

Estimation Approaches for Mean Response Time of a Two Stage Open Queueing Network Model

V. K. Gedam¹, S. B. Pathare^{2,*}

¹Department of Statistics, Savitribai Phule Pune University, Pune-411007, Maharashtra, India. ²Indira College of Commerce and Science, Pune-411033, Maharashtra, India.

Received: 16 April 2014; Accepted: 25 March 2015 Editor: Paulo Rodrigues

Abstract In the analysis of queueing network models, the response time plays an important role in studying the various characteristics. In this paper data based recurrence relation is used to compute a sequence of response time. The sample means from those response times, denoted by $\hat{r_1}$ and $\hat{r_2}$ are used to estimate true mean response time r_1 and r_2 . Further we construct some confidence intervals for mean response time r_1 and r_2 of a two stage open queueing network model. A numerical simulation study is conducted in order to demonstrate performance of the proposed estimator $\hat{r_1}$ and $\hat{r_2}$ and bootstrap confidence intervals of r_1 and r_2 . Also we investigate the accuracy of the different confidence intervals by calculating the coverage percentage, average length, relative coverage and relative average length.

Keywords Coverage percentage, Response Time, Relative coverage, Relative average length.

AMS 2010 subject classifications: 60K20, 60K25, 68M20, 90B22.

DOI: 10.19139/soic.v3i3.79

1. Introduction

The response time is defined as the time spent by a customer from arrival until it departs. It can also be viewed as the time elapsed from the instant of job arrival until its completion. The statistical inference in queueing networks are rarely found in the literature and the work of related problems in the past mainly concentrates on only parametric statistical inference, in which the distribution of population is with a known form. Burke [1] has shown that the output of an M/M/1 queue is also Poisson with rate λ . Jackson [17]showed that the product form solution also applies to open network of Markovian queues with feedback, also Jackson theorem states that each node behaves like an independent queue. Disney [5] introduces basic properties of queueing networks. Thiruvaiyaru, Basawa and Bhat [26] established maximum likelihood estimators of the parameters of an open Jackson network. Thiruvaiyaru and Basawa [25] considered the problem of estimation for the parameters in a Jacksons type queueing network. Ke and Chu [18] constructed various confidence intervals for intensity parameter of a queueing system.

So far very few authors have studied the nonparametric statistical inferences. Efron, the greatest statistician in the field of nonparametric resampling approach, originally developed and proposed the bootstrap[6, 7, 8], which is a resampling technique that can be effectively applied to estimate the sampling distribution of any statistic. For necessary background on bootstrap technique, we refer to Efron and Gong [9], Efron and Tibshirani [10, 11],

ISSN 2310-5070 (online) ISSN 2311-004X (print) Copyright © 2015 International Academic Press

^{*}Correspondence to: S. B. Pathare (Email: sureshpathare23@gmail.com). Indira College of Commerce and Science, Pune-411033, Maharashtra, India.

Guntur [15], Mooney and Duval [21], Young [27], Rubin [24], Miller [20]. Gedam and Pathare [12, 13, 14, 22] have studied the nonparametric statistical estimation approaches of various queueing network models.

Chu and Ke [3] examined the statistical behavior of the mean response time for the M/G/1 queueing system using bootstrapping simulation. Chu and Ke [2] studied the interval estimation of mean response time for the G/M/1 queueing system using empirical Laplace function approach. Chu and Ke [4] developed a data based recurrence relation to compute a sequence mean response times and constructed confidence intervals of mean response times for the G/G/1 queueing system using simulation. This motivates us to develop the nonparametric statistical inferences of mean response time for a queueing network model. Consider the two-stage open queueing network shown in Figure 1.

Figure 1. Two-stage open queueing network.

The system consists of two nodes with respective service rates μ_1 and μ_2 . The external arrival rate is λ .

In section 2, we described the method of estimation of mean response time and nonparametric estimation approach for mean response time. In section 3 to 9 we proposed CAN, Normal, exact-t, Standard Bootstrap, Bootstrap-t, Variance-stabilized Bootstrap-t, Percentile Bootstrap and Bias-corrected and accelerated bootstrap confidence intervals for response time r_i , i = 1, 2. In Section 10, Numerical simulation study is conducted. All simulation results are shown by appropriate tables for illustrating performances of all estimation approaches. In section 11, Conclusions are provided.

2. Mean Response Time and Nonparametric Estimation Approach for Mean Response Time

Let $(X_i, Y_i, i = 1, 2)$ be nonnegative continuous random variables representing respectively inter-arrival times and service times at node-1 and node-2 of a queueing network model. The random variables $(Y_i, i = 1, 2)$ and $(X_i, i = 1, 2)$ are independent.

Let $(X_{ij}, Y_{ij}, i = 1, 2, j = 1, 2, \dots, n)$ be a random sample drawn from $(X_i, Y_i, i = 1, 2)$ represents inter-arrival times and service times for j^{th} customer at i^{th} node of a queueing network.

Let R_{ij} , $i = 1, 2, j = 1, 2, \dots, n$ represents the response time of j^{th} customer at i^{th} node of a queueing network and are determined from $(X_{ij}, Y_{ij}, i = 1, 2, j = 1, 2, \dots, n)$.

Let W_{ij} , $i = 1, 2, j = 1, 2, \dots, n$ represents the waiting time of j^{th} customer at i^{th} node of a queueing network. Then

$$R_{ij} = W_{ij} + Y_{ij}, i = 1, 2, j = 1, 2, \cdots, n,$$
(1)

With the help of analysis by Kleinrock [19] we can evaluate W_{ij} , $i = 1, 2, j = 1, 2, \dots, n$ using recurrence relation given by

$$W_{ij} = (R_{i,j-1} - X_{ij})I(R_{i,j-1} > X_{ij})$$
(2)

for $i = 1, 2, j = 1, 2, \dots, n$ and $W_{i1} = 0, i = 1, 2$ and I(.) denote the indicator function. Using (1) we get

$$R_{ij} = (R_{i,j-1} - X_{ij})I(R_{i,j-1} > X_{ij}) + Y_{ij}$$
(3)

for $i = 1, 2, j = 2, 3, \dots, n$ and $R_{i1} = Y_{i1}, i = 1, 2$. Equation (3) is the exact data based recurrence relation for calculating response times $R_{ij}, i = 1, 2, j = 1, 2, \dots, n$ that are exactly as a sequence of customers response times

for queueing network. Hence

$$\hat{r}_i = \frac{1}{n} \sum_{j=1}^n R_{ij}, \quad i = 1, 2$$
(4)

the arithmetic mean of these response times is a natural estimator of the mean response times r_i , i = 1, 2 for queueing network. According to the Strong Law of Large Numbers [23], we know that \hat{r}_i , i = 1, 2 is strongly consistent estimator of r_i , i = 1, 2. The true distributions of $(X_i, Y_i, i = 1, 2)$ are not often known in practice so the exact distributions of \hat{r}_i , i = 1, 2 cannot be derived. But under the assumption that X_i and Y_i being independent, the asymptotical distributions of \hat{r}_i , i = 1, 2 can be developed. By Slutskys theorem [16], we have

$$\sqrt{n}(\hat{r}_i - r_i) \xrightarrow{D} N(0, \sigma_i^2), i = 1, 2$$

where $\hat{\sigma}_i^2 = \frac{1}{n} \sum_{j=1}^n (R_{ij} - \hat{r}_i)^2$, i = 1, 2 is the variance of $R_{ij}, i = 1, 2, j = 1, 2, \cdots, n$ and $\stackrel{D}{\rightarrow}$ denotes convergence in distribution. Then $\hat{\sigma}_i^2$, i = 1, 2 is a strongly consistent estimator of σ_i^2 i = 1, 2. Again applying the Slutskys theorem we have,

$$\frac{\sqrt{n}(\hat{r}_i - r_i)}{\hat{\sigma}_i} \xrightarrow{D} N(0, 1), \ i = 1, 2.$$

Thus $\hat{r}_i, i = 1, 2$ is a strongly consistent and asymptotically normal (CAN) estimator with approximate variances $\frac{\hat{\sigma}_i^2}{n}$, i = 1, 2.

3. Consistent and Asymptotical Normal (CAN) and Normal Confidence Intervals(Normal) for mean response times

Using CAN estimators \hat{r}_i , i = 1, 2 and its associated approximate variances $\hat{\sigma}_i^2/n$, i = 1, 2, we construct confidence intervals for mean response times r_i , i = 1, 2 of a distribution-free two-stage open queueing network. Let z_{α} be the upper α^{th} quantile of the standard normal distribution. Then approximate $100(1 - \alpha)\%$ CAN confidence intervals for mean response times r_i , i = 1, 2 are

$$\left(\hat{r}_i \pm z_{\alpha/2}\hat{\sigma}_i/\sqrt{n}\right), \quad i = 1, 2.$$
(5)

Also for sufficiently large value of n the CAN confidence intervals approaches to normal confidence intervals.

4. Exact Confidence Intervals for mean response times based on Student-t distribution(Exact-t)

As sample size is small, using the student t-distribution we construct confidence intervals for mean response times r_i , i = 1, 2 of a two-stage open queueing network. Let t_{α} be the upper α^{th} quantile of the student t-distribution. Then approximate $100(1 - \alpha)\%$ confidence intervals for mean response times r_i , i = 1, 2 are

$$\left(\hat{r}_i \pm t_{(n-1),a/2} \frac{\hat{\sigma}_i}{\sqrt{n}}\right), \ i = 1, 2.$$
 (6)

5. Standard Bootstrap (SB)Confidence Intervals for mean response times

According to the bootstrap procedure, a simple random sample $(X_{ij}^*, Y_{ij}^*, i = 1, 2, j = 1, 2, \dots, n)$ called a bootstrap sample can be taken from the empirical distribution function of $(X_{ij}, Y_{ij}, i = 1, 2; j = 1, 2, \dots, n)$. Using (3) we can obtain $r_{ij}, i = 1, 2, j = 1, 2, \dots, n$ as a sequence of customer' response time. Similarly we can obtain $r_{ij}, i = 1, 2, j = 1, 2, \dots, n$. It follows that $\hat{r}_i = \frac{1}{n} \sum_{j=1}^n r_{ij}, i = 1, 2$ is natural estimate of the mean response

time r_i , i = 1, 2 for a queuing network. And $\hat{r}_i^* = \frac{1}{n} \sum_{j=1}^n r_{ij}^*$, i = 1, 2 is called bootstrap estimate of \hat{r}_i , i = 1, 2. The above re-sampling process can be repeated N times. The N bootstrap estimates $\hat{r}_{i1}^*, \hat{r}_{i2}^*, \dots, \hat{r}_{iN}^*, i = 1, 2$ can be computed from the bootstrap resample. Averaging the N bootstrap estimates we get

$$\hat{r}_N(i) = \frac{1}{N} \sum_{j=1}^N \hat{r}_{ij}^*, \ i = 1, 2$$

is the bootstrap estimate of r_i , i = 1, 2 and standard deviation of \hat{r}_i , i = 1, 2, can be estimated by

$$sd(\hat{r}_N(i)) = \left[\frac{1}{N-1}\sum_{j=1}^N \left[r_{ij}^* - \hat{r}_N(i)\right]^2\right]^{\frac{1}{2}}, \ i = 1, 2$$

By central limit theorem, the distribution of \hat{r}_i , i = 1, 2 is approximately normal. Therefore $100(1 - \alpha)\%$ SB confidence intervals for mean response times r_i , i = 1, 2 are

$$(\hat{r}_i \pm z_{\alpha/2} sd(\hat{r}_N(i))), \quad i = 1, 2.$$
 (7)

6. Bootstrap-t Confidence Intervals for mean response times (Boot-t)

Consider N bootstrap estimates $\hat{r}_{i1}^*, \hat{r}_{i2}^*, \dots, \hat{r}_{iN}^*, i = 1, 2$ computed from the bootstrap resample. We obtain $Z_{ij}^* = \frac{(\hat{r}_{ij}^* - \hat{r}_N(i))}{sd(\hat{r}_N(i))}$ $i = 1, 2, j = 1, 2, \dots, N$ and sample $Z_{i1}^*, Z_{i2}^*, \dots, Z_{iN}^*, i = 1, 2$ considered as an approximate t distribution. Thus we have $100(1 - \alpha)\%$ Bootstrap-t confidence intervals for mean response times $r_i, i = 1, 2$ are

$$(\hat{r}_i \pm \hat{t}_{a/2} sd(\hat{r}_N(i))), \ i = 1, 2.$$
 (8)

where $\hat{t}_{a/2}$ equals the $\alpha/2$ percentile of the random sample $Z_{i1}^*, Z_{i2}^*, \cdots, Z_{iN}^*, i = 1, 2$.

7. Variance-stabilized Bootstrap-t (VST) Confidence Intervals for mean response times

Let \hat{r}_i , i = 1, 2 is a strongly consistent and asymptotically normal estimator with approximate variances $\hat{\sigma}_i^2/n$, i = 1, 2 and consider $\hat{\sigma}_i = \phi(\hat{r}_i)$. Now to find a transformation $f(\hat{r}_i)$ such that $Var(f(\hat{r}_i)) \approx \text{constant,by the first order Taylor series expansion:}$

$$f(\hat{r}_i) \approx f(r_i) + (\hat{r}_i - r_i)f'(r_i) \Rightarrow [f(\hat{r}_i) - f(r_i)]^2 \approx (\hat{r}_i - r_i)^2 (f'(r_i))^2, \ i = 1, 2.$$

Taking expectations on both sides, we get:

$$Var[f(\hat{r}_i)] \approx Var(\hat{r}_i)(f'(r_i))^2 = (\phi(r_i))^2(f'(r_i))^2, \ i = 1, 2.$$

Now consider $f(\hat{r}_i) = \sqrt{n} \log(\phi(\hat{r}_i)), i = 1, 2$ is the variance-stabilizing transformation. Then we have,

$$V[f(\hat{r}_i)] \approx \left(\frac{\sqrt{n}}{\phi(\hat{r}_i)}\right)^2 Var[\hat{r}_i] = \left(\frac{\sqrt{n}}{\hat{\sigma}_i}\right)^2 Var[\hat{r}_i] = \frac{n}{\hat{\sigma}_i^2} \frac{\hat{\sigma}_i^2}{n} = 1, i = 1, 2.$$

Here we consider N bootstrap estimates $\hat{r}_{i1}^*, \hat{r}_{i2}^*, \cdots, \hat{r}_{iN}^*, i = 1, 2$ computed from the bootstrap resample. We obtain

$$\theta_{ij}^* = \sqrt{n} \log(\hat{r}_{ij}^*) - \sqrt{n} \log(\hat{r}_i), i = 1, 2, j = 1, 2, \cdots, N$$

Thus we have $100(1 - \alpha)\%$ VST confidence intervals for mean response times r_i , i = 1, 2 are

$$\left(e^{\log(\hat{r}_{i}) - \frac{1}{\sqrt{n}}\hat{v}_{i}t_{1-\alpha/2}}, \ e^{\log(\hat{r}_{i}) - \frac{1}{\sqrt{n}}\hat{v}_{i}t_{\alpha/2}}\right) \tag{9}$$

where $\hat{v}_i t_{\alpha/2}$ and $\hat{v}_i t_{1-\alpha/2}$ are $(\alpha/2)^{th}$ and $(1-\alpha/2)^{th}$ percentile of the random sample $\theta_{i1}^*, \theta_{i2}^*, \cdots, \theta_{iN}^*, i = 1, 2.$

Stat., Optim. Inf. Comput. Vol. 3, September 2015

8. Percentile Bootstrap (PB) Confidence Intervals for mean response times

Now call $\hat{r}_{i1}^*, \hat{r}_{i2}^*, \dots, \hat{r}_{iN}^*, i = 1, 2$ the bootstrap distribution of $\hat{r}_i, i = 1, 2$. Let $\hat{r}_i^*(1), \hat{r}_i^*(2), \dots, \hat{r}_i^*(N), i = 1, 2$ be the order statistics of $\hat{r}_{i1}^*, \hat{r}_{i2}^*, \dots, \hat{r}_{iN}^*, i = 1, 2$. Then utilizing the $100(\alpha/2)^{th}$ and $100(1 - \alpha/2)^{th}$ percentage points of the bootstrap distribution, $100(1 - \alpha)\%$ PB confidence intervals for mean response times $r_i, i = 1, 2$ are

$$\left(\hat{r}_{i}^{*}\left(\left[N\left(\frac{\alpha}{2}\right)\right]\right), \quad \hat{r}_{i}^{*}\left(\left[N\left(1-\frac{\alpha}{2}\right)\right]\right)\right), \quad i=1,2.$$

$$(10)$$

where [x] denotes the greatest integer less than or equal to x.

9. Bias-corrected and accelerated bootstrap(BCaB) Confidence Intervals for mean response times

The bootstrap distribution $\hat{r}_{i1}^*, \hat{r}_{i2}^*, \dots, \hat{r}_{iN}^*, i = 1, 2$ may be biased, consequently the PB confidence intervals of mean response times is designed to correct this potential bias of the bootstrap designed. Set $p_i = \frac{1}{N} \sum_{j=1}^{N} I(\hat{r}_{ij}^* < \hat{r}_i)$, i = 1, 2 where I(.) is the indicator function. Define $\hat{z}_i = \phi^{-1}(p_i), i = 1, 2$ where ϕ^{-1} denotes the inverse function of the standard normal distribution ϕ . Except for correcting the potential bias of the bootstrap distribution, we can accelerate convergence of bootstrap distribution. Let $(\tilde{X}_i(k), \tilde{Y}_i(k), i = 1, 2, k = 1, 2 \dots, n)$ denote the original samples with the k^{th} observation $(X_{ik}, Y_{ik}, i = 1, 2)$ deleted, also $\hat{r}_{ik}, i = 1, 2$ be the estimator of $r_i, i = 1, 2$ calculated by using $(\tilde{X}_i(k), \tilde{Y}_i(k), i = 1, 2)$.

Define

$$\widetilde{r}_i = \frac{1}{n} \sum_{k=1}^n \hat{r}_{ik}, i = 1, 2$$

and

$$\hat{a}_{i} = \frac{\sum_{k=1}^{n} (\tilde{r}_{i} - \hat{r}_{ik})^{3}}{6\left(\sum_{k=1}^{n} (\tilde{r}_{i} - \hat{r}_{ik})^{2}\right)^{\frac{3}{2}}}, i = 1, 2$$

where \hat{z}_i and $\hat{a}_i, i = 1, 2$ are named bias-correction and acceleration respectively. Thus $100(1 - \alpha)\%$ BCaB confidence intervals for mean response times $r_i, i = 1, 2$ are

$$(\hat{r}_{i}^{*}([N\alpha_{i1}]), \ \hat{r}_{i}^{*}([N\alpha_{i2}])), \ i = 1, 2.$$

$$(11)$$
where $a_{i1} = \phi \left[\hat{z}_{i} + \frac{\hat{z}_{i} - z_{\alpha/2}}{1 - \hat{a}_{i}(\hat{z}_{i} - z_{\alpha/2})} \right]$ and $a_{i2} = \phi \left[\hat{z}_{i} + \frac{\hat{z}_{i} + z_{\alpha/2}}{1 - \hat{a}_{i}(\hat{z}_{i} + z_{\alpha/2})} \right], i = 1, 2$

10. Simulation Study

A numerical simulation study was undertaken to evaluate performance of the various interval estimation approaches mentioned above for a two-stage open queueing network. It is observed that most statisticians assess performances of interval estimations in terms of coverage percentages or average lengths of confidence intervals. However, through simulation study in the research work, we find that larger coverage percentages of confidence intervals may often be due to wider standard deviation of interval estimation methods. Moreover, narrower confidence intervals may often lead to smaller coverage percentages. Hence, both coverage percentage and average length are not efficient for appraising interval estimation methods. In order to overcome above two shortcomings, we consider two measures namely relative coverage and relative average length to evaluate performances of interval estimation methods.

Models	Distribution of X_i , $i = 1, 2$	Distribution of Y_i , $i = 1, 2$
simulated	$x_1 \ge 0, x_2 \ge 0$	$y_1 \ge 0, y_2 \ge 0$
$E_4/H_4^{Pe}/1$ to	$f(x_1) = \frac{128}{3} x_1^3 e^{-4x_1}$	$f(y_1) = 0.1e^{-y_1} + 0.4e^{-2y_1} + 0.8e^{-8y_1/3} + 3.2e^{-8y_1}$
$H_4^{Pe}/E_4/1$	$f(x_2) = 0.1e^{-x_2} + 0.4e^{-2x_2} + 0.8e^{-8x_2/3} + 3.2e^{-8x_2}$	$f(y_2) = \frac{1}{1536} y_2^3 e^{-y_2/4}$
$E_4/H_4^{Po}/1$ to	$f(x_1) = \frac{128}{3} x_1^3 e^{-4x_1}$	$f(y_1) = 2e^{-2y_1} + 4e^{-4y_1} + \frac{16}{3}e^{-16y_1/3} + 16e^{-16y_1}$
$H_{4}^{Po}/E_{4}/1$	$f(x_2) = 2e^{-2x_2} + 4e^{-4x_2} + \frac{16}{3}e^{-16x_2/3} + 16e^{-16x_2}$	$f(y_2) = \frac{1}{96} y_2^3 e^{-y_2/2}$
$H_4^{Pe}/H_4^{Po}/1$ to	$f(x_1) = \frac{3}{8}e^{-x_1} + \frac{1}{4}e^{-2x_1} + \frac{3}{2}e^{-8x_1/3} + 2e^{-8x_1}$	$f(y_1) = 4e^{-4y_1} + 8e^{-8y_1} + \frac{32}{2}e^{-32y_1/3} + 32e^{-32y_1}$
$H_4^{Po}/H_4^{Pe}/1$	$f(x_2) = 4e^{-4x_2} + 8e^{-8x_2} + \frac{32}{3}e^{-32x_2/3} + 32e^{-32x_2}$	$f(y_2) = \frac{1}{4}e^{-y_2} + \frac{1}{2}e^{-2y_2} + \frac{3}{2}e^{-8y_2/3} + 2e^{-8y_2}$

Table 1. Different queueing network models simulated for study.

Table 2. Simulation analysis for consistency of $\hat{r}_i, i = 1, 2$ based on large sample size.

Models simulated	The true value of $r_i, i = 1, 2$	The mean of 1000 simulated $\hat{r}_i, i = 1, 2$			
		n = 100	n = 150	n = 200	
$E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$	$r_1=0.3627\&$	\hat{r}_1 =0.36276&	\hat{r}_1 =0.36285&	\hat{r}_1 =0.36257&	
	$r_2=0.3525$	$\hat{r}_2 = 0.35212$	$\hat{r}_2 = 0.35364$	$\hat{r}_2 = 0.35432$	
$E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$	$r_1=1.0206\&$	\hat{r}_1 =1.02429&	\hat{r}_1 =1.02122&	\hat{r}_1 =1.02481&	
	$r_2=0.5869$	$\hat{r}_2 = 0.58495$	$\hat{r}_2 = 0.58556$	$\hat{r}_2 = 0.58601$	
$H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$	$r_1=1.3329\&$	\hat{r}_1 =1.31528&	\hat{r}_1 =1.32267&	\hat{r}_1 =1.32720&	
	$r_2=0.3886$	$\hat{r}_2 = 0.38800$	$\hat{r}_2 = 0.38918$	$\hat{r}_2 = 0.38855$	

Table 3. Simulation analysis for consistency of $\hat{r}_i, i = 1, 2$ based on small sample size.

Models simulated	The true value of $r_i, i = 1, 2$	The mean of 10	00 simulated $\hat{r}_i, i = 1, 2$
		n = 15	n = 25
$E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$	r ₁ =0.3627&	$\hat{r}_1=0.36384\&$	$\hat{r}_1=0.36212\&$
	$r_2=0.3525$	$\hat{r}_2 = 0.33187$	$\hat{r}_2 = 0.33867$
$E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$	$r_1=1.0206\&$	\hat{r}_1 =1.02218&	\hat{r}_1 =1.02221&
	$r_2=0.5869$	$\hat{r}_2 = 0.58453$	$\hat{r}_2 = 0.58325$
$H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$	r ₁ =1.3329&	\hat{r}_1 =1.29045&	\hat{r}_1 =1.28124&
	$r_2=0.3886$	$\hat{r}_2 = 0.38586$	$\hat{r}_2 = 0.38578$

Table 4. Simulation results of queueing network model $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ based on large sample size.

Estimation	Cover	age Perce	ntages	Ave	rage Len	gths	Rela	ative Cove	rage	Relativ	Relative Average Length		
	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	
Approches	100	150	200	100	150	200	100	150	200	100	150	200	
Normal1	0.891	0.882	0.886	0.062	0.050	0.044	14.476	17.551	20.358	0.170	0.139	0.120	
Normal2	0.478	0.466	0.468	0.067	0.056	0.049	7.135	8.310	9.492	0.189	0.160	0.139	
SB1	0.888	0.881	0.887	0.062	0.050	0.044	14.448	17.531	20.392	0.169	0.139	0.120	
SB2	0.892	0.894	0.893	0.206	0.165	0.143	4.334	5.406	6.239	0.582	0.471	0.402	
PB1	0.890	0.881	0.886	0.061	0.050	0.043	14.532	17.602	20.444	0.169	0.138	0.120	
PB2	0.925	0.940	0.951	0.188	0.155	0.135	4.913	6.078	7.029	0.532	0.440	0.380	
BCaB1	0.885	0.878	0.884	0.061	0.050	0.043	14.480	17.574	20.422	0.169	0.138	0.119	
BCaB2	0.780	0.763	0.766	0.205	0.165	0.142	3.800	4.620	5.414	0.580	0.470	0.397	
Boot-t1	0.890	0.884	0.888	0.061	0.050	0.044	14.493	17.610	20.431	0.169	0.138	0.120	
Boot-t2	0.843	0.860	0.853	0.189	0.155	0.136	4.470	5.551	6.294	0.533	0.441	0.381	
VST1	0.893	0.887	0.885	0.062	0.050	0.044	14.478	17.623	20.319	0.170	0.139	0.120	
VST2	0.744	0.718	0.735	0.176	0.148	0.131	4.236	4.864	5.631	0.496	0.420	0.367	

Estimation	Cover	age Perce	entages	Ave	Average Lengths			Relative Coverage			Relative Average Length		
	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	
Approches	100	150	200	100	150	200	100	150	200	100	150	200	
Normal1	0.852	0.862	0.875	0.200	0.163	0.142	4.261	5.284	6.167	0.195	0.160	0.139	
Normal2	0.680	0.709	0.691	0.104	0.086	0.075	6.535	8.225	9.280	0.178	0.147	0.127	
SB1	0.883	0.886	0.912	0.218	0.179	0.156	4.054	4.958	5.858	0.213	0.175	0.152	
SB2	0.882	0.913	0.886	0.177	0.146	0.125	4.997	6.249	7.071	0.302	0.249	0.213	
PB1	0.888	0.897	0.915	0.217	0.178	0.155	4.097	5.043	5.904	0.212	0.174	0.151	
PB2	0.908	0.935	0.928	0.172	0.143	0.123	5.292	6.547	7.538	0.293	0.244	0.210	
BCaB1	0.856	0.873	0.880	0.215	0.177	0.154	3.991	4.940	5.710	0.209	0.173	0.150	
BCaB2	0.785	0.802	0.777	0.174	0.146	0.125	4.506	5.495	6.239	0.298	0.249	0.212	
Boot-t1	0.881	0.888	0.911	0.217	0.178	0.155	4.055	4.979	5.862	0.212	0.175	0.152	
Boot-t2	0.869	0.902	0.886	0.172	0.143	0.123	5.055	6.303	7.181	0.294	0.244	0.210	
VST1	0.861	0.865	0.884	0.218	0.179	0.156	3.944	4.841	5.681	0.213	0.175	0.152	
VST2	0.788	0.816	0.797	0.170	0.141	0.122	4.649	5.789	6.536	0.290	0.240	0.208	

Table 5. Simulation results of queueing network model $E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ based on large sample size.

Table 6. Simulation results of queueing network model $H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ based on large sample size.

Estimation	Cover	age Perce	entages	Ave	rage Len	gths	Rela	ative Cove	rage	Relative Average Length		
	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =	n =
Approches	100	150	200	100	150	200	100	150	200	100	150	200
Normal1	0.601	0.622	0.604	0.282	0.234	0.204	2.134	2.657	2.957	0.213	0.177	0.154
Normal2	0.782	0.806	0.781	0.068	0.056	0.049	11.495	14.366	16.069	0.175	0.144	0.125
SB1	0.895	0.892	0.899	0.585	0.484	0.416	1.531	1.844	2.161	0.442	0.366	0.313
SB2	0.879	0.896	0.879	0.087	0.072	0.062	10.119	12.529	14.218	0.223	0.184	0.159
PB1	0.925	0.942	0.946	0.559	0.467	0.405	1.655	2.018	2.335	0.422	0.353	0.305
PB2	0.904	0.915	0.910	0.086	0.071	0.061	10.520	12.908	14.820	0.221	0.182	0.158
BCaB1	0.744	0.766	0.778	0.565	0.473	0.406	1.317	1.620	1.915	0.427	0.358	0.306
BCaB2	0.832	0.818	0.825	0.086	0.071	0.061	9.700	11.573	13.525	0.221	0.182	0.157
Boot-t1	0.860	0.875	0.879	0.560	0.468	0.406	1.536	1.871	2.166	0.423	0.354	0.305
Boot-t2	0.872	0.904	0.873	0.086	0.071	0.062	10.122	12.721	14.184	0.222	0.183	0.158
VST1	0.760	0.773	0.761	0.542	0.455	0.397	1.402	1.699	1.916	0.410	0.344	0.299
VST2	0.818	0.840	0.829	0.086	0.071	0.062	9.502	11.833	13.473	0.221	0.183	0.158

Table 7. Simulation results of queueing network model $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ based on small sample size.

Estimation	Coverage	Percentages	Average	Lengths	Relative	Coverage	Relative	Average Length
Approches	n = 15	n = 25	n = 15	n = 25	n = 15	n = 25	n = 15	n = 25
CAN1	0.853	0.886	0.155	0.122	5.506	7.284	0.427	0.336
CAN2	0.512	0.487	0.137	0.113	3.742	4.299	0.405	0.337
Exact-t1	0.867	0.891	0.160	0.124	5.406	7.174	0.442	0.343
Exact-t2	0.834	0.871	0.377	0.350	2.212	2.489	1.114	1.040
SB1	0.840	0.877	0.150	0.119	5.609	7.345	0.413	0.329
SB2	0.816	0.867	0.352	0.336	2.318	2.577	1.041	1.000
PB1	0.845	0.884	0.149	0.119	5.665	7.440	0.411	0.328
PB2	0.844	0.885	0.327	0.306	2.582	2.890	0.966	0.910
BCaB1	0.842	0.866	0.148	0.118	5.693	7.327	0.408	0.326
BCaB2	0.726	0.744	0.339	0.335	2.144	2.224	1.001	0.995
Boot-t1	0.842	0.875	0.150	0.119	5.631	7.345	0.413	0.329
Boot-t2	0.748	0.807	0.327	0.307	2.285	2.632	0.968	0.912
VST1	0.845	0.886	0.155	0.121	5.470	7.302	0.426	0.335
VST2	0.721	0.740	0.301	0.272	2.396	2.719	0.890	0.809

Estimation	Coverage	e Percentages	Average	Lengths	Relative	Coverage	Relative	Average Length
Approches	n = 15	n = 25	n = 15	n = 25	n = 15	n = 25	n = 15	n = 25
CAN1	0.846	0.842	0.496	0.389	1.704	2.166	0.485	0.380
CAN2	0.732	0.668	0.251	0.198	2.922	3.382	0.433	0.337
Exact-t1	0.874	0.883	0.564	0.435	1.550	2.028	0.551	0.426
Exact-t2	0.892	0.873	0.468	0.363	1.907	2.407	0.808	0.619
SB1	0.861	0.869	0.527	0.419	1.635	2.076	0.514	0.409
SB2	0.875	0.859	0.437	0.349	2.003	2.464	0.754	0.596
PB1	0.858	0.875	0.520	0.415	1.652	2.111	0.507	0.405
PB2	0.891	0.878	0.405	0.326	2.198	2.694	0.700	0.557
BCaB1	0.828	0.826	0.507	0.405	1.634	2.037	0.495	0.396
BCaB2	0.800	0.790	0.424	0.341	1.888	2.317	0.732	0.582
Boot-t1	0.852	0.860	0.521	0.416	1.636	2.070	0.508	0.406
Boot-t2	0.854	0.828	0.406	0.327	2.103	2.536	0.701	0.558
VST1	0.852	0.857	0.540	0.424	1.579	2.024	0.527	0.414
VST2	0.836	0.784	0.392	0.315	2.134	2.488	0.677	0.538

Table 8. Simulation results of queueing network model $E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ based on small sample size.

Table 9. Simulation results of queueing network model $H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ based on small sample size.

Estimation	Coverage	e Percentages	Average	Lengths	Relative	Coverage	Relative	Average Length
Approches	n = 15	n = 25	n = 15	n = 25	n = 15	n = 25	n = 15	n = 25
CAN1	0.591	0.617	0.624	0.503	0.947	1.226	0.483	0.387
CAN2	0.795	0.788	0.166	0.132	4.782	5.992	0.427	0.338
Exact-t1	0.860	0.855	1.391	1.131	0.618	0.756	1.077	0.870
Exact-t2	0.873	0.880	0.225	0.177	3.874	4.968	0.579	0.456
SB1	0.844	0.847	1.299	1.087	0.650	0.779	1.006	0.836
SB2	0.857	0.867	0.210	0.170	4.072	5.091	0.541	0.438
PB1	0.864	0.876	1.195	0.996	0.723	0.880	0.925	0.766
PB2	0.860	0.876	0.203	0.165	4.238	5.305	0.522	0.425
BCaB1	0.729	0.768	1.126	0.967	0.648	0.794	0.872	0.744
BCaB2	0.806	0.810	0.207	0.167	3.898	4.840	0.531	0.431
Boot-t1	0.797	0.804	1.197	0.998	0.666	0.806	0.927	0.767
Boot-t2	0.852	0.853	0.203	0.166	4.189	5.154	0.523	0.426
VST1	0.763	0.766	1.154	0.944	0.661	0.811	0.893	0.726
VST2	0.841	0.834	0.204	0.165	4.117	5.043	0.525	0.426

Note that, boldface denotes the greatest relative coverage and shortest relative average length among all estimation approaches.

Table 10. Performances of the estimation approaches to response time under various queueing networks based on large sample size.

Queueing Network	Estima	ation approace	ch with	Estimation approach with			
simulated	Greater	st Relative co	overage	Shortest Relative Average Length			
	n = 100	n = 150	n = 200	n = 100	n = 150	n = 200	
$E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$	PB1	VST1	PB1	BCaB1	BCaB1	BCaB1	
	Normal2	Normal2	Normal2	Normal2	Normal2	Normal2	
$E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$	Normal1	Normal1	Normal1	Normal1	Normal1	Normal1	
	Normal2	Normal2	Normal2	Normal2	Normal2	Normal2	
$H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$	Normal1	Normal1	Normal1	Normal1	Normal1	Normal1	
	Normal2	Normal2	Normal2	Normal2	Normal2	Normal2	

Queueing Network	Estimati	on approach with	Estin	Estimation approach with		
simulated	Greatest	Relative coverage	Shortest Relative Average Length			
	n = 15	n = 25	n = 15	n = 25		
$E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$	BCaB1	PB1	BCaB1	BCaB1		
	CAN2	CAN2	CAN2	CAN2		
$E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$	CAN1	CAN1	CAN1	CAN1		
	CAN2	CAN2	CAN2	CAN2		
$H_{4}^{Pe}/H_{4}^{Po}/1$ to $H_{4}^{Po}/H_{4}^{Pe}/1$	CAN1 CAN1		CAN1	CAN1		
	CAN2	CAN2	CAN2	CAN2		

Table 11. Performances of the estimation approaches to response time under various queueing networks based on small sample size.

Relative coverage is defined as the ratio of coverage percentage to average length of confidence interval. Larger relative coverage implies the better performances of the corresponding confidence interval. Also another approach named Relative Average Length is defined as the ratio of average length to the true value of r_i , i = 1, 2. For a given confidence level, the shorter the interval is, the more informative it is. Hence shorter relative average length implies the better performances of the corresponding confidence interval.

The consistency of r_i , i = 1, 2 is examined by comparing true value of r_i , i = 1, 2 with the average simulated estimates of \hat{r}_i , i = 1, 2 whereas the different confidence intervals are assessed in terms of their coverage accuracy, relative coverage and relative average length. In order to achieve these goals, in simulation study we select various queueing network modes as shown in Table 1. With regard to queueing network models shown in Table 1 there is no theoretical formula for the true value of r_i , i = 1, 2. Using strong law of large numbers [23], we have estimated the true value of r_i , i = 1, 2 by the simulated sample values of \hat{r}_i , i = 1, 2 for sufficiently large sample size n.

Thus for queueing network model $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ in Table 2 and Table 3, the approximated value of r_i , i = 1, 2 is 0.3627 and 0.3525 respectively which is obtained from the simulated sample value of \hat{r}_i , i = 1, 2 with sample size $n \ge 10^6$. Similarly, the approximated mean response time $r_1=1.0206$, $r_2=0.5869$ for queueing network model $E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ is produced with $n \ge 10^6$. And for the model $H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/H_4^{Pe}/1$ the approximated value of r_i , i = 1, 2 is 1.3329 and 0.3886 respectively. We find that the approximated mean response time approaches to the true value of r_i , i = 1, 2 with four decimal places when $n \ge 10^6$. Also we get the same interpretation for small samples where the approximate values of r_i , i = 1, 2 are given in Table-3. Here E_4 represents a 4-stage Erlang distribution, H_4^{Pe} a 4-stage hyper-exponential distribution and H_4^{Po} a 4-stage hypo-exponential distribution.

Thus for each specified queueing network in Table 1, a random sample of sample size n (= 15, 25, 100, 150, 200) is drawn from the original samples. Further N = 1000 bootstrap resample's are drawn from the original samples. According to (5) to (11) we obtain CAN, Normal,Exact-t, SB, Boot-t, VST,PB and BCaB confidence intervals for mean response times with confidence level 90%. The above simulation process is replicated N = 1000 times and computed coverage percentages, average lengths, relative coverage and relative average lengths. We utilize a PC Dual Core and apply Matlab 7.0.1 to accomplish all simulations. The coverage percentages, average lengths, relative coverage's and relative average lengths of mean response time r_i , i = 1, 2 based on simulation study for queuing network models for different interval estimation approaches are shown in Tables 4 to 6 for large sample and Tables 7 to 9 for small sample.

According to the simulation results based on small and large sample sizes we observe that, average lengths and relative average lengths are decreases but both coverage percentages and relative coverage are increases with sample size n. The PB method has the largest coverage percentage among almost all confidence intervals. The coverage percentage can approaches to 90% when n increases. All methods have decreasing relative average lengths with sample size n but the normal estimation method has the shortest relative average length. Normal method has greatest relative coverage among all estimation methods and has shortest relative average lengths among all estimation methods.

Finally among all estimation methods, normal confidence intervals method is the best for mean response time of queueing network for large sample and for small samples CAN method is the best among all confidence intervals.

11. Conclusions

This paper provides the interval estimation of mean response time r_i , i = 1, 2 for two-stage open queueing network. Using a recurrence relation we obtain a sequence of response time for the two-stage open queueing network. Different estimation approaches CAN, Normal, Exact-t, SB, Boot-t, VST, PB and BCaB are applied to produce confidence intervals for mean response times r_i , i = 1, 2. The relative coverage and relative average lengths are adopted to understand compare and assess performance of the resulted confidence intervals. The simulation results imply that the normal estimation method has the best performance for G/G/1 to G/G/1 queueing network among almost all estimation methods for large sample and for small sample the CAN method has the best among all estimation methods. The above mentioned approaches is easily applied to practical queueing network such as all types of open, closed, mixed queueing networks as well as cyclic, retrial queueing models.

REFERENCES

- 1. Burke P.J., Output of a Queueing System, Operations Research, Vol.4, pp.175-178, 1956.
- 2. Chu Y.K and Ke J.C., Interval Estimation of Mean Response Time for a G/M/1 Queueing System: Empirical Laplace Function Approach, Mathematical Methods in the Applied Sciences, Vol.30, pp. 707-715, 2006.
- 3. Chu Y.K. and Ke J.C., Confidence intervals of mean response time for an M/G/1 queueing system: Bootstrap simulation, Applied Mathematics and Computation, Vol.180, pp. 255-263, 2006.
- 4. Chu Y.K and Ke J.C., Mean response time for a G/G/1 queueing system: Simulated computation, Applied Mathematics and Computation, Vol.196, pp.772-779, 2007.
- 5. Disney R. L., Random flow in queueing networks: a review and a critique, Trans. A.I.E.E., Vol. 7, pp. 268-288, 1975.
- 6. Efron B., *Bootstrap methods; another look at the jackknife*, Annals of Statistics, Vol. 7, pp.1-26, 1979.
- 7. Efron B., The jackknife, the bootstrap, and other resampling plans, SIAM Monograph No. 38, 1982.
- 8. Efron B., Better bootstrap confidence intervals, Journal of the American Statistical Association, Vol. 82, pp.171-200, 1987.
- 9. Efron B. and Gong G., A leisurely look at the boot strap, the jackknife and cross validation, The American Statistician, Vol.37, pp. 36-48, 1983.
- 10. Efron B. and Tibshirani R.J., Bootstrap Method for standard errors, confidence intervals and other measures of statistical accuracy, Statistical Science, Vol. 1, pp. 54-77, 1986.
- 11. Efron B. and Tibshirani R.J., An Introduction to the bootstrap, Chapman and Hall, New York, 1993.
- 12. Gedam V.K. and Pathare S.B., *Calibrated Confidence Intervals for Intensities of a Two Stage Open Queueing Network*, Journal of Statistics Applications and Probability, Vol.3, No. 1, page 33-44, 2014.
- Gedam V.K. and Pathare S.B., Calibrated Confidence Intervals for Intensities of a Two Stage Open Queueing Network with Feedback, Journal of Statistics and Mathematics, Vol. 4, No. 1, pp. 151-161, 2013.
- 14. Gedam V.K. and Pathare S.B., Comparison of Different Confidence Intervals of Intensities for an Open Queueing Network with Feedback, American Journal of Operations Research, Vol. 3 No. 2, pp. 307-327, 2013.
- 15. Guntur B., Bootstrapping: how to make something from almost nothing and get statistically valid answers, Quality Progress Part-I, pp. 97-103, 1991.
- 16. Hogg R.V. and Craig A.T, Introduction to Mathematical Statistics, Prentice-Hall, Inc, 1995.
- 17. Jackson J. R., Networks of Waiting Lines, Operations Research, Vol. 5, pp. 518-521, 1957.
- 18. Ke J. C. and Chu Y. K., *Comparison on five estimation approaches of intensity for a queueing system with short run*, Computational Statistics, Vol. 24, No. 4, pp. 567-582, 2009.
- 19. Kleinrock L., Queueing Systems Vol. II, Computer Applications, John Wiley and Sons, New York, 1976.
- 20. Miller R.G., The Jackknife -a review, Biometrika, Vol. 61, pp.1-15, 1974.
- 21. Mooney C. Z. and Duval R.D., Bootstrapping: a nonparametric approach to Statistical inference, SAGE Newbury Park, 1993.
- 22. Pathare S.B. and Gedam V.K., Some Estimation Approaches of Intensities for a Two Stage Open Queueing Network, Statistics Optimization and Information Computing, Vol. 2, No.1. pp 33-46, 2014.
- 23. Rousses G.G., A course in mathematical statistics, 2nd edn, Academic Press, New York, 1997.
- 24. Rubin D.B., The Bayesian bootstrap, The Annals of Statistics, Vol.9, pp. 130-134, 1981.
- 25. Thiruvaiyaru D. and Basava I.V., *Maximum likelihood estimation for queueing networks*, Stochastic Processes and Statistical Inference (Eds., B.L.S. Prakasa Rao and B. R. Bhat), pp.132-149,1996. New Age International Publications, New Delhi.
- 26. Thiruvaiyaru D., Basava I.V. and Bhat U. N., *Estimation for a class of simple queueing network*, Queueing Systems, Vol.9, pp. 301-312, 1991.
- 27. Young G.A., Bootstrap: More than a stab in the dark?, Statistical Science, Vol. 9, pp. 382-415, 1994.