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The association of linear models with the analysis of complex sets 

of data dates back to Gauss (about 1800). But linear models assumed a 

major role in statistics only after Fisher's colleagues introduced them 

in explaining the analysis of variance. Since then it has become a 

common practice to describe experimental situations by associated linear 

models. The emergence of the concept of estimability and its associated 

pedagogical difficulties accompanied this practice. This paper reconsiders 

the definition of a linear model with special reference to its association 

with the experimental context. The parameters of the resulting linear 

model all are estimated simply and without definitional ambiguity. These 

ideas are illustrated by considering the analysis of unbalanced cross 

classifications, a situation in which the definitional ambiguities of the 

usual linear rrodels pose serious problems. Finally, the proposed model is 

compared to the usual less than full rank model. 
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. ESTIMATION ASSOCIATED WITH LINEAR MODELS: A REVISITATION 

by 

. t 
N. S. Urquhart, D. L. Weeks, and C. R. Henderson 

We feel that substantial confusion surrounds the topic of estimation associ-

ated with linear models. Many contemporary presentations or linear models foster 

this confusion in students and others through statements such as: "the sum of 

the effects is zero", "the sum of the eff'ects is assumed to be zero", "that f'unction 

is estimable", "this function is not estimable", "putting these restraints on the 

solution of' the normal equations 11
, "putting these restrictions on the parameters 

of' the mdel", etc. We believe that the resulting confusions can be eliminated 

if' we keep in mind a. f'ew basic fundamental assumptions about how a linear model 

relates to its associated experimental context. 

T.hus we brief'ly review here the historical development of' estimation associ-

ated with linear models and present an approach which eliminates much of' the 

confusion now associated with this topic. The 'revisitation' part of' the title 

of this paper ref'lects our view that the approach set out here ha.s implicitly 

existed f'or some time, but that its relevance ha.s not been appreciated. Our 

approach seems especially relevant in teaching about linear models and in think-

ing about their application to the 'messy data' problem. 

We will assume that an experimenter has sampled m dif'f'erent populations f'or 

the purpose of studying relationships among the means of' these populations. We 

acknowledge that some experiments cannot be properly treated f'rom this point of' 

t The authors are, respectively, Associate Professor of Biological Statistics 
Biometrics Unit, Cornell University; Professor of' statistics, Statistical Unit, 
Department of Mathematics and Statistics, Oklahoma State University; Professor 
of' Animal Breeding, Department of' Animal Science, Cornell University. Paper No. 

BU-195 in the Biometrics Unit mimeograph series, Cornell University, Ithaca, 
New York 14850. 
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view, but this approach permits one to gain insight into many of the problems 

with which linear models now are associated. These m means, ~ constitute a 

(vector-valued) parameter for the problem in the sense of Fraser [1957], namely, 

a function from the class of probability measures under consideration to m-dimensional 

Euclidean (parameter) space. 

The parameterization of a given problem is, unfortunately, not unique. 

Suppose~' an s-component vector (s > m), stands as a candidate to replace~· 

In the context of linear models this means that rr = A 9 • The fundamental point 
,r;:;; rvrv 

in the subsequent discussion is that a parameterization in terms of ,g will 

support the stated intent of examining relationships among population means. 

Parameterization in terms of 2 leads to confusion as to the meaning of its 

elements. Even worse, it leads experimenters to abdicate the responsibility 

which belongs uniquely to them, namely the association of specific functions of 

~with experimental interpretations. 

Our principal rr:otivation for formulating this a;pproach comes from the 

analysis and interpretation of large sets of unbalanced data with numerous 

missing cells. Our examples are similarly motivated, but necessarily smaller 

than most actual messy data problems. 

1. SOME RELEV .ANT HISTORY* 

Statisticians tend to associate the birth of Statistics with the names of 

Francis Galton, Karl Pearson or R. A. Fisher, i.e. sometime between 1880 and 

1920, depending upon their bias. These men certainly influenced Statistics 

greatly, but the estimation of parameters from data far predates this period. 

Astronomers and land surveyors wrote extensively upon this subject in the 1800's 

* The early part of this history rests heavily upon Eisenhart's [1964] and 
Merriman's [1877] interpretation of 18th and 19th century writings to which we 
did not have access. 



- 3 -

although it certainly concerned earlier scientists. For example, Eisenhart [1964] 

indicates that arithmetic means were in use by the late 1500's and that Cotes 

[1722] advocated the use of weighted arithmetic means. Simpson [1755] used proba

bility and a germ of the idea of sampling from a population to argue that the mean 

of several observations provided a better estimate of a parameter than a single 

similar observation. 

The co"ncept of 'least squares' emerged about 1800 in the course of continuing 

attempts to get 'best' values for parameters. Although Gauss used least squares 

from 1795 onward and contributed heavily to its development [1809 and 1821], 

Legendre [1805] preceded him in publication. Least squares attracted immediate 

and sustained interest, a fact attested to by the size of Merriman's [1877] bibli

ography of writings about least squares between 1805 and 1875 (354 titles). The 

writers view this interest in least squares as significant because the simple 

forms of least squares cannot exist without at least the implicit existence of 

a linear model; actually they appear frequently in these early writings. Thus 

linear models have existed since about 1800, but the lack of the currently 

fashionable concept of estimability caused no pain at all. The early researchers 

framed their problems in terms of functionally independent parameters and got at 

least as many observations as there were parameters to be estimated; neither 

practice appeared to concern them. Even the people who might have had difficulty 

with estimability and associated problems, the land surveyors whose triangles had 

to close, avoided it by imposing, on the parameters of their models, the restriction 

present in the real world problem. 

The interest in least squares has continued right up to the present, but 

for o~r purposes R. A. Fisher's introduction of the analysis of variance consti

tutes the next significant event. His writings reflect a maturing view of the 

analysis of variance between the time he coined this term and partitioned genetic 
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variation [1918] and his publication of' THE DESIGN OF EXPERIMEN"TS [1935]. 

Initially he a.ssociateJ it closely with intraclass correlation, perhaps because 

many of' his contemporaries were f'amiliar with correlation. His introduction to 

the analysis of' variance in STATISTICAL METHODS [1925] supports this view. 

Eventually his interest in factorial sets of' treatments led him to consider the 

analysis of' variance as the partitioning of' sums of' squares into additive com-

ponents each of' which relates to a specif'ic f'acet of an experiment, the view 

reflected when he introduced the analysis of' variance in THE DESIGN OF EXPERI-

MENTS by discussing a randomized blocks f'ield experiment. By current practices, 

however, one aspect of Fisher's treatment of the analysis of variance is sur-

prising. He did not use linear models to explain the analyses of variance of 

designed experiments even though his writings on regression and correlation 

(both simple and multiple) lean toward linear models. 

Fisher's colleagues at Rothamsted introduced the association of' linear models 

with the analyses of' variance of' designed experiments in the early 1930's during 

their attempts to codify Fisher's ideas and explain what the analysis of variance 

was doing. This progressed through several stages. Allan and Wishart [1930], 

writing on estimating the yield of' a missing plot, supplied the first stage by 

formalizing the additive contributions of several components to the true cell 

mean when they wrote, "Thus Y = b + t , where Y is the supposed true deviation 
p q 

from the mean yield of the plot having treatment q in block p." 

I~1in [1931] supplied the next step by iDtroducing the'error term'and being 

rather precise about the underlying population structure. For example, he con-

sidered sample values x f'rom a two-way structure of populations having means 
uv 

m and·wrote (p. 293) 
uv 
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where s has expectation zero and variance o2 • From this, he proceeded to 
uv 

evaluate the expected values of the analysis of varicnce sums of squares in terms 

of o2 and the m • Subsequently (p. 295) he did write 
uv 

but only in order to show that this sort of assumed structure eliminates the 

term E(m - m - m + m) 2 from the expected value of the residual sum of 
UV U• •V 

squares. He carefully avoided estimating t or b by instead estimating t + b • 
u v u v 

Yates [1933 and 1934] supplied the third major step in the early clarification 

of the structure of the analysis of variance. In both of these papers Yates con-

sidered nonorthogonal designs. In the first paper he introduced orthogonality 

and applied his ideas to the analysis of two moderately complex designed experi-

ments. The second paper treated the analysis of multiple classifications with 

unequal nu~ers directly. In both of these papers he relied upon linear additive 

models to associate observations with parameters, but he was careful to relate 

these parameters to the a:ssociated population structure. Thus the parameters of 

his linear models satisfied certain restrictions which he used, without any 

apparent reservations, to assure uniqueness of parameter estimates. The follow-

ing quote from his discussion of the no interaction case in the two-way cross 

classification appears to be typical: 

"It may happen, however, that the phenomena we are investigating 

are such that the A and B effects are additive, so that the hypothetical 

sub-class means are of ·the form 

~ + a + ~ ; r = l, 2, 
r s 

' p; s = l, 2, ... ' q; 

where ~may be called the hypothetical general mean and a's and ~'s the 

hypothetical deviations due to the treatments, these being subject to 

the relations 

+a = o 
p 

+ ~ = 0 
q 

II 
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B.y 1950 linear models had become so closely identified with the analysis of 

varia.nce of designed experiments and related problems that many discussions, both 
/ 

applied and theoretical, began with a linear model rather than with the associated 

experimental or sampling situation. The evolution to this point certainly was not 

uniform. For example, Rao [1945] credits Bose with discussing estimability in 

1943, a concept which is l.mnecessary in the framework of Yates' original linear 

models. Thus less completely specified linear models were being considered by 

this time. Likewise Tukey [1949] exhibited an interest in discarding the zero-sum 

conditions present in the Yates viewpoint and Cornfield and Tukey [1956] reiterated 

this position by saying 11 
••• and a desire to treat contributions [of components 

of linear models] more as things with independent existence rather than as 

differences betwe,en certain averages. 11 Yet as late as 1947, Eisenhart was still 

very careful to speak in essentially the same terms as Yates. Today, the situ-

ation is similar to what it was in the early 1950's even though there have been 

several efforts to be specific about what is meant by a linear model. 

We can summarize this history and our intent as follows: (l) Least squares-

type estimation has been around since about 1800; (2) Fisher introduced the 

analysis of variance and associated estimation about 1920; (3) linear models were 

introduced to explain what was going on in (2); (4) it has become common in many 

quarters to regard the linear model, rather than the experimental setting, as 

basic. We want to examine estimation in the simplest possible linear model, namely 

Y = E(Y) + [Y - E(Y)] = !J + E, which is scarcely a. linear model in the contemporary 

sense. This approach clarifies what common techniques are really estimating 

These without th~essity of introducing estimability or imposing restrictions. 

considerations seem especially relevant to the analysis of large sets of unbalanced 

data such as, for example, are encountered in the animal sciences and to the 

teaching of statistics at all levels. The authors and several colleagues have 
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used the approach set out here jn classes ranging from methodological courses to 

research topics seminars. This viewpoint has been well received by students 

familiar with as well as oblivious of the usual approach. 

2. GENERAL FORMULATION 

Here we formulate a rather general linear model. There does exist diversity 

of opinion as to what constitutes a linear model; witness, for example, the con

trast between Graybill [1961, chapter 5] and Scheffe [1959, sections 1.2, 7.2, 8.1] 

or between Eisenhart [1947] and Cornfield and Tukey [1956]. Still there seems to 

be general agreement that a linear :rr.odel consists of a model equation with allied 

assumptions. The model equation relates the observable random variables to under

lying parameters and random variables in a linear fashion. The assumptions must 

specify the nature of the random components and should sta.te whatever restrictions 

the parameters must satisfy. 

What model should we choose? It should be strong enough to support examin

ation of the parameters of interest, but weak enough to assure wide applicability. 

One thing seems obvious: The study~ experiment under consideration should 

motivate the model. A large class of studies exhibit a common characteristic, 

namely that they seek to compare several populations by comparing responses from 

samples from each of the populations. Minimally, it is reasonable to assume 

that each population has a mean; in a. wide variety of circumstances the comparison 

between populations is vested in comparisons among their means. It is this view

point, which is general enough to include multiple regression and the analysis of 

designed experiments, which motivates us to make the following set of assumptions: 

1. Interest centers on some response, denoted here by Y, in m different 

populations. The populations are indexed by the elements of the set 

S =[£}which have an ordering 21, £2' ···,2m chosen to meet the needs 

of the particular problem under consideration. 
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A random sample of size n2 is drawn from the population indexed by£; 

define n = E na 
a€8 "' 
"" 

3· Yak denotes the kth observable random variable from the population 

4. 

"" 
indexed by £, k = 1, 2, • · ·, na . The random sampling assures that 

"" 
Yal' ···, Yan all have the same probability distribution, and in 

"" "'<l 

particular that E(Yak) = 1-La for k 

"" "" 

1, 2, n 
Q 

I (: 

The errors €ak, are un-

"' 

observable random variables which obviously have an expectation of zero; 

their covariance structure will be discussed later. (The historical 

association of the word 'errors' with €ak is unfortunate because they 

rarely symbolize errors in the sense of mistakes; instead they usually 

symbolize the vagaries of random sampling.) 

If we now introduce the following matrices: 

M 
mXl 

(ii) € 
"' nXl 

= (€ -} where 
""2i 

n 
,j,9'1 

(iii) 

0 
"' 

X 
nXl 

= (Xa} 
,...,1 

where 
0 
"" and (iv) w 0 

= "' 

n X 1 
2t 

"" 

l 0 0 
"' t'V 

where ;t is an a X 1 vector of ones and Q is a vector of zeros, then the above 

assumptions enable us to decompose the observation vector as 

€ 0 

"' 

This will serve as the model equation for a simple linear model, but appropriate 
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assumptions about the.parameters £and the random variables E are needed before 

we have a linear model. 

Consider ~ first; either we assume nothing fUrther about it or we restrict 
.-v 

it in some manner. Restrictions occupy t1v0 very different roles in the context 

of linear models. In overly parameterized situations, restrictions serve to 

restrict the parameters to some subspace of the parameter space for the purpose 

of introducing an element of uniqueness. Such restrictions serve no function in 

the present context because the assumption of random sampling guarantees that 

each of the parameters of interest, the ~a , can always be consistently estimated 
,;:;1 

n 

{by [ ~y .] /n ). Further assumptions can lead to estimators with more 
j=l £tJ s. 

desirable properties, for example efficient or sufficient ones. But in any event 

reasonable estimates of the ~ exist without restrictions. 
£,1 

The other kind of restriction arises very naturally in certain experimental 

contexts where the problem dictates that certain relations should exist among the 

parameters, the ~ here. 
s 

For example in the analysis of cross-classified data, 

the knowledge that a certain interaction is zero forces cell means to satisfy 

specific relations. As a second example, multiple regression effectively requires 

that £ = !~ where EmXk. is of rank k :5: m; in turn this requires [£ - !,(!(!)-~'],!6 

=[I- X(X'xr~']X~= o. A regression setting may produce additional restrictions 
~~~,....,,......,~~~ 

of a different sort from these. Occasionally an experimental setting demands that 

a regression curve go through specified points other than the origin. Each of the 

restrictions discussed here and many more are covered by requiring .!6 to satisfy 

P 1n = c where P 1 is q X m of rank q and c is known. Thus we will assume for the 
,.._,;::;;j ~ ,..._, ~ 

remainder of this paper that these restrictions are part of the model. For those 

problems where this restriction is not desired, observe that it vanishes when q = 0. 

The known constants c frequently will be zero, but in order to preserve applicability -
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) 

to the kinds of problems mentioned above, we will assume merely that c is known. 
""' 

Now consider the random deviations denoted by €. From their definition it is ,...., 

natural to assume that each of them has expectation of zero or collectively that 

E(€) == 0. Further, we assume that V == E(€ € ') == Cov(€) is known up to a multipli-
"'-J ,....., 1""..1 ~~ ,..._, 

cative scalar. ~urther assumptions about the errors could be made but they are 

unnecessary for our purposes. Thus consider the linear model 

+ € 

"" 
(1) 

where 

Various choices of E',;::., J._produce linear models for the usual situations of 

multiple regression and designed experiments or cross-classified data, an illus-

tration of its generality. It may not be immediately apparent that it also covers 

situations commonly described as 'mixed' and 'random' as well as 'fixed'. The 

'mixed' and 'random' models differ from the conventional 'fixed' model (usually) 

only in the structure of the matrix V and in the dimension of the parameter space 

.. 

to which ~ is restricted. For example in the all-variance-component model, ~ lies ,...., ,...., 

in the one dimensional subspace spanned by f because£= !lt" (or (!,- ~,i~')J::, == Q) 

and the elements of V are linear functions of the variance components. In the 

usual 'mixed 1 model, with an appropriate ordering of the elements of 1j 1:, lies in 

a subspace of the parameter space of dimension equal to at most the number levels 

(or combination of levels) of the fixed factor and V displays a block diagonal form. ,...., 

For the usual 'fixed 1 model, V = o2I. ,.... .... 

Other assumptions about € are possible. For example normality assumptions ,...., 

about € would lead to the kind of model to which the usual maximum likelihood ,._ 

methods are applied. However, other assumptions made above, (1), suffice to allow 

least squares estimation, the method we intend to use for reasons explained in the 

next section. 
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The model, (1), possesses a reasonable degree of generality, but does it 

support an examinatioh of the experimentally relevant questions? The parameters 

~a have a clear relation to the experimental context and the corresponding sample 
~ 

means provide at least consistent estimates of each of them individually. Subse-
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quently we will examine their joint estimation subject to the model restrictions 

and again unique estin:q,tes will result. The capability of' estimating M assures 

the capability of' estimating ,:S 'M or ! 'M by the corresponding function of' the esti

mat,e of' M; of' course this produces estimates of' .:S'M or ;t:'M with as yet unspeci-

f'ied properties, but existence, not properties constitutes the essential issue 

f'or the final paragraph of' this section. 

An experimenter, who professes interest in how the means of' his populations 

relate to each other, should be able to associate experimental interpretations 

with functions ,t ',g. If' he cannot, no linear rrodel can help him interpret his 

experimental results because any estimable function, in the usual terminology of' 

linear mbdels, is merely estimating t'rr f'or some t. (This statement will be 
"' ;:::; "' 

verified in section 5.) It seems apparent that an experimenter should have a 

much easier time interpreting )2, 1.(6 when he picks )2, so that ,t',g has a. fairly obvious 

relation to his experimental concerns than when he abdicates responsibility f'or 

picking ,t to some arithmetic process which he does not understand. 

3. ESTIMATION 

We choose to estimate M by the method of' least squares. This is not a par-

ticularly restrictive approach because there are several viewpoints which lead to 

this method: (l) The minimization of' the sum of' squares of' deviations between 

observation and prediction has been regarded as intuitively appealing ever since 

Legendre [1805] introduced it. The geometric analogue of' this of'f'ers equal 

appeal. (2) Gauss [1809] arrived at least squares estimation by trying to get 

'maxinRliD. probability of' zero error of' estimation'. This corresponds closely to 

maxinRlnl likelihood estimation under normal-theory distribution of' errors. (3) 

Gauss [1821] again ended up with least squares estimation when he considered 

'least mean squared error of' estimation' which we now think of' as best (minimum 

variance) linear unbiased estimation (BLUE). (4) Several decision theoretic 
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approaches produce estimates which must satisfy the least squares criterion. 

The resulting lease squares estimates of M possess various properties, de-

pending upon the viewpoint taken. We will not dwell upon these properties beca.use 

instead we want to consider the relation of the parameterization and associated estimation 

to the experimental context. Since the prli1ciple of least squares generally 

produces consistent estimates which, in the present context, also possess the 

property of unbiasedness, it seems reasonable to regard them as estimates. The 

interested reader can pursue a consideration of properties elsewhere. 

Minimization of (;:L - }:!,}!;. ) 'v-1(;z - )iM) over possible values of M produces 

A ( 1 -] __ )_]__/ -1 
u = WVw wV v 
~ ""'~ r-.J f"'o.Jr.J 1f.J 

(2) 

as the generalized least squares estimate of' ~· 
A 

The subscript of' u on ~ here 

should convey the ~nrestricted estimate of' ~ in contrast to the restricted case 

when M must satisfy 'tM = £ : 

~ = <}:!.'x-7_o-1 f}:!,':(1;L- ~~'()i';(~)-~-lc~'(J!,';(~r~';( 1 il- ;2,JJ 

= ~ - (E'x-~r~c;e '(E'x-~r~ -1[£ 'Mu - £J . 

These estimates, in a sense, complete the task we set for ourselves, but 

(3) 

they shed very little light on what happens in the usual cases. Thus the remainder 

of this paper will be devoted to elucidation; the usual fixed model will serve to 

communicate our remaining ideas. Thus we will assume for the subsequent discussion 

that V = cr2I, the usual form for the fixed model. The simplicity of this assumption 
""' "' 

will not obscure the facts we wish to show. 

Linear independence of' the elements of ~produces from Eq. (2) the well 
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known result 

(4) 

Here, D is a diagonal matrix with diagonal elements n and v is the m X 1 vector 
~ £i ~ 

o~ observed me&~s ordered the same as the elements o~ M· If the elements o~ M 

satis~y E 1 ~ ~ ~instead of being linearly independent, then Eq. (3) produces 

(5) 

I I -1 
as the estimate of u where A ~ P D . 

N ~ ~~ 

Although an experimenter wants to estimate _g, he usually also wants to esti-

mate certain linear functions of the means. In either the restricted or unre-

stricted cases, the linear parametric function .:!2, 1M has an unbiased estimate since 

However, these two estimates may not have the same variance because 

Cov(~) 

which implies that 

Since the subtractive term cannot be negative, Var(.:!2, 1 ~) ::5: Var(~ 1 ~). 

It seems appropriate at this juncture to make several observations. The 

selection of %1_g as the set of linear functions o~ interest, where this set con

ta.ins fewer linearly independent functions (k) than m, does not automatically make 

A 

it a~propriate to use ~ by assuming that a further set of m - k linearly inde-

pendent functions E1_g is zero. The ~act that m - k more linearly independent 

functions of the elements o~ _g could have been chosen, but were not, does not 
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entitle one to say this is equivalent to letting them be zero. This should go 

A 

without saying, but one benefits if J6:r can be used, a benefit being that some 

A A 

elements of J6:r have less variance than the corresponding elements of Mu· This 

benefit derives from some additional knowledge about linear relationships between 

. the elements in ~· Ignoring things which could be estimated but are not, does 

not entitle one this benefit. This paragraph was motivated by a practice fre-

quently suggested for analyzing very messy cross classified data, namely, the 

practice of fitting a 'main effects only' model. 

An obvious fact which has a tendency to be forgotten in some situations, 

particularly in N-way cross classifications with many missing cells, is this: The 

vector of observed means provides an estimate (at least unbiased and consistent) 

of the vector of means of all populations from which at least one observation was 

taken. In turn, estimates of interesting linear functions of the population means 

result from the same linear functions of the corresponding sample means. (Of course, 

estimates with a smaller variance may be available if something is known about M' 

namely P't, =c.) 
,.._ IV ,.._ 

The selection of an experimentally interesting set·of linear functions of the 

vector of means poses a major problem to both the experimenter and the statistician. 

Left to his own devices the experimenter may say that he is interested in !'~· Which

ever of!'~ or!'~ is appropriate in a given situation, it provides an estimate of 

!'M without regard to the number of rows in!· With this approach, there is never 

any question as to the 'estimability' of certain lin.ea:r functions of the cell means. 

It is our opinion that the question of estimability of certain linear functions of 

parameters in linear models is a result of the st~tisticians failure to be precise 

in assisting experimenters to pick T's for their problems. ,.._ 

To bring this discussion back to 'home' base, the foregoing discussion and 

A A 

results point to the vector ~ as the thing to be estimated, either by Mu or ~· 

A /A /A 

Thereafter 9 = T u or T u provides the experimenter with estimates of the linear 
,...., f""J "'U r-.1 '""'T 

functions of the means v1hich interest him. 
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4. A NUMERICAL EXAMPLE 

We intend for the example of this section to illustrate the definitions, 

model and estimation of the preceding two sections; it also serves to motivate 

some further comments. 

Suppose that a 2 X 3 factorial set of treatments has been run as a completely 

randomized experiment with the statistical layout of the data as follows: 

Factor B 

Level l Level 2 Level 3 

Level l ylll = 6 yl2l = 5 yl3l = 12 

Factor A yll2 = 8 yl22 = 4 

yl23 = 3 

Level 2 y2ll = ll y22l = 5 y23l = 16 

y222 = 7 

The underlying sampling situation consists of m = 6 populations which are related 

by a 2 X 3 factorial structure. Also n = 10 and S = {(l,l), (1,2), (1,3), (2,1), 

(2,2), (2,3)}; this choice of the z's as two-component vectors was motivated by 

the experimental situation. The following is a convenient ordering of the a.'s: 
l'o'J_ 

£1 = (l,l), £2 = (1,2), £3 = (1,3), ~ = (2,1), ~ = (2,2), ~ = (2,3). If for 

brevity we denote by ~ll' etc., then 
I 

(1111' 1112' 1113' 1123)' 11a = ~(l,l) ~ = 1121' 1122' 
~ lX6 

1 1 0 0 0 0 0 0 0 0 

0 0 l l l 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 
w/ = 

' "" 0 0 0 0 0 0 l 0 0 0 

0 0 0 0 0 0 0 l l 0 

e 
0 0 0 0 0 0 0 0 0 l 



- 16 -

2 0 0 0 0 0 

0 3 0 0 0 0 

0 0 1 0 0 0 

w'w = D = 
0 0 0 1 0 0 "' "' 

·0 0 0 0 2 0 

0 0 0 0 0 1 J 

Suppose the researcher has indicated interest in 8 = T 1 ~ : 

"' "" 

81 1 1 1 1 1 1 1111 

82 -1 -1 -1 1 1 1 1112 

83 -1 1 0 -1 1 0 1113 

= 
84 -1 -1 2 -1 -1 2 1121 

85 1 -1 0 -1 1 0 1122 

e6 1 1 -2 -1 -1 2 
Jl23 

Then~= (J.:fli';t)' = i' = (7,4,12,11,6,16) and(~'~)'=£~= (56,10,-8,28,-2,2). 

If the experimenter somehow knows that ~~~ = 1111 - 1112 - 1121 + 1122 = O, 

then 

r ~ l r 
3 -3 0 -3 3 0 l r ~ l r 

52 l 
-2 2 0 2 -2 0 26 

,..., 
12 

3 
0 0 0 0 0 0 l2 

1 
b4 

A 

~= - 42 -6 6 6 -6 
=-

11 0 0 11 7 71 

6 3 -3 0 -3 3 0 6 45 

16 0 0 0 0 0 0 16 112 

and 

A 

(;g'~) I = (5~, 3 3 2 4 
e = 97' -77' 28¥, o, ~). 
""T 
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The covariance matrix of 9 
1"-\l. 

a2 

2:i: 

is 

a2 

21 

91 14 

14 91 

-14 -7 

35 -14 

-7 -14 

-14 35 

90 l2 

12' 87 

-12 -3 

36 -12 

0 0 

-12 39 

- 17 -

-14 35 -7 -14 

-7 -14 -14 35 

49 14 14 7 

14 217 7 14 

14 7 49 14 

7 14 14 2l7 

-12 36 0 -12 

-3 -12 0 39 

45 12 0 3 

12 216 0 l2 

0 0 0 0 

3 12 0 213 

In commenting upon this example, we should explain the rationale which led 

to the choice of T. We chose the conventional mean, main effects and interaction ,...., 

of the two main effects as a guide here, 91 being associated with the 'over-all 

mean', e2 with the 'main effect A', 93 and 94 with the 'main effect B', and 95 

and 96 with the 'interaction' of the main effects. The conventional nature of 

these contrasts relates closely to assuming 

Y . "k = 1.1 + a. + [3 • + ( Ct[3 ) • • + e . "k 
~J ~ J ~J ~J 

(6) 

and proceeding. While these contrasts seem logical in some contexts, other 

logical ones exist. For example, suppose the experimenter knew that the middle 

level of Factor B would change the response. The contrasts 
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llll 

1 0 0 -1 0 0 

0 1 0 0 -1 0 
lll2 

0 0 1 0 0 -1 lll3 

1 0 -1 1 0 -1 ll21 

1 -2 1 1 -2 1 
ll22 

ll23 

could be much more interesting in this case. If instead the six populations were 

strata of a larger population, the experimenter might_choose coefficients related 

to the sizes of the various strata. This illustrates our basic point: the experi-

mental setting should dictate the statistical analysis, not the opposite. The 

assumption of an overly specified linear model such as Eq. (6) obscures this basic 

point. 

Experimenters often know certain things about their experimental setting. 

We took 95 ~ 0 to illustrate the impact of this sort of knowledge. The incorpor

ation of 95 ~ 0 into the estimation of the other five linear functions of interest 

led to different estimates with smaller variances. The usual procedure of testing 

for no interaction involves (equivalently), testing both 95 and e6 simultaneously 

zero. li however, one decomposes the interaction into components and subsequently 

determines that a subset of these components of the interaction is zero, then one 

can derive the benef'tt of this inf'orma.tion. The usual formulation does not ex-

plicitly state how this may be done. 
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5. SOME COMPARISONS WITH THE CONVENTIONAL APPROACH 

The presentations of' Schef'f'e [1958] and Graybill [ 1961] exemplif'y what we 

call the conventional approach to linear models. Specif'ically they begin by 

assuming that the responses satisfy a model equation of' the f'orm ;r._ = £! + ~ where 

£nxs may have rank less than s, s ~ n. In this section we will contrast this 

f'ormulation to our approach set out in sections 2 and 3 by considering the senses 

in which the two approaches are equivalent and dif'f'erent. By doing so we hope to 

emphasize some assumptions on which the conventional approach rests; assumptions 

which are easily ignored or even f'orgotten although they may be of' major 

consequence. 

The major similarity in the two approaches lies in the random or error parts; 

the major dif'f'erence in the f'ixed or mean parts. For the conventional approach, 

the 5 in v = Q ''' + 5 satisf'ies at least E(o) == 0 and cov(o) == V, where V is known 
~ 1'(.J f'J~ rv roJ rv r>J r--r ,...., 

up to a scalar multiplier, but otherwise remains undef'ined except implicitly by 

£ = ;r_ - S,t. The ,.€ in ;r_ = }:!J6 + ~' though more clearly related to the sampling 

context, satisf'ies the same assumptions. While the € and the 5 dif'f'er in def'i-
"" "" 

nitional clarity, they occupy essentially the same roles in the two approaches. 

Consequently the f'ixed or nonrandom parts must produce the same expectation f'or 

;r_ because E(~) = Q = E(£) implies J!.M == E(;r_) == S,!. Past this the similarity 

ceases. 

Further comparisons between the conventional and proposed approaches require 

an examination of' }!, and 1· Since the restrictions ~ '.16 = £ on }!, somewhat cloud the 

comparison, we will f'irst consider an unrestricted }!,· Let us next restate the 

essential characteristic of' our f'ormulation as f'ollows: ~parameter space of' 

dimension~ (the number of' populations sampled in the study) suf'f'ices to describe 

the results of' the study. The parameter vector t of' the conventional formulation 
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lies in a s-dimensional parameter space. The equality ~}!;, = 2,! and the special 

structure of W produce two relevant relations. The flrst n rows of W are identi-
!b "' "' 

and so on. Pick one row from each of these sets of cal, so are the next n~, 

identical rov1s and let Sh denote the corresponding rows of 2,· Thus ,g = SJ., and in 

turn because ):!:, is unrestricted, 2,1 must be m X s of rank m and so s ~ m. 

Is it plausible to restrict i to some subspace of its s-dimensional parameter 

space? Recall that restrictions occupy two roles in the context of linear models: 

they may serve to introduce an element of uniqueness into an overly parameterized 

situation or they may be an attribute of the experimental context. For the present 

we have eliminated the second sort of restriction from consideration by assuming 

that .16 does not satisfy :E'.16 = £· AB far as the uniqueness is concerned, subsequent 

A 

considerations of i will be general enough to allow any possible solution for i . 

From these one could be picked satisfying a specified set of uniqueness criteria. 

Thus we will assume that i lies in an unrestricteQ s-dimensional parameter space. 

This in turn requires that 2, have the same rank as £1 , namely m. 

When s = m, .16 and i are equivalent parameterizations because there is a one-

to-one relationship between the points in the two parameter spaces. Hence, i 

occupies a role essentially the same as the X',g, the set of 'experimentally 

interesting functions' discussed earlier. However, the conventional model rarely 

has s = m in the present case, namely m populations with functionally unrelated 

means. 

If instead, s > m, the parameterizations are very different. The example of 

the previous section will serve to illustrate this. Recall that it had a two-way 

cross classification with two rows, three columns, and no empty cells. The basic 

parameter ):!:, 1 = (f.l11, [.112, [.113 , [.121, [.122 , [.12) lies in a six-dimensional parameter 

space which is clearly related to the experimental context. By contrast the 
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conventional approach resting upon the scalar model 

y .. k = Jl + a. + ~ . + ( o:(3) . . + E. .k, i = 1, 2, j = 1, 2, 3, k = 1, 2, 
~J ~ J ~J ~J 

is parameterized by the vector 

The elements of this parameter vector generally remain undefined; attempts to 

define them almost always revert to M! 

Certain computational relations exist in spite of the dissimilarity of the 

parameterizations. The least squares estimate for ~in this unrestricted case is 

" the Mu which minimizes 

, 

namely, 

(7) 

" A least squares estimate for t in this unrestricted case is any 1u which minimizes 

(;c - ~t ) I (;c - ~t ) 

" namely, all 1u which satisfy 

(8) 

If A- denotes a generalized inverse of A, namely any matrix which satisfies 
"' "' 

Af:-- !::_ = A' then Urquhart [1969] has shown that ,t = !::_-£ generates all possible 

solutions to the consistent equations Ai = £provided£ f Q· Applied to (8), this 

yields 

(9) 
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In order to compare Eq. (7) and Eq. (9), recall that ~ = ~J)t and JiM= ~1 or 

""' " ~1 = Ji£11 or equivalently that ~ = ):?;£1 . The equality~= ~J, suggests ~ = s_ 1 ~ 

..... ""' 
as a possible estimate of' £u• The equivalence of' £u and~ rests upon the identity 

~l (~'~f~ 1 = (Ji'Ji)-l which is valid f'or any choice of' a generalized inverse of' £',g. 

Tb show this, consider the def'inition of' (~'£)- as any matrix satisf'ying 

or equivalently 

Since both Ji 1 ~ and ~ 1 ~{ have inverses, premultiplication of' this expression by 

(Ji'Jif 1 (~~{f 1 Q 1 and postmultiplica.tion by ~{(~ 1 Q{)- 1 (y!,'!!,f 1 produces the identity. 

Thus in turn, 

(10) 

This result could have and should have been expected but was given to show 

A A 

how to obtain £u f'rom iu once the latter has been calculated. Since S 1£ is the 

coef'f'icient matrix of' the normal equations of' the conventional 'linear model' , if' 

""' . 
we obtain. ~ solution to these equations and f'orm £ 1 ~, this vector provides as an 

estimate of' the vector of' all means. When we have def'ined a vector of' interesting 
A 

linear f'unctions of the cell means, say ,!',g, one then merely f'orms ,!'(Siu_) to 

determine the vector of' estimates of' the f'unctions of' the parameters of' interest. 

The restricted case, when r_ '~ = £, presents one major difference f'rom the 

unrestricted case, namely the two approaches must be subject to equivalent re

strictions. The restrictions ~'M = £grow out of' the experimental context; they 

are unnecessary to produce uniqueness of' estimates. Consequently the experimental 

context should equivalently restrict 1 to satisf'y a set of' restrictions ~1= £· 

Again ~has a. direct estimate through Eq. (3) and an indirect estimate through 1· 
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The first gives 

(11) 

The class of least squares estimates of ~ obtained in the same manner as Eq. (3), 

is given by 

(12) 

A rv A 

The equivalence of J:6r and J:6r = Sllrir rests upon the equivalence of the re-

strictions £ 1M = £ and ;E 1 t = ~: Since M = ;lJ_, the restrictions on M become, in 

the t parameter space, £=£ 1M= £.'Sll)t· Thus equivalence of the two sets of re

strictions requires that (,t: ;E',t = £) = [,t: £, 1;l})t = £). Since ;E 1 , £_', and,%_ ali 

have full rank, the coefficient matrices and the constant vectors can differ by 

at m::>st a nonsingular pre~ltiplier, i.e. R 1 = M P 1 Q,, and b = M c where M-l exists. 
~ roJr.J ~..L. I"'J ,.....,,...., ,....., 

The utilization of these two relations with o,,(Q 1Q)-Q,;,:, (W 1W)-l in~ = Q ili 
.::!1..1.. rv rv rv.l.. rv rv "''' "'1~ 

A rv 

shows that ~ = ~ as with the unrestricted case. 

The correspondence between restrictions in the two approaches has one 

additional aspect which warrants consideration. We have implicitly assumed that 

the parameterization in terms of i was complete enough to support comparisons 

with ,!6· There exist experimental situations where this assumption might not appear 

true. The analysis of large cross-classified sets of data with many empty cells 

often proceeds under the assumption that many or ~ven all interactions do not 

exist. This still fits into the preceding framework; include all such interactions 

in i and include enough restrictions in ;E ',t = :e_ to make them equal zero. Since 
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~ = £-J, = (£11, £,12 ) ( ~) = Sn_tl where ~ = Q. by restrictions or omission {the 
r-' 

partitions are conformable), the restriction~= Q. will usually restrict~ to 

some subspace of its m-dimensional parameter space, or equivalently P 1u =c. 
,....,f;:, ,...., 

Regardless of how vle say it, the omission of a set of interaction terms from i 

forces ~ to satisfy restrictions, ones which might be quite objectionable to an 

experimenter if he knew they were present. 

Tb illustrate the foregoing, we give another example. Consider a 3 X 3 

structure of populations with one observation on eight of the populations and 

no observations on one population. (This choice of one observation per filled 

cell simplifies arithmetic, but essential features of the example do not depend 

upon it • ) Label the corresponding means as follows: 

Factor B 

l 2 3 

l [.lll [.112 [.113 

Factor A 2 [.121 [.122 [.123 

3 [.131 [.132 

First consider our model and suppose we assume f.l • • = a. + t3., that is, the 
l.J J. J 

cell mean in the ith row and jth column is expressible in this form. Writing f.lij 

in this form means, in the conventional sense, we assume 'no interaction', a 

point we will illustrate with the conventional model shortly. Consider the 

following three linearly independent (not necessarily orthogonal) restrictions on ~: 
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1-Lll 

(.ll2 

l -l 0 -1 1 0 0 0 
(.!13 0 

1 -l 0 0 0 0 -1 1 (.!2l = 0 

0 1 -1 0 -1 1 0 0 (.!22 o-

(.!23 

(.!31 

(.!32 

They force the 1-L· . to have the specified additive form. Thus 
~J 

7 3 2 3 -1 -2 2 -2 ylll 

3 7 2 -1 3 -2 -2 2 yl21 

2 2 8 -2 -2 4 0 0 yl31 

1 3 -l -2 7 3 2 2 -2 y211 " 
~ = 12 

-1 3 -2 3 7 2 -2 2 y221 

-2 -2 4 2 2 8 0 0 y231 

2 -2 0 2 -2 0 8 4 y3ll 

-2 2 0 -2 2 0 4 8 y321 

If the experimenter thought that 1-L·. =a. + ~- for all cells, including the un-
~J ~ J 

filled one, he might be motivated to define (.!33 as - (.!22 + (.!23 + (.!32 . Thus if 

~~ = (o, o, o, o, -1, 1, o, 1), £33 = ~~~ = (-3, -3, 6, -3, -3, 6, 6, 6)~. 
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If we now set up the normal equations for the conventional model equation, 

Yijk = ai + ~j + €ijk ' 

we get 

"' 3 0 0 1 1 1 al al = Y111 + Y121 + Y131 

"' 0 3 0 1 1 1 a2 a2 = Y211 + Y221 + Y231 
A 

0 0 2 1 1 0 a3 a3 = Y311 + Y321 
= 

A 

1 1 1 3 0 0 ~1 bl = ylll + y211 + y3ll 
A 

l 1 1 0 3 0 ~2 b2 = yl21 + y221 + y321 

"' 1 1 0 0 0 2 ~3 b3 = yl31 + y231 

A solution to this system of equations is 

"' 1 A A 

al 3 (al - ~1 - ~2) 

a 1 
gl - ~2) - (a -

2 3 2 

A 
1 ( ~1 - ~2) a3 - a 
2 3 

= 
A 1 

(llb* + 7b'~~ ) ~1 12 1 2 

A 1 
(7b* + llb* ) ~2 12 1 2 

A 

~3 0 

where b* = b - a /3 - a I 3 - a /2 and b* = b - a /3 - a I 3 - a /2 • 
1 1 1 ~ . 3 2 e 1 ~ 3 

f""J ,...., A A 

We form only the (l,l}tll element oi' J6r' ~ll = cc1 + 131, for illustration: 
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which is the same estimate obtained using the procedure of this paper to obtain 

the (l,l)th element of ~ shortly before. 

This example provides a means of exhibiting some of the peculiarities which 

occur when no data appears in at least one cell. In the example, the expectation 

A A I 

of a1 - a3 in terms of the ~ij s is 

This reduces to a 1 - a3 when ~ij = ai + ~j but otherwise this linear function of 

the true cell means appears very odd. It seems very unlikely indeed that a 

researcher, faced with the problem of deciding what linear functions of the cell 

means would be of interest to him, would come up with this linear function. 

This simple example gives some insight into what might be going on in more 

complicated settings. Analysis of the data. from a multi-way cross classification 

problem involving as many as ten factors sometimes is done with a 'main-effects 

only' type model, primarily because even this 'simple model' taxes the capacity of 

most computers. In problems of this size, it is not uncommon to have ten to 

fifteen thousand observations with at most five percent of the cells having at 

least one observation. In such a situation, we can only imagine what linear 

function of the cell means (where at least one observation was seen) 'al- a3' 

estimates. 

While a matrix model allows for a compact expression of just what is being 

estimated under different model situations, it appears to us that this simple 

example reveals a great deal about the mess caused by empty cells. The way out 

of the dilemma seemB to rest upon choosing from a 'list' of occupied cells (only) 

linear functions of those means of possible interest. In 'balanced' experiments 

this presents no difficulties since the statistician can easily describe several 

sets of linear functions of the means which might interest the experimenter. The 
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question of whether the statistician should do this alone, or whether he should 

assist the researcher in selecting his own set, may still be debated; nevertheless 

it appears that in 'messy data' problems, this may be the only approach which 

offers interpretable results. 

6. SUMMARY 

Linear models have become closely identified with several of the standard 

·statistical analyses. They were introduced initially to explain the analyses; 

more recently they have been elevated to the role of completely describing the 

statistically interesting features of the experiment, thereby exerting substantial 

effect on the analysis itself. As linear models have become more widely utilized, 

they have simultaneously become less well specified. Specifically they have be

come 'overly parameterized' in the sense that they contain more parameters than 

necessary to describe the experimental context. In turn the experiment will not 

support their estimation. The idea of estimability was introduced to circumvent 

this problem. 

We have proposed an alternate kind of linear model which is closely identi

fied with the experimental context. The means of the populations sampled in the 

experimental context serve as its parameters. They are estimated simply and 

without definitional ambiguity; it supports the examination of any kind of 'mean

type' parametric characteristic. We present examples and make comparisons with 

the conventional approach in order to illustrate its simplicity and generality. 
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