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Abstract: This paper presents a sensorless estimation algorithm for estimating flexible system
parameters, dynamics and externally applied forces or torques due to system interaction with
the environment. The proposed algorithm makes it possible to design a chain of observers
that require measuring actuator’s current and velocity along with performing two off-line
experiments that do not require any additional measurement from the flexible system. The
output of these observers are estimates of the system parameters, estimates of the system
dynamics in configuration, motion and acceleration level. Eventually, the estimated positions
are used to control the motion and vibration of the flexible lumped system without taking any
measurement from the system. Experimental results show the validity of the proposed sensorless
estimation algorithm and the possibility of controlling motion and vibration of flexible systems
by focusing all the measurements on the actuator side keeping the system free from any attached
sensors.

Keywords: Modal analysis, Mechanical waves, Torque observer, Parameter estimation, Motion
estimation, Estimation based-PID controllers.

1. INTRODUCTION

Feedback control relays on measurements taken from the
system using attached sensors and states estimates ob-
tained by predesigned observers. These observers can be
designed to estimate observable system states if the input
and output are measured. In other words, measurements
from the system are required to design such observers
and used as basis of the estimation process. Therefore,
measurements from the system are necessary for feedback
control. Surprisingly enough that feedback control can be
accomplished without taking any measurement from the
system. Strictly speaking, the plant can be kept free from
any attached sensors and all measurements can be focused
on the actuator side. This can be misleading unless the
reflected mechanical waves from the system are considered
as a natural alternative to the actual feedback.

These mechanical waves possess information about system
parameters, dyncmics and external disturbances. More-
over, these waves can be estimated from any of the sys-
tem’s boundries at which an actuator is located. In other
words, actuators are usually located at a systems’ positions
where mechanical waves reconstructievly interfere. There-
fore, these waves can be estimated from the actuator side
without taking any measuremnt from the system.

The Question that arises is how to decouple each piece of
information out of these meahcnical waves in order to be
used to accomplish sensorless motion control. This paper
proposes a sensolress estimation algorithm that can be
used to estimate the system parameters and dynamics,
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then the estimated positions are used instead of the actual
measurements to control the motion and vibration of a
lumped flexible system in a sensorless manner.

Actuator is used to launch fourier synthesized or filtered
control inputs and receiving reflected mechanical waves
from the system that can be estimated through actuator’s
current and velocity. In Ohnishi (1996), Tsuji (2005) the
reflected mechanical waves were considered as disturbance
on the actuator that can be estimated by an observer de-
signed in Sugita (2000). Robust motion control is achieved
when this disturbance is rejected Murakami (1993) turning
the system into acceleration control if the inertia and
torque constants are assumed to be unity Katsura and
Kouhei (2007). In this paper reflected mechanical waves
are decoupled out of the total disturbance and instead of
rejecting this disturbance by an additional compensation
control input, it is analysed and used to estimate system
parameters and dynamics.

Occonar W.J.O’Connar (2007) pointed out that actuators
can be used to launch mechanical waves to the system
and absorb the reflected waves keeping the system free
from any residual vibrations but requires the measurement
of the first lumped mass and assuming that system if
free from external applied forces. Vibration control can be
achieved by a variety of approaches K.Miu (1993), point-
to-point vibration control is an affective method to set the
position of the last mass at certain position insuring that
the system is free from any potential or kinetic energy Bhat
and Miu (1990), that implies vibrationless motion control
but masses positions have to be measured. Multi-switch
Bang-Bang control Bellman and Gross (1980), command
shaping Singer and Seering (1990) and laplace domain

©2009 IFAC



Fig. 1. Lumped flexible inertial system
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Fig. 2. Modal matrix experimental interpretation

synthesis Bhat and Miu (1991) are very efficient vibration
control techniques that requires some measurement from
the system. The paper is organized as follow, in section
2 the mechanical waves are estimated using actuator’s
parameters, then system parameters are determined. Rigid
and flexible motions of the lumped flexible system are
estimated in section 3 and used to present estimation based
PID controllers. Finally section 4 includes the experimen-
tal results and final conclusions.

2. PARAMETER ESTIMATION

2.1 Modal Analysis of Lumped Flexible System

For the inertial lumped flexible system shown in Fig.1, the
matrix equation of motion is

J θ̈ + B θ̇ + K θ = T (1)

where J, B and K are the inertia, damping and stiffness
matrices. θ and T are the generalized coordinates and
torque inputs vectors. Assuming zero damping and equal
inertial masses for a three degree of freedom flexible system
and taking laplace transform of (1) it can be represented
in the following linear system form

A θ = T . (2)

Solving the for the eigenvalues of the homogenous version
of (1) and finding the corresponding eigenvectors we get
the following modal matrix

M =

[
1 1 1
1 0 −2
1 −1 1

]
. (3)

Figure.2 shows the experimental interpretation of the
modal matrix, where the first eigenvector represents the
rigid body motion of the system as all masses have
constant amplitude and in phase. The second eigenvector
indicates that the second mass is not moving while the
first and third are oscillating with the same amplitude but
out of phase. According to the third eigenvector the first
and third masses have the same amplitude and in phase
while the third mass has twice the amplitude and out of

Fig. 3. Torque observer using actuator parameters

phase. In any event, the point here is to indicate that if
the forcing function was filtered or fourier synthesized so
that the input has zero energy at the resonances of the
system all the lumped masses will be moving with the
same amplitude with respect to each other. Therefore, the
number of coordinates used to describe the system will
be droped from n to a single coordinate. The mechanical
dynamics of the actuator is described using the following
equatiion of motion

Jmθ̈m + B(θ̇m − θ̇1) + k(θm − θ1) = iakt (4)

making the following definition

τref , B(θ̇m − θ̇1) + k(θm − θ1) ,

n∑

i=1

Jiθ̈i (5)

where τref is the reflected torque wave on the actuator that
can be estimated using the actuator’s current and velocity.
ia and kt are the actuator’s current and torque constant.

2.2 Reflected Torque Estimation

Considering the parameters variation (4) becomes

Jmoθ̈m = ktoia − τref −△Jmθ̈m + △ktia (6)

where Jmo and kto are the nominal inertia and torque
constant, while △Jm and △kt are the variation from
these nominal values. The last three terms are considered
as disturbance d on the actuator that can be estimated
through a low pass filter with gdist corner frequency as
follows

d̂ =
gdist

s + gdist

[△Jmoθ̈m − iakto]. (7)

This in turn implies that the reflected torque wave τref

can be decoupled out of the disturbance d

τ̂ref = −d̂ − △̂Jmθ̈m + ia△̂kt (8)

where △̂kt and △̂Jm can be determined by a parameter
identification process. Fig.3 shows the block diagram im-
plementation of the reflected torque estimation process
where disturbance is estimated then reflected torque is
decoupled.



2.3 Rigid Body Motion Estimation

Equation (5) can be rewritten using the estimate of the
reflected torque as follows

τ̂ref , B(θ̇m − θ̇1) + k(θm − θ1) =

n∑

i=1

Jiθ̈i . (9)

Assuming that the input forcing function doesn’t contain
any energy at the system resonance frequencies. In other
words, the forcing function is filtered and/or fourier syn-
thesized such that the system’s flexible modes are not
excited. In this special case the motion of the system
can be descried by a single coordinate as all the masses
are moving with the same amplitude with respect to each
other. Therefore, the system rigid motion can be estimated
as follows

θ̂(t) =
1∑n

i=1
Ji

∫ t

0

∫ t

0

τ̂ref (t) dτdτ + c1t + c2 (10)

where θ̂(t) is the estimate of the rigid body motion, while
c1 and c2 are integration constants

2.4 Parameters Estimation

Equation (9) can be rewritten using the estimate of the
rigid body position of the system

τ̂ref , B(θ̇m −
̂̇
θ) + k(θm − θ̂) . (11)

Defining

ξ , (θm − θ̂) (12)

η , (θ̇m −
̂̇
θ)

where ξ is a vector of data points representing the dif-
ference between the actuator and estimated system rigid
position, η is the time derivative of this signal. B and k
are the uniform damping coefficient and the uniform joint
stiffness. Rewriting (11)

τ̂
ref

= k ξ + B η (13)

putting the previous equation in a matrix form
[
ξ η

] [
K
B

]
= τ̂

ref
(14)

τ̂
ref

is a vector of reflected torque wave data points,
making the following definition

A ,
[
ξ η

]

Equation (14) represents an over-determined system where
the number of equations are more than the number of un-
knowns, and the optimum parameters can be determined
as follow [

K̂

B̂

]
= A

† τ̂ ref (15)

where A
† is the pseudo inverse of A, k̂ and B̂ are the joint

stiffness and damping coefficients estimates.

3. POSITION ESTIMATION-FLEXIBLE
OSCILLATION

3.1 Flexible Motion Estimation

As the control input can contain energy at the system’s
resonances, system flexible modes can be excited as it

is shown in Fig. 2.Therefore, the flexible motion of the
system has to be estimated. Recalling (11) and replacing
the actual with the estimated parameters, we obtain the
following first order differential equation

B̂θ̇1 + k̂θ1 = α (16)

α , B̂θ̇m + k̂θm − τ̂ref .

Solving the previous differential equation we obtain

θ̂1(t) = e
− B̂

k̂

t
∫ t

o

βe
B̂

k̂

τ
dτ + e

− B̂

k̂

t
c1 (17)

where θ̂1(t) is the estimate of the first inertial mass
position regardless to the frequency of the forcing function.
For the first equation of motion of (1) we have

B̂
̂̇
θ2 + k̂ θ2 = γ (18)

γ , J1

̂̈
θ1 − B̂(θ̇o −

̂̇
θ1) − k̂(θo − θ1) + B̂

̂̇
θ1 + k̂ θ̂1

ζ ,
γ

B̂
solving (18) we obtain

θ̂2(t) = e
− B̂

k̂

t
∫ t

o

ζe
B̂

k̂

τ
dτ + e

− B̂

k̂

t
c2 (19)

where θ̂2(t) is the estimate of the second lumped inertial
mass. And the general position estimate of any of lumped
mass of the system is

θ̂i(t) = e
− k̂

B̂

t
∫ t

o

Ω e
k̂

B̂

τ
dτ + e

− B̂

k̂

t
ci (20)

where

Ω ,
Ψ

B̂

Ψ , g(Ji−1, θ̂i−1,
̂̇
θi−1,

̂̈
θi−1, k̂, B̂)

3.2 Estimation Based-PID Controller

Since the position of any lumped mass can be estimated
using (20), these estimates can be used as a virtual
feedback instead of the actual measurements taken using
attached sensors to the system. The error is no longer
defined as the difference between desired reference and
actual measurement taken from the point of interest,
it became the difference between the reference and the
position estimate obtained using (20)

ê(t) = θref (t) − θ̂i(t) (21)

the control law of the Estimation based PID control is

u(t) = kpê(t) + ki

∫ t

0

ê(t)dt + kd

dê(t)

dt
. (22)

3.3 Summary of the Estimation Based Control Process

The steps of the entire process are:

(1) Fourier synthesize the input such that it contains zero
energy at the system resonance frequencies.

(2) Reflected torque estimation using actuator parame-
ters.

(3) Rigid body motion estimation using (10).
(4) Estimation of the uniform system parameters using

(15).
(5) Using the recursive formula (20) to determine the

estimate of the ith mass required to be controlled.



(6) Feeding back the position estimate of the ith mass
to the controller and changing the controller gain
according to the required transient response.

Figure.4 shows the entire estimation and control process
that is based on two measurements taken from the actu-
ator. The previous estimation algorithm is based on ex-
tracting system parameters from certain frequency range
at which system motion is described by single coordinate,
then these parameters are used in the flexible motion
observer to estimate the position of any lumped mass
regardless to the frequency of the forcing function.

4. EXPERIMENTAL RESULTS

The implementation of the pervious algorithm is per-
formed on a three degree of freedom inertial flexible system
with the following parameters where glpf is the velocity

Table 1. Experimental parameters

Parameter Value Parameter Value

J1 5152.99 gcm2 gdist 100 rad/sec
J2 5152.99 gcm2 glpf 100 rad/sec
J3 6192.707 gcm2 finit 1 rad/sec
Jm 209 gcm2 kact 1.627 KN/m
kb 235 rpm/v kt 40.6 mNm/A

low pass filter cut off frequency, finit is the forcing function
frequency that keeps the flexible system rigid, kact is the
theoretical spring constant along the flexible system that
is known before hand by the following calculation

kact =
Gd

8c3n
=

70 × 109
× 2

8 × ( 8

2
)3 × 21

= 1.627 kN/m (23)

where G is the modulus of rigidity, c is the spring ratio,
d and n are the coil diameter and the effective number of
turns.

Fig. 4. Estimation Based-Control of Flexible system
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(a) f1 = 1 rad/sec
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(b) f2 = 2 rad/sec
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(c) f3 = 3 rad/sec
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Fig. 5. Rigid motion estimation experimental results

4.1 Rigid Body Motion Estimation-Experimental results

The uniform parameters are extracted from the system
low frequency range, the idea behind this process is to
drop as many unknown coordinates as possible reducing
the number of coordinates from n to only single unknown
which is the position of the entire rigid system that can be
estimated using (10) after estimating the reflected torque
wave using(8). Therefore, the initial input forcing function
is filtered so that its energy content at the system reso-
nances is zero. Fig.5 shows the rigid motion of three masses
and their position estimate for different frequencies. It
turns out that, below 4 rad/sec the estimation of the rigid
motion is following the actual system position. In other
words (10) is valid in the low frequency range below 4
rad/sec. Therefore, the parameter estimation experiment
has to be performed in this frequency range.

4.2 Uniform Parameters Estimation-Experimental Results

The parameter estimation experiment requires the esti-
mate of the reflected torque along with the difference be-
tween the actuator position and the rigid body position es-
timate data point vector and its derivative, using (15) the
system parameters are determined and Table.2 shows the
obtained experimental results for both joint stiffness and
damping coefficient that are assumed to be uniform along
the flexible system. Using the obtained average estimated
parameters, the reflected torque wave is reconstructed and
compared with the estimated one as shown in Fig.6. the
magnified plot of Fig.6-a indicates a high level of noise
amplification due to the direct differentiation.

Table 2. Parameters estimation results

Par 1st Exp 2nd 3rd 4th 5th

k̂ KN/m 1.579 1.533 1.645 1.511 1.562

B̂ Nsec/m 0.088 0.087 0.088 0.089 0.089

k̂avg =

∑n

i=1
ki

n
=

∑
5

i=1
ki

5
= 1.566 kN/m (24)

B̂avg =

∑n

i=1
Bi

n
=

∑
5

i=1
Bi

5
= 0.0882 Nsec/m (25)



comparing the average estimated stiffness with the theo-
retical value that is known before hand (23), we conclude
that the difference is less than 5 percent and these param-
eters can be used in the flexible motion recursive observer
(20).

4.3 Position Estimation-Experimental Results

Lumped masses positions can be estimated using (20),
where the position estimate of the ith mass requires
the determination of all the previous masses position
estimates. Fig.7-a shows the flexible system oscillation
when an arbitrary forcing function contains some energy
at the system resonances While the other figures show
the difference between the actual and estimated positions
using (20). The estimated position seems to be identical
to the actual mass position that makes it possible to use
these estimate as feedback to the controller instead of the
actual measurements.

4.4 Sensorless Position Control-Experimental Results

Figure.4 shows the entire sensorless estimation and control
process, the system is kept free from any attached sensors
and only actuator parameters are measured then used by
the previous chain of observers to determine the position
estimate of any point of interest in the system.

Set-point tracking experiment-1st mass Using the posi-
tion estimates of the lumped inertial masses as a feedback
instead of the actual measurement allows switching the
estimates easily to the controller. All the estimates are
available, therefore the global behavior of the system can
be monitored to ensure that system is controlled and
kept free from any residual vibrations. Fig.8a-b shows
the sensorless control process of the first mass, where
its’ position estimate is fed back to the controller, the
magnified plot shows 0.1 degrees steady state error in the
final response. Fig.8c-d show the response of the other two
masses. The objective here is to control the position of any
particular mass along with active vibration damping of the
other masses keeping the system free from any kinetic and
potential to achieve minimum residual vibrations.

Set-point tracking experiment-2nd mass In order to
control the second mass position with minimum residual
vibration of the system, the estimate of the second mass
has to be switched to the controller instead of the first
mass. Fig.9-a shows the response of the second mass when
its’ estimate is fed back to the controller, its’ magnified
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Fig. 6. Reconstructed torque wave using estimated param-
eters
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Fig. 7. Flexible motion estimation experimental results
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Fig. 8. Sensorless motion control of the 1st mass-Based on
the first mass position estimate feedback

plot shows 0.15 degrees steady state error in the final
response.

Arbitrary trajectory tracking experiment Figure.10(a-b)
show two different trajectories that have to be followed
by the point of interest. In this experiment the third
mass is considered as the point of interest. For a time
varying trajectory tracking the control law has to include
a feed forward term, that in turn implies the necessity
of obtaining systems dynamics. Surprisingly enough that
the proposed algorithm enables determination of system
dynamics and parameters that are required to design
the feed forward control term. Therefore, the proposed
algorithm makes it possible to track any time varying
trajectory without attaching any sensor to the system.
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Fig. 9. Sensorless motion control of the 2nd mass-Based
on the second mass position estimate feedback
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Fig. 10. Sensorless motion control of the 3rd mass-Based
on the third mass position estimate feedback

5. CONCLUSION

Uniform parameters and dynamics of any lumped flexible
system can be obtained from the reflected mechanical
waves on the actuator by extracting system parameters
from the system’s low frequency range, where the number
of generalized coordinates describing the systems position
is dropped from n to one coordinate. This simple proce-
dure allows the estimation of the damping coefficient and
the joint stiffness. Using this information along with the
actuator parameters the flexible motion of the system can
be estimated by a chain of observers along with recursive
computations.

The experiments show promising results, but the main
drawback of the proposed algorithm is the steady state
error in the final response. This steady state error is a
result of the optimization operations used to estimate the
system parameters and also to estimate the actuator pa-
rameters variation disturbance. Moreover, the rigid body
motion observer contains double integrators that can mag-
nify any tiny initial error. Therefore, due to these reasons
an estimation error is expected between the actual and
estimated variables which in turn implies that the control
action will not be able to bring the actual position to the
desired reference keeping the system with a steady state
error in the final response. The amount of steady state
error depends on the accuracy of the estimation processes.

However, reducing this steady state error relays on more
accurate estimators designs and careful off line experi-
ments implementation. On the other hand, the proposed
algorithms makes it possible to determine system param-
eters, dynamics and possibly externally applied forces or
torques when system interacts with the environment by
focusing all the measurements on the actuator side without
taking any measurement from the system considering the
reflected mechanical waves as a natural feedback from
system. Eventually, the experimental results shows the
validity of the proposed algorithm and the possibility of
accomplishing motion, vibration and force control of flex-
ible systems using actuator as a single platform for mea-
surements keeping the plant free from attached sensors.
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