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Abstract In the analysis of queueing network models, the response time plays an important role in studying the various
characteristics. In this paper data based recurrence relation is used to compute a sequence of response time. The sample
means from those response times, denoted by r̂1 and r̂2 are used to estimate true mean response time r1 and r2. Further
we construct some confidence intervals for mean response time r1 and r2 of a two stage open queueing network model.
A numerical simulation study is conducted in order to demonstrate performance of the proposed estimator r̂1 and r̂2
and bootstrap confidence intervals of r1 and r2. Also we investigate the accuracy of the different confidence intervals by
calculating the coverage percentage, average length, relative coverage and relative average length.
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1. Introduction

The response time is defined as the time spent by a customer from arrival until it departs. It can also be viewed as the
time elapsed from the instant of job arrival until its completion. The statistical inference in queueing networks are
rarely found in the literature and the work of related problems in the past mainly concentrates on only parametric
statistical inference, in which the distribution of population is with a known form. Burke [1] has shown that the
output of an M/M/1 queue is also Poisson with rate λ. Jackson [17]showed that the product form solution also
applies to open network of Markovian queues with feedback, also Jackson theorem states that each node behaves
like an independent queue. Disney [5] introduces basic properties of queueing networks. Thiruvaiyaru, Basawa and
Bhat [26] established maximum likelihood estimators of the parameters of an open Jackson network. Thiruvaiyaru
and Basawa [25] considered the problem of estimation for the parameters in a Jacksons type queueing network. Ke
and Chu [18] constructed various confidence intervals for intensity parameter of a queueing system.

So far very few authors have studied the nonparametric statistical inferences. Efron, the greatest statistician in
the field of nonparametric resampling approach, originally developed and proposed the bootstrap[6, 7, 8], which
is a resampling technique that can be effectively applied to estimate the sampling distribution of any statistic. For
necessary background on bootstrap technique, we refer to Efron and Gong [9], Efron and Tibshirani [10, 11],
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250 ESTIMATION FOR MEAN RESPONSE TIME OF A TWO STAGE OPEN QUEUEING NETWORK MODEL

Guntur [15], Mooney and Duval [21], Young [27], Rubin [24], Miller [20]. Gedam and Pathare [12, 13, 14, 22]
have studied the nonparametric statistical estimation approaches of various queueing network models.

Chu and Ke [3] examined the statistical behavior of the mean response time for the M/G/1 queueing system
using bootstrapping simulation. Chu and Ke [2] studied the interval estimation of mean response time for the
G/M/1 queueing system using empirical Laplace function approach. Chu and Ke [4] developed a data based
recurrence relation to compute a sequence mean response times and constructed confidence intervals of mean
response times for the G/G/1 queueing system using simulation. This motivates us to develop the nonparametric
statistical inferences of mean response time for a queueing network model. Consider the two-stage open queueing
network shown in Figure 1.

Figure 1. Two-stage open queueing network.

The system consists of two nodes with respective service rates µ1 and µ2. The external arrival rate is λ.
In section 2, we described the method of estimation of mean response time and nonparametric estimation

approach for mean response time. In section 3 to 9 we proposed CAN, Normal, exact-t, Standard Bootstrap,
Bootstrap-t, Variance-stabilized Bootstrap-t, Percentile Bootstrap and Bias-corrected and accelerated bootstrap
confidence intervals for response time ri, i = 1, 2 . In Section 10, Numerical simulation study is conducted. All
simulation results are shown by appropriate tables for illustrating performances of all estimation approaches. In
section 11, Conclusions are provided.

2. Mean Response Time and Nonparametric Estimation Approach for Mean Response Time

Let (Xi, Yi, i = 1, 2) be nonnegative continuous random variables representing respectively inter-arrival times
and service times at node-1 and node-2 of a queueing network model. The random variables (Yi, i = 1, 2) and
(Xi, i = 1, 2) are independent.

Let (Xij , Yij , i = 1, 2, j = 1, 2, · · · , n) be a random sample drawn from (Xi, Yi, i = 1, 2) represents inter-arrival
times and service times for jth customer at ith node of a queueing network.

Let Rij , i = 1, 2, j = 1, 2, · · · , n represents the response time of jth customer at ith node of a queueing network
and are determined from (Xij , Yij , i = 1, 2, j = 1, 2, · · · , n).

Let Wij , i = 1, 2, j = 1, 2, · · · , n represents the waiting time of jth customer at ith node of a queueing network.
Then

Rij = Wij + Yij , i = 1, 2, j = 1, 2, · · · , n, (1)

With the help of analysis by Kleinrock [19] we can evaluate Wij , i = 1, 2, j = 1, 2, · · · , n using recurrence
relation given by

Wij = (Ri,j−1 −Xij)I(Ri,j−1 > Xij) (2)

for i = 1, 2, j = 1, 2, · · · , n and Wi1 = 0, i = 1, 2 and I(.) denote the indicator function. Using (1) we get

Rij = (Ri,j−1 −Xij)I(Ri,j−1 > Xij) + Yij (3)

for i = 1, 2, j = 2, 3, · · · , n and Ri1 = Yi1, i = 1, 2. Equation (3)is the exact data based recurrence relation for
calculating response times Rij , i = 1, 2, j = 1, 2, · · · , n that are exactly as a sequence of customers response times
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for queueing network. Hence

r̂i =
1

n

n∑
j=1

Rij , i = 1, 2 (4)

the arithmetic mean of these response times is a natural estimator of the mean response times ri, i = 1, 2 for
queueing network. According to the Strong Law of Large Numbers [23], we know that r̂i, i = 1, 2 is strongly
consistent estimator of ri, i = 1, 2 . The true distributions of (Xi, Yi, i = 1, 2) are not often known in practice so
the exact distributions of r̂i, i = 1, 2 cannot be derived. But under the assumption that Xi and Yi being independent,
the asymptotical distributions of r̂i, i = 1, 2 can be developed. By Slutskys theorem [16], we have

√
n(r̂i − ri)

D→ N(0, σ2
i ), i = 1, 2

where σ̂2
i = 1

n

∑n
j=1(Rij − r̂i)

2, i = 1, 2 is the variance of Rij , i = 1, 2, j = 1, 2, · · · , n and D→ denotes
convergence in distribution. Then σ̂2

i , i = 1, 2 is a strongly consistent estimator of σ2
i i = 1, 2 . Again applying

the Slutskys theorem we have, √
n(r̂i − ri)

σ̂i

D→ N(0, 1), i = 1, 2.

Thus r̂i, i = 1, 2 is a strongly consistent and asymptotically normal (CAN) estimator with approximate variances
σ̂2
i

n , i = 1, 2.

3. Consistent and Asymptotical Normal (CAN) and Normal Confidence Intervals(Normal) for mean
response times

Using CAN estimators r̂i, i = 1, 2 and its associated approximate variances σ̂2
i /n, i = 1, 2, we construct confidence

intervals for mean response times ri, i = 1, 2 of a distribution-free two-stage open queueing network. Let zα be the
upper αth quantile of the standard normal distribution. Then approximate 100(1− α)% CAN confidence intervals
for mean response times ri, i = 1, 2 are (

r̂i ± zα/2σ̂i/
√
n
)
, i = 1, 2. (5)

Also for sufficiently large value of n the CAN confidence intervals approaches to normal confidence intervals.

4. Exact Confidence Intervals for mean response times based on Student-t distribution(Exact-t)

As sample size is small, using the student t-distribution we construct confidence intervals for mean response times
ri, i = 1, 2 of a two-stage open queueing network. Let tα be the upper αth quantile of the student t-distribution.
Then approximate 100(1− α)% confidence intervals for mean response times ri, i = 1, 2 are(

r̂i ± t(n−1),a/2
σ̂i√
n

)
, i = 1, 2. (6)

5. Standard Bootstrap (SB)Confidence Intervals for mean response times

According to the bootstrap procedure, a simple random sample (X∗
ij , Y

∗
ij , i = 1, 2, j = 1, 2, · · · , n) called a

bootstrap sample can be taken from the empirical distribution function of (Xij , Yij , i = 1, 2; j = 1, 2, · · · , n). Using
(3) we can obtain rij , i = 1, 2, j = 1, 2, · · · , n as a sequence of customer’ response time. Similarly we can obtain
r∗ij , i = 1, 2, j = 1, 2, · · · , n. It follows that r̂i = 1

n

∑n
j=1 rij , i = 1, 2 is natural estimate of the mean response
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time ri, i = 1, 2 for a queuing network. And r̂∗i = 1
n

∑n
j=1 r

∗
ij , i = 1, 2 is called bootstrap estimate of r̂i, i = 1, 2.

The above re-sampling process can be repeated N times. The N bootstrap estimates r̂∗i1, r̂
∗
i2, · · · , r̂∗iN , i = 1, 2 can

be computed from the bootstrap resample. Averaging the N bootstrap estimates we get

r̂N (i) =
1

N

N∑
j=1

r̂∗ij , i = 1, 2

is the bootstrap estimate of ri, i = 1, 2 and standard deviation of r̂i, i = 1, 2,can be estimated by

sd(r̂N (i)) =

[
1

N − 1

N∑
j=1

[
r∗ij − r̂N (i)

]2] 1
2

, i = 1, 2

By central limit theorem, the distribution of r̂i, i = 1, 2 is approximately normal. Therefore 100(1− α)% SB
confidence intervals for mean response times ri, i = 1, 2 are(

r̂i ± zα/2sd(r̂N (i))
)
, i = 1, 2. (7)

6. Bootstrap-t Confidence Intervals for mean response times (Boot-t)

Consider N bootstrap estimates r̂∗i1, r̂
∗
i2, · · · , r̂∗iN , i = 1, 2 computed from the bootstrap resample. We obtain

Z∗
ij =

(r̂∗ij−r̂N (i))

sd(r̂N (i)) i = 1, 2, j = 1, 2, · · · , N and sample Z∗
i1, Z

∗
i2, · · · , Z∗

iN , i = 1, 2 considered as an approximate t
distribution. Thus we have 100(1− α)% Bootstrap-t confidence intervals for mean response times ri, i = 1, 2 are(

r̂i ± t̂a/2sd(r̂N (i))
)
, i = 1, 2. (8)

where t̂a/2 equals the α/2 percentile of the random sample Z∗
i1, Z

∗
i2, · · · , Z∗

iN , i = 1, 2.

7. Variance-stabilized Bootstrap-t (VST) Confidence Intervals for mean response times

Let r̂i, i = 1, 2 is a strongly consistent and asymptotically normal estimator with approximate variances σ̂2
i /n, i =

1, 2 and consider σ̂i = ϕ(r̂i). Now to find a transformation f(r̂i) such that V ar(f(r̂i)) ≈ constant,by the first order
Taylor series expansion:

f(r̂i) ≈ f(ri) + (r̂i − ri)f
′(ri) ⇒ [f(r̂i)− f(ri)]

2 ≈ (r̂i − ri)
2(f ′(ri))

2, i = 1, 2.

Taking expectations on both sides, we get:

V ar[f(r̂i)] ≈ V ar(r̂i)(f
′(ri))

2 = (ϕ(ri))
2(f ′(ri))

2, i = 1, 2.

Now consider f(r̂i) =
√
n log(ϕ(r̂i)), i = 1, 2 is the variance-stabilizing transformation. Then we have,

V [f(r̂i)] ≈
( √

n

ϕ(r̂i)

)2

V ar[r̂i] =

(√
n

σ̂i

)2

V ar[r̂i] =
n

σ̂2
i

σ̂2
i

n
= 1, i = 1, 2.

Here we consider N bootstrap estimates r̂∗i1, r̂
∗
i2, · · · , r̂∗iN , i = 1, 2 computed from the bootstrap resample. We

obtain
θ∗ij =

√
n log(r̂∗ij)−

√
n log(r̂i), i = 1, 2, j = 1, 2, · · · , N.

Thus we have 100(1− α)% VST confidence intervals for mean response times ri, i = 1, 2 are(
e
log(r̂i)− 1√

n
v̂it1−α/2 , e

log(r̂i)− 1√
n
v̂itα/2

)
(9)

where v̂itα/2 and v̂it1−α/2 are (α/2)th and (1− α/2)th percentile of the random sample θ∗i1, θ
∗
i2, · · · , θ∗iN , i =

1, 2.
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8. Percentile Bootstrap (PB) Confidence Intervals for mean response times

Now call r̂∗i1, r̂
∗
i2, · · · , r̂∗iN , i = 1, 2 the bootstrap distribution of r̂i, i = 1, 2. Let r̂∗i (1), r̂

∗
i (2), · · · , r̂∗i (N), i = 1, 2

be the order statistics of r̂∗i1, r̂
∗
i2, · · · , r̂∗iN , i = 1, 2. Then utilizing the 100(α/2)th and 100(1− α/2)th percentage

points of the bootstrap distribution, 100(1− α)% PB confidence intervals for mean response times ri, i = 1, 2 are

(
r̂∗i

([
N

(α
2

)])
, r̂∗i

([
N

(
1− α

2

)]))
, i = 1, 2. (10)

where [x] denotes the greatest integer less than or equal to x.

9. Bias-corrected and accelerated bootstrap(BCaB) Confidence Intervals for mean response times

The bootstrap distribution r̂∗i1, r̂
∗
i2, · · · , r̂∗iN , i = 1, 2 may be biased, consequently the PB confidence intervals of

mean response times is designed to correct this potential bias of the bootstrap designed. Set pi = 1
N

∑N
j=1 I(r̂

∗
ij <

r̂i), i = 1, 2 where I(.) is the indicator function. Define ẑi = ϕ−1(pi), i = 1, 2 where ϕ−1 denotes the inverse
function of the standard normal distribution ϕ. Except for correcting the potential bias of the bootstrap distribution,
we can accelerate convergence of bootstrap distribution. Let (X̃i(k), Ỹi(k), i = 1, 2, k = 1, 2 · · · , n) denote the
original samples with the kth observation (Xik, Yik, i = 1, 2) deleted, also r̂ik, i = 1, 2 be the estimator of ri, i =
1, 2 calculated by using (X̃i(k), Ỹi(k), i = 1, 2).

Define

r̃i =
1

n

n∑
k=1

r̂ik, i = 1, 2

and

âi =

∑n
k=1(r̃i − r̂ik)

3

6
(∑n

k=1(r̃i − r̂ik)2
) 3

2

, i = 1, 2

where ẑi and âi, i = 1, 2 are named bias-correction and acceleration respectively. Thus 100(1− α)% BCaB
confidence intervals for mean response times ri, i = 1, 2 are

(r̂∗i ([Nαi1]) , r̂∗i ([Nαi2])) , i = 1, 2. (11)

where ai1 = ϕ

[
ẑi +

ẑi−zα/2

1−âi(ẑi−zα/2)

]
and ai2 = ϕ

[
ẑi +

ẑi+zα/2

1−âi(ẑi+zα/2)

]
, i = 1, 2

10. Simulation Study

A numerical simulation study was undertaken to evaluate performance of the various interval estimation approaches
mentioned above for a two-stage open queueing network. It is observed that most statisticians assess performances
of interval estimations in terms of coverage percentages or average lengths of confidence intervals. However,
through simulation study in the research work, we find that larger coverage percentages of confidence intervals
may often be due to wider standard deviation of interval estimation methods. Moreover, narrower confidence
intervals may often lead to smaller coverage percentages. Hence, both coverage percentage and average length are
not efficient for appraising interval estimation methods. In order to overcome above two shortcomings, we consider
two measures namely relative coverage and relative average length to evaluate performances of interval estimation
methods.

Stat., Optim. Inf. Comput. Vol. 3, September 2015



254 ESTIMATION FOR MEAN RESPONSE TIME OF A TWO STAGE OPEN QUEUEING NETWORK MODEL

Table 1. Different queueing network models simulated for study.

Models Distribution of Xi, i = 1, 2 Distribution of Yi, i = 1, 2
simulated x1 ≥ 0, x2 ≥ 0 y1 ≥ 0, y2 ≥ 0

E4/H
Pe
4 /1 to f(x1) = 128

3
x3
1e

−4x1 f(y1) = 0.1e−y1 + 0.4e−2y1 + 0.8e−8y1/3 + 3.2e−8y1

HPe
4 /E4/1 f(x2) = 0.1e−x2 + 0.4e−2x2 + 0.8e−8x2/3 + 3.2e−8x2 f(y2) = 1

1536
y3
2e

−y2/4

E4/H
Po
4 /1 to f(x1) = 128

3
x3
1e

−4x1 f(y1) = 2e−2y1 + 4e−4y1 + 16
3

e−16y1/3 + 16e−16y1

HPo
4 /E4/1 f(x2) = 2e−2x2 + 4e−4x2 + 16

3
e−16x2/3 + 16e−16x2 f(y2) = 1

96
y3
2e

−y2/2

HPe
4 /HPo

4 /1 to f(x1) = 3
8
e−x1 + 1

4
e−2x1 + 2

3
e−8x1/3 + 2e−8x1 f(y1) = 4e−4y1 + 8e−8y1 + 32

3
e−32y1/3 + 32e−32y1

HPo
4 /HPe

4 /1 f(x2) = 4e−4x2 + 8e−8x2 + 32
3

e−32x2/3 + 32e−32x2 f(y2) = 1
4
e−y2 + 1

2
e−2y2 + 2

3
e−8y2/3 + 2e−8y2

Table 2. Simulation analysis for consistency of r̂i, i = 1, 2 based on large sample size.

Models simulated The true value of ri, i = 1, 2 The mean of 1000 simulated r̂i, i = 1, 2
n = 100 n = 150 n = 200

E4/HPe
4 /1 to HPe

4 /E4/1 r1=0.3627& r̂1=0.36276& r̂1=0.36285& r̂1=0.36257&
r2=0.3525 r̂2=0.35212 r̂2=0.35364 r̂2=0.35432

E4/HPo
4 /1 to HPo

4 /E4/1 r1=1.0206& r̂1=1.02429& r̂1=1.02122& r̂1=1.02481&
r2=0.5869 r̂2=0.58495 r̂2=0.58556 r̂2=0.58601

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 r1=1.3329& r̂1=1.31528& r̂1=1.32267& r̂1=1.32720&
r2=0.3886 r̂2=0.38800 r̂2=0.38918 r̂2=0.38855

Table 3. Simulation analysis for consistency of r̂i, i = 1, 2 based on small sample size.

Models simulated The true value of ri, i = 1, 2 The mean of 1000 simulated r̂i, i = 1, 2
n = 15 n = 25

E4/HPe
4 /1 to HPe

4 /E4/1 r1=0.3627& r̂1=0.36384& r̂1=0.36212&
r2=0.3525 r̂2=0.33187 r̂2=0.33867

E4/HPo
4 /1 to HPo

4 /E4/1 r1=1.0206& r̂1=1.02218& r̂1=1.02221&
r2=0.5869 r̂2=0.58453 r̂2=0.58325

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 r1=1.3329& r̂1=1.29045& r̂1=1.28124&
r2=0.3886 r̂2=0.38586 r̂2=0.38578

Table 4. Simulation results of queueing network model E4/H
Pe
4 /1 to HPe

4 /E4/1 based on large sample size.

Estimation Coverage Percentages Average Lengths Relative Coverage Relative Average Length
n = n = n = n = n = n = n = n = n = n = n = n =

Approches 100 150 200 100 150 200 100 150 200 100 150 200
Normal1 0.891 0.882 0.886 0.062 0.050 0.044 14.476 17.551 20.358 0.170 0.139 0.120
Normal2 0.478 0.466 0.468 0.067 0.056 0.049 7.135 8.310 9.492 0.189 0.160 0.139
SB1 0.888 0.881 0.887 0.062 0.050 0.044 14.448 17.531 20.392 0.169 0.139 0.120
SB2 0.892 0.894 0.893 0.206 0.165 0.143 4.334 5.406 6.239 0.582 0.471 0.402
PB1 0.890 0.881 0.886 0.061 0.050 0.043 14.532 17.602 20.444 0.169 0.138 0.120
PB2 0.925 0.940 0.951 0.188 0.155 0.135 4.913 6.078 7.029 0.532 0.440 0.380
BCaB1 0.885 0.878 0.884 0.061 0.050 0.043 14.480 17.574 20.422 0.169 0.138 0.119
BCaB2 0.780 0.763 0.766 0.205 0.165 0.142 3.800 4.620 5.414 0.580 0.470 0.397
Boot-t1 0.890 0.884 0.888 0.061 0.050 0.044 14.493 17.610 20.431 0.169 0.138 0.120
Boot-t2 0.843 0.860 0.853 0.189 0.155 0.136 4.470 5.551 6.294 0.533 0.441 0.381
VST1 0.893 0.887 0.885 0.062 0.050 0.044 14.478 17.623 20.319 0.170 0.139 0.120
VST2 0.744 0.718 0.735 0.176 0.148 0.131 4.236 4.864 5.631 0.496 0.420 0.367
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Table 5. Simulation results of queueing network model E4/H
Po
4 /1 to HPo

4 /E4/1 based on large sample size.

Estimation Coverage Percentages Average Lengths Relative Coverage Relative Average Length
n = n = n = n = n = n = n = n = n = n = n = n =

Approches 100 150 200 100 150 200 100 150 200 100 150 200
Normal1 0.852 0.862 0.875 0.200 0.163 0.142 4.261 5.284 6.167 0.195 0.160 0.139
Normal2 0.680 0.709 0.691 0.104 0.086 0.075 6.535 8.225 9.280 0.178 0.147 0.127
SB1 0.883 0.886 0.912 0.218 0.179 0.156 4.054 4.958 5.858 0.213 0.175 0.152
SB2 0.882 0.913 0.886 0.177 0.146 0.125 4.997 6.249 7.071 0.302 0.249 0.213
PB1 0.888 0.897 0.915 0.217 0.178 0.155 4.097 5.043 5.904 0.212 0.174 0.151
PB2 0.908 0.935 0.928 0.172 0.143 0.123 5.292 6.547 7.538 0.293 0.244 0.210
BCaB1 0.856 0.873 0.880 0.215 0.177 0.154 3.991 4.940 5.710 0.209 0.173 0.150
BCaB2 0.785 0.802 0.777 0.174 0.146 0.125 4.506 5.495 6.239 0.298 0.249 0.212
Boot-t1 0.881 0.888 0.911 0.217 0.178 0.155 4.055 4.979 5.862 0.212 0.175 0.152
Boot-t2 0.869 0.902 0.886 0.172 0.143 0.123 5.055 6.303 7.181 0.294 0.244 0.210
VST1 0.861 0.865 0.884 0.218 0.179 0.156 3.944 4.841 5.681 0.213 0.175 0.152
VST2 0.788 0.816 0.797 0.170 0.141 0.122 4.649 5.789 6.536 0.290 0.240 0.208

Table 6. Simulation results of queueing network model HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 based on large sample size.

Estimation Coverage Percentages Average Lengths Relative Coverage Relative Average Length
n = n = n = n = n = n = n = n = n = n = n = n =

Approches 100 150 200 100 150 200 100 150 200 100 150 200
Normal1 0.601 0.622 0.604 0.282 0.234 0.204 2.134 2.657 2.957 0.213 0.177 0.154
Normal2 0.782 0.806 0.781 0.068 0.056 0.049 11.495 14.366 16.069 0.175 0.144 0.125
SB1 0.895 0.892 0.899 0.585 0.484 0.416 1.531 1.844 2.161 0.442 0.366 0.313
SB2 0.879 0.896 0.879 0.087 0.072 0.062 10.119 12.529 14.218 0.223 0.184 0.159
PB1 0.925 0.942 0.946 0.559 0.467 0.405 1.655 2.018 2.335 0.422 0.353 0.305
PB2 0.904 0.915 0.910 0.086 0.071 0.061 10.520 12.908 14.820 0.221 0.182 0.158
BCaB1 0.744 0.766 0.778 0.565 0.473 0.406 1.317 1.620 1.915 0.427 0.358 0.306
BCaB2 0.832 0.818 0.825 0.086 0.071 0.061 9.700 11.573 13.525 0.221 0.182 0.157
Boot-t1 0.860 0.875 0.879 0.560 0.468 0.406 1.536 1.871 2.166 0.423 0.354 0.305
Boot-t2 0.872 0.904 0.873 0.086 0.071 0.062 10.122 12.721 14.184 0.222 0.183 0.158
VST1 0.760 0.773 0.761 0.542 0.455 0.397 1.402 1.699 1.916 0.410 0.344 0.299
VST2 0.818 0.840 0.829 0.086 0.071 0.062 9.502 11.833 13.473 0.221 0.183 0.158

Table 7. Simulation results of queueing network model E4/H
Pe
4 /1 to HPe

4 /E4/1 based on small sample size.

Estimation Coverage Percentages Average Lengths Relative Coverage Relative Average Length
Approches n = 15 n = 25 n = 15 n = 25 n = 15 n = 25 n = 15 n = 25
CAN1 0.853 0.886 0.155 0.122 5.506 7.284 0.427 0.336
CAN2 0.512 0.487 0.137 0.113 3.742 4.299 0.405 0.337
Exact-t1 0.867 0.891 0.160 0.124 5.406 7.174 0.442 0.343
Exact-t2 0.834 0.871 0.377 0.350 2.212 2.489 1.114 1.040
SB1 0.840 0.877 0.150 0.119 5.609 7.345 0.413 0.329
SB2 0.816 0.867 0.352 0.336 2.318 2.577 1.041 1.000
PB1 0.845 0.884 0.149 0.119 5.665 7.440 0.411 0.328
PB2 0.844 0.885 0.327 0.306 2.582 2.890 0.966 0.910
BCaB1 0.842 0.866 0.148 0.118 5.693 7.327 0.408 0.326
BCaB2 0.726 0.744 0.339 0.335 2.144 2.224 1.001 0.995
Boot-t1 0.842 0.875 0.150 0.119 5.631 7.345 0.413 0.329
Boot-t2 0.748 0.807 0.327 0.307 2.285 2.632 0.968 0.912
VST1 0.845 0.886 0.155 0.121 5.470 7.302 0.426 0.335
VST2 0.721 0.740 0.301 0.272 2.396 2.719 0.890 0.809
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Table 8. Simulation results of queueing network model E4/H
Po
4 /1 to HPo

4 /E4/1 based on small sample size.

Estimation Coverage Percentages Average Lengths Relative Coverage Relative Average Length
Approches n = 15 n = 25 n = 15 n = 25 n = 15 n = 25 n = 15 n = 25
CAN1 0.846 0.842 0.496 0.389 1.704 2.166 0.485 0.380
CAN2 0.732 0.668 0.251 0.198 2.922 3.382 0.433 0.337
Exact-t1 0.874 0.883 0.564 0.435 1.550 2.028 0.551 0.426
Exact-t2 0.892 0.873 0.468 0.363 1.907 2.407 0.808 0.619
SB1 0.861 0.869 0.527 0.419 1.635 2.076 0.514 0.409
SB2 0.875 0.859 0.437 0.349 2.003 2.464 0.754 0.596
PB1 0.858 0.875 0.520 0.415 1.652 2.111 0.507 0.405
PB2 0.891 0.878 0.405 0.326 2.198 2.694 0.700 0.557
BCaB1 0.828 0.826 0.507 0.405 1.634 2.037 0.495 0.396
BCaB2 0.800 0.790 0.424 0.341 1.888 2.317 0.732 0.582
Boot-t1 0.852 0.860 0.521 0.416 1.636 2.070 0.508 0.406
Boot-t2 0.854 0.828 0.406 0.327 2.103 2.536 0.701 0.558
VST1 0.852 0.857 0.540 0.424 1.579 2.024 0.527 0.414
VST2 0.836 0.784 0.392 0.315 2.134 2.488 0.677 0.538

Table 9. Simulation results of queueing network model HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 based on small sample size.

Estimation Coverage Percentages Average Lengths Relative Coverage Relative Average Length
Approches n = 15 n = 25 n = 15 n = 25 n = 15 n = 25 n = 15 n = 25
CAN1 0.591 0.617 0.624 0.503 0.947 1.226 0.483 0.387
CAN2 0.795 0.788 0.166 0.132 4.782 5.992 0.427 0.338
Exact-t1 0.860 0.855 1.391 1.131 0.618 0.756 1.077 0.870
Exact-t2 0.873 0.880 0.225 0.177 3.874 4.968 0.579 0.456
SB1 0.844 0.847 1.299 1.087 0.650 0.779 1.006 0.836
SB2 0.857 0.867 0.210 0.170 4.072 5.091 0.541 0.438
PB1 0.864 0.876 1.195 0.996 0.723 0.880 0.925 0.766
PB2 0.860 0.876 0.203 0.165 4.238 5.305 0.522 0.425
BCaB1 0.729 0.768 1.126 0.967 0.648 0.794 0.872 0.744
BCaB2 0.806 0.810 0.207 0.167 3.898 4.840 0.531 0.431
Boot-t1 0.797 0.804 1.197 0.998 0.666 0.806 0.927 0.767
Boot-t2 0.852 0.853 0.203 0.166 4.189 5.154 0.523 0.426
VST1 0.763 0.766 1.154 0.944 0.661 0.811 0.893 0.726
VST2 0.841 0.834 0.204 0.165 4.117 5.043 0.525 0.426

Note that, boldface denotes the greatest relative coverage and shortest relative average length among all
estimation approaches.

Table 10. Performances of the estimation approaches to response time under various queueing networks based on large
sample size.

Queueing Network Estimation approach with Estimation approach with
simulated Greatest Relative coverage Shortest Relative Average Length

n = 100 n = 150 n = 200 n = 100 n = 150 n = 200

E4/HPe
4 /1 to HPe

4 /E4/1 PB1 VST1 PB1 BCaB1 BCaB1 BCaB1
Normal2 Normal2 Normal2 Normal2 Normal2 Normal2

E4/HPo
4 /1 to HPo

4 /E4/1 Normal1 Normal1 Normal1 Normal1 Normal1 Normal1
Normal2 Normal2 Normal2 Normal2 Normal2 Normal2

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 Normal1 Normal1 Normal1 Normal1 Normal1 Normal1
Normal2 Normal2 Normal2 Normal2 Normal2 Normal2
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Table 11. Performances of the estimation approaches to response time under various queueing networks based on small
sample size.

Queueing Network Estimation approach with Estimation approach with
simulated Greatest Relative coverage Shortest Relative Average Length

n = 15 n = 25 n = 15 n = 25

E4/HPe
4 /1 to HPe

4 /E4/1 BCaB1 PB1 BCaB1 BCaB1
CAN2 CAN2 CAN2 CAN2

E4/HPo
4 /1 to HPo

4 /E4/1 CAN1 CAN1 CAN1 CAN1
CAN2 CAN2 CAN2 CAN2

HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1 CAN1 CAN1 CAN1 CAN1
CAN2 CAN2 CAN2 CAN2

Relative coverage is defined as the ratio of coverage percentage to average length of confidence interval. Larger
relative coverage implies the better performances of the corresponding confidence interval. Also another approach
named Relative Average Length is defined as the ratio of average length to the true value of ri, i = 1, 2 . For a given
confidence level, the shorter the interval is, the more informative it is. Hence shorter relative average length implies
the better performances of the corresponding confidence interval.

The consistency of ri, i = 1, 2 is examined by comparing true value of ri, i = 1, 2 with the average simulated
estimates of r̂i, i = 1, 2 whereas the different confidence intervals are assessed in terms of their coverage accuracy,
relative coverage and relative average length. In order to achieve these goals, in simulation study we select various
queueing network modes as shown in Table 1. With regard to queueing network models shown in Table 1 there is
no theoretical formula for the true value of ri, i = 1, 2. Using strong law of large numbers [23], we have estimated
the true value of ri, i = 1, 2 by the simulated sample values of r̂i, i = 1, 2 for sufficiently large sample size n.

Thus for queueing network model E4/H
Pe
4 /1 to HPe

4 /E4/1 in Table 2 and Table 3, the approximated value of
ri, i = 1, 2 is 0.3627 and 0.3525 respectively which is obtained from the simulated sample value of r̂i, i = 1, 2 with
sample size n ≥ 106. Similarly, the approximated mean response time r1=1.0206, r2 =0.5869 for queueing network
model E4/H

Po
4 /1 to HPo

4 /E4/1 is produced with n ≥ 106. And for the model HPe
4 /HPo

4 /1 to HPo
4 /HPe

4 /1
the approximated value of ri, i = 1, 2 is 1.3329 and 0.3886 respectively. We find that the approximated mean
response time approaches to the true value of ri, i = 1, 2 with four decimal places when n ≥ 106. Also we get
the same interpretation for small samples where the approximate values of ri, i = 1, 2 are given in Table-3. Here
E4 represents a 4-stage Erlang distribution,HPe

4 a 4-stage hyper-exponential distribution and HPo
4 a 4-stage hypo-

exponential distribution.
Thus for each specified queueing network in Table 1, a random sample of sample size n (= 15, 25, 100, 150, 200)

is drawn from the original samples. Further N =1000 bootstrap resample’s are drawn from the original samples.
According to (5) to (11) we obtain CAN, Normal,Exact-t, SB, Boot-t, VST,PB and BCaB confidence intervals
for mean response times with confidence level 90%. The above simulation process is replicated N =1000 times
and computed coverage percentages, average lengths, relative coverage and relative average lengths. We utilize a
PC Dual Core and apply Matlab 7.0.1 to accomplish all simulations. The coverage percentages, average lengths,
relative coverage’s and relative average lengths of mean response time ri, i = 1, 2 based on simulation study for
queuing network models for different interval estimation approaches are shown in Tables 4 to 6 for large sample
and Tables 7 to 9 for small sample.

According to the simulation results based on small and large sample sizes we observe that, average lengths
and relative average lengths are decreases but both coverage percentages and relative coverage are increases with
sample size n. The PB method has the largest coverage percentage among almost all confidence intervals. The
coverage percentage can approaches to 90% when n increases. All methods have decreasing relative average lengths
with sample size n but the normal estimation method has the shortest relative average length. Normal method
has greatest relative coverage among all estimation methods and has shortest relative average lengths among all
estimation methods.

Finally among all estimation methods, normal confidence intervals method is the best for mean response time of
queueing network for large sample and for small samples CAN method is the best among all confidence intervals.
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11. Conclusions

This paper provides the interval estimation of mean response time ri, i = 1, 2 for two-stage open queueing network.
Using a recurrence relation we obtain a sequence of response time for the two-stage open queueing network.
Different estimation approaches CAN, Normal, Exact-t, SB, Boot-t, VST, PB and BCaB are applied to produce
confidence intervals for mean response times ri, i = 1, 2. The relative coverage and relative average lengths are
adopted to understand compare and assess performance of the resulted confidence intervals. The simulation results
imply that the normal estimation method has the best performance for G/G/1 to G/G/1 queueing network among
almost all estimation methods for large sample and for small sample the CAN method has the best among all
estimation methods. The above mentioned approaches is easily applied to practical queueing network such as all
types of open, closed, mixed queueing networks as well as cyclic, retrial queueing models.
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