where

P (r ≥
´́
k1) = β
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Now suppose we want to test the null hypothesis Ho : P = Po against H1 : P 6=
Po under type II censoring. It is easy to see that

P =
α1

α1 + α2

For k = Po

1−Po
, Ho is equivalent to Ho : α1 = kα2, so that H1 : α1 6= kα2. For a

generic2 constant K,

L(α1, α2

∣∣x, y ) = Kαr1
1 αr2

2 exp {−(α1Sr1 + α2Tr2)}

Under Ho,

α̂1II =
k(r1 + r2)

kSr1 + Tr2

, α̂2II =
(r1 + r2)

kSr1 + Tr2

Thus,

SupHo
L(α1, α2

∣∣x, y ) = K

(Sr1 + Tr2/k)
r1+r2

exp (−(r1 + r2))

Over the entire parametric space

Θ = {(α1, α2) /α1, α2 > 0} ,

SupΘL(α1, α2

∣∣x, y ) = K

Sr1
r1T

r2
r2

exp (−(r1 + r2)) .

Denoting by F2r1,2r2(.), the F-statistic with (2r1, 2r2) degrees of freedom, the
critical region is given by,

{(
Sr1

Tr2

< k2

)
∪

(
Sr1

Tr2

> ḱ2

)}

where,

k2 =
r1
kr2

F2r1,2r2

(
1−

β

2

)

and

ḱ2 =
r1
kr2

F2r1,2r2

(
β

2

)
.

5. Numerical findings

5.1. Simulation Studies

5.1.1. Estimation of parameters and Reliability functions
In order to validate the theoretical findings devloped under Type-II censoring, we
have generated (by using inverse cumulative density method) 100 observations
(Y ′

i s) using the transformation yi = −(1/α)logG(xi, α) with α = 1.5 and using

2 By generic constant we represent here a group of normalizing constants which in-
cludes all constants arising at each step. This help us to get rid of writing different
normalizing constants at each step.
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the fact that distribution function G(xi, α) follows U(0, 1). Here it is assumed
that X ′

is represent the life-spans of 100 experimental units and distributed as
Weibull distribution with shape parameter γ = 1.25 and scale parameter λ = 10.
In particular, using the distribution function of Weibull distribution with γ =
1.25 λ = 10 we obtained the Reliability function R (t) = 0.8599 for t =2.5
Hours.
In order to obtain MLE of parameter Alpha(α) i.e. α̂ and MLE and UMVUE
of R(t) under Type II censoring, we Set r = 75 and obtained these estimates.
Then we replicated this computation 1000 times and obtained the mean values

of these estimates as follows:
[
α̂, R̂(t), R̃(t)

]
= [1.5266, 0.8586, 0.8585]

To estimate the measure of Stress-Strength Reliability function P = P (X1 >
X2), we generated two Sample of observations of sizes 110 and 120 (Y ′

jis; j =
1, 2, i = 110, 120) using the transformation yji = −(1/αj)logG(xj , αj); j = 1, 2
with α1 = α2 = 1.5 and using the fact that distribution function G(xj , αj) fol-
lows U(0, 1); j = 1, 2. Here it is assumed that Xj for j = 1, 2 represent the
life-spans of 110 and 120 experimental units on the life-test respectively and
distributed as Weibull distribution with shape parameters γ1 = γ2 = 1.25 and
scale parameters λ1 = λ2 = 10 respectively.
In order to obtain UMVUE of P = P (X1 > X2) under Type II censoring, we
set r1 = r2 = 80 and calculated Sr1 = 54.3398 and Tr2 = 50.2478. Using these
values of Sr1 and Tr2 we obtained the UMVUE of Stress-Strength Reliability
function. We repeated this process 1000 times and obtained the mean value of
the UMVUE as P̃ = 0.4991.
While obtaining MLE of P = P (X1 > X2) under Type II censoring, we set
r1 = r2 = 80 and calculated Sr1 = 53.1585 and Tr2 = 52.4389. Using these val-
ues of Sr1 and Tr2 we obtained the MLE of Stress-Strength Reliability function.
We replicated this process 1000 times and obtained the mean value of the MLE
as P̂ = 0.4997.
Assuming that both X1 and X2 belongs to the Weibull distribution with shape
parameters γ1 = γ2 = 1.25 and scale parameters λ1 = λ2 = 10 respectively and
taking α1 = α2 = 1.5, we calculated P = 0.5.
The average values of these estimates in vector form are given as follows:[
P̂ , P̃

]
=[MLE, UMVUE]=[0.4997, 0.4991]

In order to validate the theoretical findings devloped under Type-I censor-
ing, we have generated 100 observations (Y ′

i s) using the transformation yi =
−(1/α)logG(xi, α) with α = 1.5 and using the fact that distribution function
G(xi, α) follows U(0, 1). Here it is assumed that X ′

is represent the life-spans
of 100 experimental units and distributed as Weibull distribution with shape
parameter γ = 1.25 and scale parameter λ = 10.
In particular for t = 2.5 hours we obtained R(t)=0.8599. We set up the ter-
mination time to = 1.5 hours and obtained r = 89. Using this value of r we
obtained MLE of α and MLE and UMVUE of R(t). We replicated this process
1000 times and obtained the average values in vector form as follows:[
α̂, R̂(t), R̃(t)

]
= [0.4769, 0.8643, 0.8920]

To estimate the measure of Stress-Strength Reliability function P = P (X1 > X2)
we generated two Sample of observations of sizes 110 and 120 (Y ′

jis; j = 1, 2, i =
110, 120) using the transformation yji = −(1/αj)logG(xj , αj); j = 1, 2 with
α1 = α2 = 1.5 and using the fact that distribution function G(xj , αj) follows
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U(0, 1); j = 1, 2 Here it is assumed that Xj for j = 1, 2 represent the life-spans
of 110 and 120 experimental units on the life-test respectively and distributed as
Weibull distribution with scale parameters γ1 = γ2 = 1.25and shape parameters
λ1 = λ2 = 10 respectively.
In order to obtain UMVUE of P = P (X1 > X2) under Type I censoring, we set
termination times to = too = 1.5 and obtained r1 = 99 and r2 = 107. Using
these values of r1 and r2 we obtained the MLE and UMVUE of Stress-Strength
Reliability function. We replicated this process 1000 times and obtained the
mean values of the MLE and UMVUE in vector form as follows:[
P̂ , P̃

]
=[MLE, UMVUE]=[0.4997, 0.4998]

5.1.2. Testing of hypothesis

In order to check the authenticity of theory developed under Type-II censor-
ing, we generated a sample of 100 observations (Y ′

i s) using the transformation
Yi = −(1/αo)logG(xi, αo) with αo = 1.5, and using the fact that distribution
function G(xi, αo) follows U(0, 1).
Suppose we want to test the hypothesis Ho : α = αo against H1 : α 6= αo

under type II censoring scheme. From the above generated sample we calcu-
lated Sr = 51.4347. Using the Chi-square table, we obtained ko = 39.3282
and ḱo = 61.9335 at β = 5 percent level of significance. Hence we may accept
Ho : α = αo at 5 percent level of significance. Now for testing composite hypoth-
esis Ho : α ≤ αo against the composite alternative H1 : α > αo, using the above

generated sample we obtained
´́
ko = 40.8973. Hence we may accept Ho : α ≤ αo

at 5 percent level of significance as Sr = 51.4347. For testing the null hypothesis
Ho : P = Po against H1 : P 6= Po under type II sampling scheme, we generated
two Sample of observations of sizes 110 and 120 (Y ′

jis; j = 1, 2, i = 110, 120) us-
ing the transformation yji = −(1/αj)logG(xj , αj); j = 1, 2 with α1 = α2 = 1.5
and using the fact that distribution function G(xj , αj) follows U(0, 1); j = 1, 2
Using the above generated data we calculated Sr1/Tr2 = 1.0965. Using the

F-table, we obtained k2 = 0.7327 and ḱ2 = 1.3648 at β = 5 percent level of sig-
nificance. Hence we may accept Ho : P = Po at 5 percent level of significance.
In order to check the authenticity of theory developed under Type-I censor-
ing, we generated a sample of 100 observations (Y ′

i s) using the transformation
yi = −(1/αo)logG(xi, αo) with αo = 1.25 and using the fact that distribution
function G(xi, αo) follows U(0, 1). Here it is assumed that X ′

is represent the
life-spans of 100 experimental units and distributed as Weibull distribution with
shape parameter γ = 1.75 and scale parameter λ = 8.
Suppose we want to test the null hypothesis Ho : α = αo against alternative
H1 : α 6= αo under type I censoring scheme.Using the above generated data we
obtained r = 97 for to = 2.5.
Now using the fact that r follows Poisson(−nαlogF (to; a, θ)), from Poisson ta-

ble we obtained k1 = 78 and ḱ1 = 116 at β = 5 percent level of significance.
Hence we may accept Ho : α = αo at 5 percent level of significance.
For testing composite hypothesis Ho : α ≤ αo against the composite alternative
H1 : α > αo, we used the above generated sample and proceeding as before

obtained
´́
k1 = 113. Hence we may accept Ho : α ≤ αo at 5 percent level of
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significance.

5.2. Real data

We consider the following data consisting of 100 observations on breaking stress
of carbon fibers (in Gba).This data set is given by Nicholas and Padgett (2006).
3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 4.42 2.41 3.19 3.22 1.69
3.28 3.09 1.87 3.15 4.90 3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22
3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85 2.56 3.56 3.15 2.35 2.55 2.59 2.38
2.81 2.77 2.17 2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12 1.71 2.17 1.17 5.08 2.48 1.18
3.51 2.17 1.69 1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03 1.80
1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 2.05 3.65
Using the method of Maximum likelihood estimation, we fitted Exponentiated
Weibull distribution(with shape parameters α and θ and scale parameter λ) to
the above data. A quasi-Newton algorithm was used to solve the likelihood
equations which gave following estimates of parameters:

[α̂, γ̂, λ̂] = [1.17262, 2.57902, 14.188]

Using the estimated value of α, we generated Y ′

i s using the transformation
yi = −(1/α̂)logG(xi).
Type-II censoring:We set r = 75 here and obtained Sr = 69.893. For p=2,
we have αp = 1.375, MLE of αp is given by α̂p

II = 1.1515 and UMVUE is given
by α̃p

II = 1.1058.
For reliability estimation, we set t=1.5 and obtained R(t)=0.8646.
The MLE and UMVUE of R(t) is further obtained and given by R̂II(t) = 0.8396
and R̃II(t) = 0.8393.
Type-I censoring: We set up termination time as to = 2.25 hours here and ob-
tained r = 91. For p=2, we have αp = 1.375, MLE of αp is given by α̂p

I = 1.19404
and UMVUE is given by α̃p

I = 1.15497.
For reliability estimation, we set t=1.5 and obtained R(t)=0.8646.
The MLE and UMVUE of R(t) is further obtained and given by R̂I(t) = 0.8448
and R̃II(t) = 0.8478.
Below we present estimators of different powers of α and Reliability function
R(t) under the two censoring schemes considered by us in tabulated form:

TABLE 1
Estimates of powers of α under Type-II censoring

p ↓ r → 75 80 85 90
2 α̂p

II 1.1515 1.4072 1.4572 1.4248
α̃p
II 1.1058 1.3548 1.4062 1.3776

4 α̂p
II 1.3259 1.9801 2.1234 2.0300

α̃p
II 1.1572 1.7432 1.8837 1.8130
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TABLE 2
MLE’s of R(t) obtained under Type-II censoring

t ↓ R(t) r → 75 80 85 90
1.5 0.8646 0.8396 0.8677 0.8724 0.8694

2 0.7142 R̂II(t) 0.6800 0.7166 0.7230 0.7191
2.5 0.5281 0.4940 0.5294 0.5358 0.5319
3 0.3437 0.3169 0.3441 0.3491 0.3461

TABLE 3
UMVUE’s of R(t) obtained under Type-II censoring

t ↓ R(t) r → 75 80 85 90
1.5 0.8646 0.8392 0.8678 0.8725 0.8694

2 0.7142 R̃II(t) 0.6800 0.7166 0.7230 0.7191
2.5 0.5281 0.4940 0.5294 0.5358 0.5319
3 0.3437 0.3169 0.3441 0.3491 0.3461

TABLE 4
Estimates of powers of α obtained under Type I censoring (p=1,2)

to 2.25 2.5 2.75
r 91 93 94
α̂I 1.0927 1.4522 1.9410
α̃I 1.0807 1.4366 1.9204
α̂2
I 1.194 2.1088 3.7675

α̃2
I 1.155 2.0413 3.6481

TABLE 5
MLE’s of R(t) obtained under Type-I censoring

to 2.25 2.5 2.75
t ↓ R(t) ↓ r 91 93 94

1.5 0.8646 0.8449 0.9159 0.9634

2 0.7142 R̂I(t) 0.6887 0.7879 0.8742
2.5 0.5281 0.5033 0.6054 0.7115
3 0.3437 0.3245 0.4063 0.5019

TABLE 6
UMVUE’S of R(t) obtained under Type-I censoring

to 2.25 2.5 2.75
t ↓ R(t) ↓ r 91 93 94
4.5 0.03864 0.02515 0.01982 0.015184

5 0.01335 R̃I(t) 0.00865 0.00680 0.005205
5.5 0.00384 0.00248 0.00680 0.001492
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6. Remarks and conclusion

In the Real data analysis part, we see that estimates of Reliability function R(t)
obtained under Type-I censoring are closer to the true value as compared to
Type-II censoring.Now if we look at Table 1, we find that for larger values of
r, the estimators of powers of α are closer to the true value. Similarly if we
look at Table 2 and Table 3, we find that for larger values of r, the estimators
of Reliability function R(t) are closer to the true value. Further, if we look at
Tables 4,5 and 6, we find that estimates of powers of α and Reliability function
R(t) are closer to the true value for small values of to as comapared to the large
values.
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Summary

Exponentiated distributions are considered. Two measures of reliability are consid-
ered, R(t) = P (X > t) and P = P (X > Y ). Point estimation and testing procedures
are developed for different parametric functions under Type II and Type I censoring.
Uniformly minimum variance unbiased estimators (UMVUES) and maximum likeli-
hood estimators (MLES) are derived. A new technique of obtaining these estimators
is introduced.

Keywords: Exponentiated distributions; Point estimation; Testing procedures; Type I
and Type II censoring.


