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Abstract—This paper presents an algorithm for parameters
and positions estimation of lumped flexible systems. As soon as
the parameters and the positions are estimated they can be used
to design virtual sensors that can be moved along the system
to estimate the position of any lumped mass keeping the system
free from any attached sensors. The virtual sensors are nothing
but a chain of estimators that are connected at the end of each
other, starting with two actuator’s measurements and ending up
with system parameters and all the system lumped positions.
An estimation Based PID controller is presented based on the
feedback of the virtual sensor’s estimates instead of the actual
measurement.

I. INTRODUCTION

Feedback control relays on the measurements picked using

some sensors attached to the system or estimations provided

by especially designed observers. In other words, control

system design relays on some actual sensor’s measurement

and some other virtual sensor’s estimations. Motion control

of a system with lumped masses requires attaching a sensor

to the point of interest. Therefore, position control of such

systems requires number of sensors equal to the number of

generalized coordinates that determine the position of the

system or moving a single sensor to the mass required to be

controlled. In this paper a parameter and position estimation

algorithms is introduced and conventional PID controller is

replaced with an Estimation based one that can be used for

both motion and vibration control of lumped flexible systems.

In doing so actuator is used to launch fourier synthesized

control inputs and to receive reflected mechanical waves that

can be estimated from its current and velocity. Surprisingly

enough, this reflected waves contains not only the system load

information but it also provides a complete picture about the

damping coefficients, joint stiffness, parameter disturbances

and externally applied forces. the algorithm introduced by this

paper shows that its possible to achieve a motion and vibration

control of any of the lumped masses of the flexible system

without attaching any sensors to the system. In [1], [2] the

reflected mechanical waves were considered as disturbance on

the actuator that can be estimated by an observer designed

in [3]. Robust motion control is achieved when this disturbance

is rejected in [4] by turning the system into acceleration

control if the inertia and motor constants are assumed to

be unity [5]. In this paper the disturbance is considered as

reflected mechanical wave from the system and instead of

rejecting these waves by the control input it is used to extract

the system parameter information and to estimate the position

of the lumped masses of the flexible system. Occonar [6], [7]

pointed out that actuator can be used to launch mechanical

waves to the system and to absorb the reflected waves keeping

the system free from residual vibrations but requires the

measurement of the first lumped mass and assuming that

system is free from external applied forces. Vibration control

can be achieved by a variety of approaches [8], point-to-point

vibration control is an affective method to set the position

of the last mass at certain position insuring that the system

is free from any potential or kinetic energy [9], that implies

vibrationless motion control, but the position of the masses

have to be measured. Multi-switch Bang-Bang control [10],

command shaping [11] and laplace domain synthesis [12]

are very efficient vibration control techniques that requires

some measurements from the system. This paper presents an

algorithm that is based on mechanical waves analysis in order

to estimate and control the position and vibration of any of the

system lumped masses. The paper is organized as follows, in

section 2 the mechanical waves are estimated using actuator

parameters and parameters information is obtained, rigid and

flexible motion of the lumped flexible system are estimated in

section 3 then estimation based PID controller is presented.

Finally section 4 includes the experimental results and the

conclusions.

II. PARAMETER ESTIMATION

A. Modal Analysis of Lumped Flexible System

For the inertial lumped flexible system shown in Fig. 1 with

n number of generalized coordinates the equation of motion

Fig. 1. Lumped flexible inertial system
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Fig. 2. Modal matrix experimental interpretation

is

J θ̈ + B θ̇ + K θ = T (1)

where J, B and K are the inertia, damping and stiffness

matrices, respectively. θ and T are the generalized coordinates

and torque inputs vectors, assuming zero damping and equal

inertial masses for a three degree of freedom flexible system.

Taking laplace transform of eq.2 and putting it in the following

linear system form

A θ = T (2)

solving for the eigenvalues of the homogenous version of

eq.2 and finding the corresponding eigenvectors we get the

following modal matrix

M =

⎡

⎣
1 1 1
1 0 −2
1 −1 1

⎤

⎦ (3)

Figure.2 shows the experimental interpretation of the modal

matrix, where the first eigenvector represents the rigid body

motion of the system as all system masses have constant

amplitudes with respect to each other and in phase. The second

eigenvector indicates that the second mass is not moving while

the first and third are oscillating with the same amplitude but

out of phase. According to the third eigenvector the first and

third masses have the same amplitude and in phase while

the third mass has twice the amplitude and out of phase.

In any event, the point here is to indicate that if the forcing

function is filtered or fourier synthesized so that the input has

zero energy at the system resonances all the lumped masses

will be moving with the same amplitude with respect to each

other. Moreover, the number of generalized coordinates used

to uniquely describe the system will be reduced from n to a

single generalized coordinate. The equation of motion for the

first lumped mass is

Jmθ̈m + B(θ̇m − θ̇1) + k(θm − θ1) = τ1 = iakt (4)

making the following definition

τref � B(θ̇m − θ̇1) + k(θm − θ1)

where τref is the reflected torque wave on the actuator that

can be estimated using the actuators current and velocity, ia
and kt are the motor current and torque constant.

Fig. 3. Torque observer using actuator parameters

B. Reflected Torque Estimation

Considering the parameters variation Eq.(4) becomes

(Jmo + △Jm)θ̈m + τref = ia(kto + △kt) (5)

where Jmo and kto are the nominal inertia and torque constant,

while △Jm and △kt are the variation from these nominal

values. rearranging terms

Jmoθ̈m − iakto = −τref + △ktia −△θ̈mJm (6)

and assuming that the reflected torque wave is much larger

than the parameter variation disturbance τref >> △ktoim +
△Jmθ̈m. Fig.3 shows the block diagram implementation of the

reflected torque estimation process through a low pass filter

with a cutoff frequency gdist used to control the convergence

speed of the estimated variable to the actual one along with

reducing the level of noise amplification due to the differen-

tiation process.

C. Rigid Body Motion Estimation

As the reflected wave has been estimated using the actuator

parameters it can be written as

τ̂ref � B(θ̇m − θ̇1) + k(θm − θ1)

assuming that the input forcing function doesn’t contain any

energy at the system resonance frequencies. This can be

achieved by filtering and/or fourier synthesizing the control

input. In this special case the motion of the system can be

descried by a single generalized coordinate as all the masses

are moving with the same amplitude with respect to each other.

The position estimate is given as

θ̂(t) =
1∑n

i=1
Ji

∫ t

0

∫ t

0

τ̂ref dτdτ (7)

and for linear flexible system

x̂(t) =
1∑n

i=1
mi

∫ t

0

∫ t

0

f̂ref dτdτ (8)

where θ̂(t) is the rigid body motion estimate.



D. Parameters Estimation

The estimate of the reflected torque can be rewritten using

the estimate of the rigid body position of the system as follows

τ̂ref � B(θ̇m −
̂̇
θ) + k(θm − θ̂) (9)

making the following definitions

ξ � (θm − θ̂) (10)

η � (θ̇m −
̂̇
θ)

where ξ is a vector of data points representing the difference

between the actuator and estimated systems positions, η is

the time derivative of these data points. B and k are the

damping coefficient and the joint stiffness, assuming that these

parameters are uniform along the flexible lumped system,

rewriting Eq.9

τ̂
ref

= k ξ + B η (11)

putting the previous equation in the following matrix form

[
ξ η

] [
K
B

]
= τ̂

ref
(12)

where τ̂
ref

is a vector of reflected torque wave data points,

making the following definition

A �
[

ξ η
]

Equation 12 represents an over determined system, where the

number of equations are more than the number of unknowns.

Therefore, the optimum parameters can be determined as

follows [
K̂

B̂

]
= A

† τ̂ ref (13)

where A
† is the pseudo inverse of A, k̂ and B̂ are the stiffness

and damping estimates

III. FLEXIBLE MOTION ESTIMATION

A. Recursive estimation equations

As the control input may contain some energy at the

resonance frequencies of the system which will excite any

of the system’s flexible modes as it was shown in Fig.2.

In this case Eq.7 will no longer be valid. Therefore, we

need to describe the motion of the lumped masses through

the entire frequency range of the system regardless to the

frequency content of the forcing function. The equation of

motion describing the system with the estimated parameters

is

J θ̈ + B̂ θ̇ + K̂ θ = T (14)

recalling (9) and rearranging the terms, we get the following

first order differential equation

B̂θ̇1 + k̂θ1 = α (15)

α � B̂θ̇m + k̂θm − τ̂ref

solving the previous differential equation we get

θ̂1(t) = e−
B̂

k̂
t

∫ t

o

βe
B̂

k̂
τdτ + e−

B̂

k̂
tc1 (16)

where θ̂1(t) is the estimate of the first inertial mass position,

regardless to the frequency of the forcing function. For the

first equation of motion we have

B̂
̂̇
θ2 + k̂ θ2 = γ (17)

γ � J1

̂̈
θ1 − B̂(θ̇o −

̂̇
θ1) − k̂(θo − θ1) + B̂

̂̇
θ1 + k̂ θ̂1

ζ �
γ

B̂

solving (17) we get

θ̂2(t) = e−
B̂

k̂
t

∫ t

o

ζe
B̂

k̂
τdτ + e−

B̂

k̂
tc2 (18)

where θ̂2(t) is the estimate of the second lumped inertial mass.

And the general position estimate of any of the lumped masses

of the system is

θ̂i(t) = e−
k̂

B̂
t

∫ t

o

Ω e
k̂

B̂
τdτ + e−

B̂

k̂
tci (19)

where

Ω �
Ψ

B̂

Ψ � g(Ji−1, θ̂i−1,
̂̇
θi−1,

̂̈
θi−1, k̂, B̂)

B. Estimation Based-PID Controller

The position of any of the lumped masses can be estimated

by the previous process, the estimate can be used as a virtual

feed back instead of the actual measurement taken using any

attached sensor. The error is no longer defined as the difference

between some desired reference and an actual one, it became

the difference between the reference and the estimate of the

actual position

ê(t) = θref (t) − θ̂i(t) (20)

the control law of the Estimation based PID control is

u(t) = kpê(t) + ki

∫ t

0

ê(t)dt + kd

dê(t)

dt
(21)

C. Summary of the Estimation Based Control Process

The steps of the entire process are:

1) Fourier synthesize the input such that it contains zero

energy at the system resonances.

2) Reflected torque estimation using actuator parameters.

3) Rigid body motion estimation using (7) or (8).

4) Estimate the uniform system parameters using (13).

5) Use the recursive formula (19) to determine the estimate

of the ith mass required to be controlled.

6) Feeding back the position estimate of the ithmass to

the controller to accomplish the motion and vibration

control assignemt.



Figure.4 shows the entire estimation and control process which

is based on two measurements from the actuator. and then

a chain of estimators are designed. The previous estimation

algorithm is based on extracting the systems parameters infor-

mation when the system is oscillating in the low frequency

range rigidly, then using these parameters in the general

position estimator that can estimate the position of any lumped

mass regardless to the frequency content of the control input.

IV. EXPERIMENTAL RESULTS

The implementation of the pervious algorithm is performed

on a three degree of freedom inertial flexible system with

parameters summarized in Table.I.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value

J1 5152.99 gcm2 gdist 100 rad/sec

J2 5152.99 gcm2 glpf 100 rad/sec

J3 6192.707 gcm2 finit 1 rad/sec

Jm 209 gcm2 kact 1.627 KN/m
kb 235 rpm/v kt 40.6 mNm/A

where glpf is the velocity low pass filter cut off frequency,

finit is the forcing function’s frequency that keeps the system

in its rigid mode, kact is the theoretical spring constant along

the flexible system that is known before hand by the following

calculation

kact =
Gd

8c3n
=

70 × 109
× 2

8 × ( 8

2
)3 × 21

= 1.627 kN/m (22)

where G is the modulus of rigidity, c is the spring ratio, d and

n are the coil diameter and the effective number of turns.

Fig. 4. Estimation Based-Control of Flexible system
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Fig. 5. Rigid body motion estimation

A. Rigid Body Motion Estimation-Experimental Results

System parameters are extracted when the system is in its

rigid mode. The idea behind doing this process is to drop the

unknown lumped masses positions to reduce the number of

unknown from n to only single unknown which is the position

if the entire rigid system that can be determined using (7)

after estimating the reflected torque wave. In doing so, the

input forcing function is filtered so that its energy content at

the system’s resonance frequencies is zero. Fig. 5 shows the

motion of the three masses and estimates of their positions

for different frequencies. It turns out that below 4 rad/sec the

estimation of the rigid motion is identical to the actual systems

position. In other words Eq.7 is valid in the low frequency

range below 4 rad/sec. Therefore, the parameter estimation

experiment have to be performed in this frequency range.

B. Uniform Parameters Estimation-Experimental Result

The parameter estimation experiment requires the estimate

of the reflected torque along with the difference between

the actuator position and the rigid body position estimate

data point vector and its derivative. Using Eq.13 the system

parameters are determined and Table.II summarizes the ob-

tained experimental results for both the joint stiffness and the

damping coefficient that are assumed to be uniform along

the flexible system. Using the obtained average estimated

parameters, the reflected torque wave is reconstructed and

compared with the estimated one as shown in Fig.6. The

magnified plot of Figure.6-a is too noise because of the direct

differentiation effect that doesn’t represent a problem as it is

just used to compare the reflected wave with the reconstructed

wave using the optimum estimated uniform parameters.

k̂avg =

∑n

i=1
ki

n
=

∑
5

i=1
ki

5
= 1.566 kN/m (23)

B̂avg =

∑n

i=1
Bi

n
=

∑
5

i=1
Bi

5
= 0.0882 Nsec/m (24)



comparing the average estimated stiffness with the theoretical

value that is known before hand through Eq.23 we conclude

that the difference is less than 5 percent and these parameters

can be used for further estimation steps.

C. Position Estimation

The position estimation process is performed using Eq.19,

where the position estimate of the ith mass requires the

determination of all the previous masses positions estimates.

Figure.7-a shows the flexible system oscillation when an

arbitrary forcing function contains some energy at the system’s

resonances. While other figures show the difference between

the actual position and the estimated one using Eq.19. The

estimated position seems to be identical to the actual mass

position that encourage us to use the estimate as a feedback

to the controller instead of the actual measurement.

D. Sensorless Position Control-Experimental Results

Figure 4 shows the entire sensorless estimation and control

process, where no measurements were taken from the system.

Just the actuator parameters are measured and used by the

previous chain of estimators to detect the position of any

lumped mass in the system.

1) Set-point tracking experiment-1st mass: Using the po-

sitions estimates of the lumped inertial masses as a feedback

instead of the actual measurement makes it possible to switch

the estimates and feeding them back easily to the controller.

Figure.8 shows the sensorless control process of the first mass,

where its position estimate is fed back to the controller. The

magnified plot shows 0.1 degrees steady state error in the

final response, the other figures shows the response of the

other two masses. The objective here is to control the position

of any particular mass along with active vibration damping of

the other masses keeping the system free from any kinetic and

potential to minimize any residual vibrations.

2) Set-point tracking experiment-2nd mass: In order to

control the position of the second mass with minimum residual

vibration of the system the estimate of the second mass has to

TABLE II
PARAMETERS ESTIMATION RESULTS

Par 1st Exp 2nd 3rd 4th 5th

k̂ KN/m 1.579 1.533 1.645 1.511 1.562

B̂ Nsec/m 0.088 0.087 0.088 0.089 0.089
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Fig. 8. Sensorless control of the 1st mass-Based on the first mass position
estimate feed back

be switched to the controller instead of the first mass. Figure.9-

a shows the response of the second mass when its estimate

was fed back to the controller, its magnified plot shows 0.15

degrees steady state error in the final response.

3) Arbitrary trajectory tracking experiment: Figure.10

shows the third mass trying to track two different arbitrary

references. In doing so the estimate of the third mass position

was fed back to the controller. Indeed, for a time varying

trajectory tracking feed back control is not enough and a feed

forward control input have to be added to the control law.

Surprisingly enough that this feed forward control input can be

obtained without taking any measurement from the system as

system dynamics and parameters have been estimated through

the proposed algorithm.
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Fig. 9. Sensorless control of the 2nd mass-Based on the second mass position
estimate feed back
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Fig. 10. Sensorless control of the 3rd mass-Based on the third mass position
estimate feed back

V. CONCLUSION

Uniform parameters and dynamics of any lumped flexible

system can be obtained from the reflected mechanical waves

on the actuator. By extracting the information of the system

parameters from the low frequency region, where the number

of generalized coordinates describing the systems position is

dropped from n to one generalized coordinate. This simple

procedure allows the estimation of the damping coefficient

and the joint stiffness, that is similar to an optimization

problem. The obtained estimates are nothing but the optimum

parameters that minimizes the norm square of errors. Using

this information along with the actuator parameters the flexible

motion of the system can be estimated by a chain of estimator

or by some recursive computations. The experiments show

promising results but the main draw back of the proposed

algorithm is the steady state error in final response when

the estimate of the position is used instead of the actual one

the controller brings the estimate to the desired reference but

if there was any error between the estimate and the actual

position the control action will not be able to bring the actual

position back to the desired reference keeping the system with

a steady state error in the final response. The amount of steady

state error depends on the accuracy of the estimation process

that is not a single estimation but a chain of estimations work-

ing on the output of each other. However, reducing the steady

state error relays on more accurate estimates. The steady

state error is not only a result of the inaccurate estimation

but also due to the dependence of one of the estimators on

an optimization process, where the estimated parameters are

obtained by solving an over determined system. On one hand

the proposed algorithm didn’t prove how to get rid of the

steady state error at the final response but on the other hand

it provides a sensorless parameter estimation procedure and

flexible motion estimation algorithm. Surprisingly enough that

taking the derivatives of the position estimates provides all

the system dynamics that can be used to estimate the external

torques and disturbances due to the system interaction with

the environment that is not included in this article.
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