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Abstract

This dissertation mainly consists of three parts. The first part proposes generalized
linear minimum mean-square error (GLMMSE) estimation for nonlinear point estimation.
The second part proposes a recursive joint decision and estimation (RJDE) algorithm for
joint decision and estimation (JDE). The third part analyzes the performance of sequential
probability ratio test (SPRT) when the log-likelihood ratios (LLR) are independent but not
identically distributed.

The linear minimum mean-square error (LMMSE) estimation plays an important role in
nonlinear estimation. It searches for the best estimator in the set of all estimators that are
linear in the measurement. A GLMMSE estimation framework is proposed in this disser-
tation. It employs a vector-valued measurement transform function (MTF) and finds the
best estimator among all estimators that are linear in MTF. Several design guidelines for
the MTF based on a numerical example were provided.

A RJDE algorithm based on a generalized Bayes risk is proposed in this dissertation for
dynamic JDE problems. It is computationally efficient for dynamic problems where data are
made available sequentially. Further, since existing performance measures for estimation or
decision are effective to evaluate JDE algorithms, a joint performance measure is proposed for
JDE algorithms for dynamic problems. The RJDE algorithm is demonstrated by applications
to joint tracking and classification as well as joint tracking and detection in target tracking.

The characteristics and performance of SPRT are characterized by two important
functions—operating characteristic (OC) and average sample number (ASN). These two
functions have been studied extensively under the assumption of independent and identically
distributed (i.i.d.) LLR, which is too stringent for many applications. This dissertation
relaxes the requirement of identical distribution. Two inductive equations governing the
OC and ASN are developed. Unfortunately, they have non-unique solutions in the general
case. They do have unique solutions in two special cases: (a) the LLR sequence converges in
distributions and (b) the LLR sequence has periodic distributions. Further, the analysis can
be readily extended to evaluate the performance of the truncated SPRT and the cumulative
sum test.

Keywords: nonlinear estimation, linear minimum mean-square error estimation, joint
decision and estimation, target tracking, sequential probability ratio test, performance eval-
uation
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Chapter 1

Introduction

1.1 Statistical Inference in Target Tracking

Estimation and decision are two key components in target tracking. For example, inferring

target state (e.g., position and velocity) is clearly an estimation problem, and determining the

number of targets, target attributes, maneuvering onset and termination, etc., are decision

processes.

Although the optimal (point) estimator, i.e., Kalman filter [110,111], for the linear Gaus-

sian system were develop more than five decades ago, nonlinear estimation is still under

active research. Nonlinear estimation (filtering) is to infer the interested quantities of a

nonlinear stochastic process based on observations. Basically, the difficulty comes from (and

increases with the level of) nonlinearity, which is an intrinsic nature of many problems, in-

cluding a large number of tracking applications. Nonlinear estimation can be classified into

two categories:

(a) Point estimation: Only the moments (usually the first and second moments) of the

quantity to be estimated are of interest.
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(b) Density estimation: The whole probability density or distribution function of the in-

terested quantity is needed. This is obviously more demanding, both technically and

computationally, than point estimation.

Since most target tracking applications are point estimation problems, methods for density

estimation, e.g., particle filtering and the probability hypothesis density (PHD) filter are not

considered in this dissertation. Interested readers may see the surveys of density-estimation

based nonlinear filtering techniques [13, 53, 54, 81,151,154–156,225] for details.

Sequential tests are widely used in target tracking, e.g., maneuver detection [168,211] and

counter-measurement detection [87]. The performance of different sequential tests has been

studied extensively for independent and identical observations. However, this assumption is

hardly satisfied in target tracking due to the non-stationary nature of the problem. In prac-

tice, the log-likelihood ratios based on innovations may be independent or weakly coupled,

however, they are definitely not identically distributed in general. In this dissertation, the

performance analysis of sequential tests with independent but non-stationary observations

is studied.

Further, as explained later, estimation and decision are often tightly correlated in some

tracking applications (e.g., joint tracking and detection, and joint tracking and classification),

making them tough and open problems. This is the so-called joint decision and estimation

(JDE) problem. To be clear, we interpret estimation as inferring a continuous-valued (ran-

dom or non-random) quantity, while decision is to make a choice from a discrete candidate

set. Inference of the target state and determination of the target attribute or the number

of targets often affect each other. The inter-dependence between estimation and decision

often incurs additional difficulty for solving JDE problems. For example, without knowing

the class or the number of the targets, it is hard to estimate the target state. On the other

hand, good decision relies heavily on accurate estimation of the target state. Conventional

solutions ignore this inter-dependence either completely (e.g., separate estimation and deci-
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sion) or partially (e.g., decision-then-estimation or estimation-then-decision), making their

performance suffer.

1.2 Research Motivations

The linear minimum mean-square error (LMMSE) estimation plays a key role in nonlinear

estimation [144]. Many widely used nonlinear filters are based on LMMSE estimation. It

searches for the best estimator in the set of all estimators that are linear in the measure-

ment. But it may not perform well for a highly nonlinear problem. A generalized LMMSE

(GLMMSE) estimation framework is proposed in this dissertation. It employs a vector-valued

measurement transform function (MTF) and finds the best estimator among all estimators

that are linear in the MTF, rather than in the measurement itself. The MTF introduces

more flexibility to GLMMSE. It can choose a larger or more appropriate candidate set of

estimators (than the set in LMMSE) for searching, and hence the best one in the set would

lead to performance superior to that of LMMSE estimation. Several design guidelines for

the MTF are provided to facilitate the design process. Further, similar to LMMSE estima-

tion, moments involved in GLMMSE estimation are difficult to evaluate exactly in general.

Fortunately, many numerical approximations for LMMSE estimation are also applicable to

GLMMSE estimation. An approximation of GLMMSE estimation based on the Gaussian-

Hermite quadrature is provided. Our GLMMSE estimation is demonstrated by applications

to radar tracking and multi-target tracking.

For the JDE problem, a JDE algorithm based on a generalized Bayes risk [143,158] was

proposed. It is a batch algorithm and thus computationally inefficient or infeasible for many

dynamic JDE problems where data are made available sequentially, e.g., in target tracking.

Therefore, following the same JDE framework, a recursive version of the JDE algorithm

(RJDE) is proposed, which fits dynamic JDE problems more naturally and inherits JDEs

theoretical superiorities. Further, a joint performance measure in the measurement space is

3



developed for evaluation of dynamic JDE algorithms. RJDE is demonstrated by numerical

examples in target tracking.

Performance analysis of sequential tests is also studied in this dissertation. It has been

extensively studied if the log-likelihood ratios (LLR) are independent and identically dis-

tributed (i.i.d.). We generalize the analysis to the case with an independent but non-

stationary LLR sequence. This situation is frequently encountered in application. For exam-

ple, if SPRT is implemented based on the innovations of the Kalman filter [110], e.g., in target

maneuver detection, the LLRs are approximately independent or weakly coupled, but their

distributions at different time instants are clearly different in general. Or some parameters

in the distribution of LLR may be periodically varying, rendering the LLRs not identically

distributed. Once the LLR sequence is not identically distributed, the performance analysis

becomes much more complicated than the i.i.d. case due to the loss of stationarity of the

LLR sequence.

1.3 Thesis Outline

This thesis, consisting of five chapters, is organized as follows.

Chapter 1 introduces the background and motivation.

Chapter 2 briefly surveys the related work, including nonlinear estimation methods, JDE

algorithms and multi-target tracking methods.

Chapter 3 proposes the GLMMSE estimation for nonlinear estimation.

Chapter 4 presents an RJDE algorithm for dynamic JDE problems.

Chapter 5 proposes methods for performance analysis of sequential tests.

Chapter 6 draws conclusions and discusses future work.

4



Chapter 2

Related Work

Existing work on nonlinear point estimation, JDE algorithms and performance analysis of

sequential tests are briefly surveyed and discussed in this chapter.

2.1 Nonlinear Filtering

Existing nonlinear filters are briefly surveyed in this section, which is largely based on [144,

151]. As mentioned before, density-estimation based algorithms are not considered in this

section. In general, a stochastic system may be modeled in one of the following three forms:

(a) Continuous-time: Both the dynamic and measurement models are in continuous time;

that is, the system is modeled by differential equations.

(b) Discrete-time: Both the dynamic and measurement models are in discrete time; that is,

the system is modeled by difference equations.

(c) Mixed-time: One of the dynamic and measurement models is in continuous time and the

other in discrete time. For target tracking, due to the continuity of the target trajectory

and discreteness of the measurements, the mixed time model is more appropriate since

it fits the truth better than the other representations.

5



Continuous-time nonlinear filtering are largely of only theoretical value. A survey of nonlin-

ear filtering techniques for mixed-time system can be found in [48]. Due to the widespread use

of digital computers, however, most tracking filters have been developed for discrete-time

systems, particularly in a recursive form. Also, discrete-time nonlinear filtering is signifi-

cantly easier than filtering in continuous time or mixed time. Therefore, we only consider

discrete-time systems with additive, mutually independent white process noise and white

measurement noise:

xk+1 = fk(xk) + wk (2.1)

zk = hk(xk) + vk (2.2)

where xk, zk are the state to be estimated and the measurement, respectively, at time k;

wk ∼ (w̄k, Qk) (mean and covariance) and vk ∼ (v̄k, Rk).

2.1.1 Optimal Bayesian Estimation

It is well known that the conditional mean x̂k = E[xk|Zk] (Zk is all measurements through

time k) is the optimal estimator that minimizes mean-square errors (MSE), namely, the

minimum mean-square error (MMSE) estimator. The equation for x̂k for the discrete-time

system (2.1)–(2.2) with Gaussian white process and measurement noises was given in [197].

In general, evaluating x̂k requires the entire distribution of xk, which cannot be compressed

into a finite-dimensional sufficient statistic. Further, the corresponding MSE of x̂k is not

available. However, [197] provides a theoretical basis for approximation techniques.

2.1.2 Linear Minimum-Mean Square Error Estimation

Instead of searching for the best of all estimators, the best of all linear estimators (i.e.,

x̂k = a + BZk) may be a good choice, resulting in the linear minimum mean-square error

6



(LMMSE) estimator

x̂LMMSE , arg min
x̂=a+BZk

MSE(x̂)

It often makes a good compromise between the simplicity and performance. It is unbiased

(i.e., E[x̂LMMSE] = E[x]) and the estimation error x̃LMMSE is orthogonal to the space spanned

by the measurements (i.e, E[x̃LMMSEz′] = 0). The well-known Kalman filter (KF) is a special

case of the recursive LMMSE estimator when both (2.1) and (2.2) are linear. Note that not

every batch estimator can be written in an equivalent recursive form (see [142] for details).

Recursive LMMSE estimation was successfully applied to radar tracking [58,252], where the

target dynamics is linear and measurement model is nonlinear.

Since the expectations and covariances involved in the MMSE and LMMSE filters are

difficult to evaluate analytically, various techniques have been applied to approximate the

optimal filter and more often the LMMSE filter. Most of these techniques can be broadly

classified into the following three categories [151]:

(a) Deterministic function approximation: Nonlinear functions, which are most often the

integrands of expectations encountered in nonlinear filtering, are approximated deter-

ministically by functional approximation, such as the Taylor series expansion (TSE) or

interpolation.

(b) Moment approximation: The integral values, particularly the first- and second-moments,

are approximated directly by, e.g., deterministic or Monte Carlo sampled values. Here,

the unscented transform (UT) is a representative, leading to the unscented filter.

(c) Stochastic model approximation: The original nonlinear stochastic system is approxi-

mated by a simpler (often linear) model optimally in terms of some statistical measure,

resulting in the so-called stochastic linearization or statistical linearization.

Some widely used filters in these categories are presented in the following.
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2.1.3 Extended Kalman Filters

First-Order Extended Kalman Filter

The first-order extended Kalman filter (EKF) was developed for nonlinear filtering in engi-

neering applications [178, 231] right after the KF came to existence. EKF is now the most

widely used nonlinear filter due to its simplicity and generality. The first-order EKF is ob-

tained by approximating the fk(xk) and hk(xk) in (2.1)–(2.2) with the first-order TSE at the

latest estimates and applying the standard KF to the resulting linear system. It is hence a

deterministic function approximation.

Second-Order EKF

The performance of the first-order EKF may be improved by employing higher-order TSE

approximations (but it might not work in some cases [29, 52, 123]). The second-order EKF

follows this path and it differs from the first-order EKF only in the state and measurement

predictions as well as their error covariances, obtained based on second-order TSE. It has

exactly the same filter update as the first-order EKF. See [22] for algorithm details, [179,248]

for performance comparisons, and [179,193] for some simplifications. EKF of an even higher

order is almost never used in practice.

Following a similar idea, the truncated second-order filter [24, 95] and the Gaussian

second-order filter [15, 177] were proposed. Instead of approximating the nonlinear func-

tions fk(xk) and hk(xk) in (2.1)–(2.2), the truncated second-order filter approximates the

nonlinear functions involved in the conditional mean by a second-order TSE. The Gaussian

second-order filter works in the same way as the truncated second-order filter except that the

fourth moment is accounted and computed based on a Gaussian assumption. See [84,96,234]

and the reference therein for more details. Some corrections and modifications were made

for these filters in [83, 151].
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Iterated EKF

TSE would approximate the nonlinear function better and improve the performance of EKF

if the expansion point x̂ is close to the true x. Following this idea, the iterated EKF

was proposed [96], which re-linearizes the measurement model by the updated state. This

makes sense since the state update should be more accurate than the prediction. This re-

linearization and state update can be carried out iteratively to further improve the accuracy.

The convergence of the iteration is studied in [28].

Perturbed Kalman Filters

The perturbed Kalman filter (PKF) works similarly as the first-order EKF. It linearizes the

system at some “nominal” or reference state trajectory (instead of the latest estimate). Like

the first-order EKF, the PKF has the performance relying significantly on the accuracy of

the expansion point, which can be predetermined or generated online.

The major drawbacks of the TSE based filters are:

(a) They hinge on the characteristics of the nonlinear function at a single point (i.e., the

expansion point). If the true state is not in a small neighborhood of this point, their

performance suffers.

(b) Evaluating the function derivatives is undesirable or infeasible for some cases.

2.1.4 Unscented Filters

The unscented filter (UF) was first proposed in [100, 104, 107] relying on the unscented

transform (UT), where a set of σ-points are generated to approximate the first- and second-

moments of a nonlinear transform to the accuracy of at least second order. The approximate

moments can be plugged into the LMMSE filter, leading to the UF. Due to the large freedom

in generating the sigma points in UT, many designs of the sigma points are available. A set

of 2nx +1 sigma points was proposed in [100,104,107] and widely used, where nx = dim(x).
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Using 2n2
x+1 points was proposed in [103] to match some higher moments for Gaussian and

some other distributions. Also, a minimum number nx + 1 of sigma points were designed

in [105] for better computational efficiency. Robust designs were exploited in [102,251]. Two

more scaling parameters were introduced in [101,106] to mitigate the diffusion of the sigma

points as the state dimension increases.

2.1.5 Divided Difference Filters

Instead of putting all its eggs in one basket as the TSE based approximation does, interpo-

lation based algorithms approximate a nonlinear function using multiple points and avoid

derivatives by replacing them with divided differences. Following this path, the first-order

(DD1) and second-order (DD2) divided difference filters were developed in [196] based on

a multivariate extension of Stirling’s interpolation formula [201]. The nonlinear function

in (2.1)–(2.2) can be approximated by this interpolation. Therefore, the first and second

moments can be computed for LMMSE estimation, leading to the DD1 or DD2 filter.

Note that the DD2 and UF use the same procedure but different sample points. De-

termining design parameters was discussed in [195, 196]. Contrary to the TSE-based ap-

proximation, the interpolation-based approximation depends on multiple points in a region

and does not require evaluation of function derivatives. Performance evaluation of DD1 was

included in [129], compared with several KF based filters. See [3,253] for some applications.

2.1.6 Central Difference Filters

The central difference filter (CDF) [218,219] follows a similar idea of the first-order EKF but

with the Jacobian matrix replaced by the first-order central difference to avoid evaluation of

derivatives. As shown in [219], CDF has a slightly better approximation of the covariance

matrix for symmetric distributions than the first-order TSE. The DD1 is actually a refined

version of CDF due to the flexibility of some design parameter. Another version of CDF
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based on the second-order central difference was proposed in [94] and it is basically equivalent

to the DD2 filter.

2.1.7 Gaussian Filters

The Gaussian filter or Gaussian-Hermite filter was proposed in [7, 94]. It relies on the

Gaussian-Hermite Quadrature (GHQ) and successive approximation of the probability den-

sities needed by moment-matched Gaussian densities. All the moments involved in LMMSE

are approximated by the GHQ. Instead of a single Gaussian, the density can be successively

approximated by a Gaussian mixture to improve the accuracy. This leads to the Gaussian

sum filter or mixed Gaussian filter [94].

GHQ suffers from a “curse of dimensionality.” Many methods are available to mitigate,

to some extent, this effect [42, 238], such as lattice rules [230], sparse grids [70, 232], Monte

Carlo [164] and quasi-Monte Carlo methods [194]. In [6], the integral in the Gaussian filter

was transformed from the Cartesian coordinate system to a spherical-radial integration form

[184] by change of variables. A third-order spherical-radial cubature rule was applied to

compute the integral, leading to the so-called cubature Kalman filter (CKF) [4, 8, 79, 200].

In [5, 6], a numerically robust implementation of the Gaussian filter was proposed, which

computes the means and square-root of the covariance matrices at the cost of increased

computational complexity.

2.1.8 Stochastic Model Approximation

The deterministic function approximation approach approximates the function in a small

region. They usually incur large errors for large deviations and have no optimality in general.

Since the system is stochastic and the state x is random, the nonlinear function g(x) involved

may be better approximated by a linear system optimally in some stochastic sense, leading

to the stochastic linearization [69,235]. It accounts for large errors stochastically and should

be superior for the specific distribution of x.
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The major difficulty with the optimal stochastic linearization is to evaluate the expecta-

tions involved. Replacing these expectations by their sample versions results in the statistical

linearization [17, 62, 63, 89, 130]. Techniques covered before, such as the UT, central differ-

ence, and Gaussian-Hermite quadrature are all applicable to this expectation evaluation.

In [128, 129], the linear model was obtained by linear regressions, leading to the linear re-

gression Kalman filter (LRKF).

2.1.9 Two-Step Filters

The two-step filter proposed by [77,78] was derived based on the two-step least-squares (LS)

estimation. For a nonlinear LS problem,

x̂LS = argmin
x

[z − h(x)]′R−1
k [z − h(x)]

it may be solved optimally in two steps:

• Find a transform y = g(x) such that h(x) = Hy. Then the optimal LS estimate yLS

and its covariance matrix Σ−1
y of y can be determined by linear LS solution.

• The optimal estimate x̂LS is the solution of a nonlinear LS problem:

x̂LS = argmin
x

[ŷLS − g(x)]′Σ−1
y [ŷLS − g(x)] (2.3)

The key to the two-step filter is to find the transform yk = gk(xk) and hk(xk) = Hkyk for

system (2.1)–(2.2). Applications of the two-step filter can be found in [74, 98].

2.2 Joint Decision and Estimation Algorithms

The mutual dependence between decision and estimation in a JDE problem makes it difficult

to solve. [180] first proposed an integrated framework to solve the “simultaneous signal
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detection and estimation” problem. A solution for the multiple-hypothesis case was given by

[66]. As pointed out in [242], their solution is estimation-oriented. Both estimation-oriented

and decision-oriented methods were provided in [109] for a specific example. More recently,

an integrated methods for simultaneous signal detection and estimation under false alarm

constraints was proposed in [27]. However, their “estimation” actually means classification,

which belongs to decision in our terminology.

In general, the existing methods for solving JDE problems can be classified into four

categories [143,158,167], which are explained next.

2.2.1 Decision-then-Estimation

It tries to make the best decision from the data first, and estimation is obtained based on

this decision as if it were certainly correct. This is the most natural way of thinking and the

majority of the JDE problems are solved in this way. However, although its major drawbacks

are obvious—the possible decision errors are completely ignored by the estimation process

and the decision is made regardless of the estimation accuracy it would lead to—an effective

remedy is hard to come by within this two-stage framework. Most algorithms for multi-target

tracking (MTT) with an unknown number of targets follow this method—determining the

number of targets first, and then estimating the target state based on the determined number

of targets.

2.2.2 Estimation-then-Decision

Some JDE algorithms, e.g., the generalized likelihood ratio test (GLRT) and the marginalized

likelihood ratio test (MLRT), follow this strategy. It estimates the state (or the unknown

parameters) first and decision is made based on this estimation. It has some inherent flaws

and will not work well if the estimation depends heavily on the decision or the estimation is

not secondary in the problem.
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2.2.3 JDE Based on Density Estimation

The cornerstone of this type of methods is the estimation of the mixed density-probability

of estimation and decision

{f({x,D}1|Z), f({x,D}2|Z), · · · , f({x,D}i|Z)}

which can be inferred by a density estimation algorithm (e.g., particle filter or numerical inte-

gration). Here, Z is the available data, Di the ith decision and x the corresponding estimate.

For a JDE problem, in general this hybrid quantity has the form {x,D}i , {x(Di), Di(x)},

which signifies explicitly the mutual dependence between x and D. This method was applied

to target tracking and classification in [39, 85], and in [90] to multitarget tracking with an

unknown number of targets. Although this posterior mixed density-probability may be a

complete Bayes solution for JDE problems, it is not considered in this dissertation due to

the reasons given in [167].

2.2.4 JDE Based on Generalized Bayes Risk

The foundation of this method is a novel Bayes risk [143, 158, 250], which is a generaliza-

tion of those for decision and estimation respectively. It has the potential of arriving at

the globally optimal solution. The generalized Bayes risk, which explicitly considers the

inter-dependence between decision and estimation, is theoretically superior to the conven-

tional two-stage methods (i.e., decision-then-estimation and estimation-then-decision) and

the method of separate decision and estimation. In this framework, decision cost and esti-

mation cost are converted to a unified measure by additional weight coefficients and hence

the final results depend on both decision and estimation performances. The power of this

JDE method was elaborated in [143,158] by several challenging JDE applications. However,

the currently available JDE method is a batch process, which does not fit dynamic problems

well since in many cases, e.g., multi-target tracking, the data are coming sequentially. A
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batch algorithm has to start from scratch when new data arrive. Hence, a recursive JDE

algorithm is desired for dynamic problem.

2.3 Performance Analysis of Sequential Tests

The operating characteristic (OC) and average sample number (ASN) of the sequential

probability ratio test (SPRT) and the average run length (ARL) of the cumulative sum test

(CUSUM) reveal the performance of these sequential tests. Methods for evaluating these

functions are briefly summarized as follows

2.3.1 OC and ASN for SPRT

Two important functions—OC and ASN—characterize the behavior of SPRT. The existing

methods proposed to evaluate these two functions are almost all based on the assumption of

an i.i.d. log-likelihood ratio (LLR) sequence with constant bounds. In this case, it has been

known [25, 44, 198] for a long time that these two functions satisfy the Fredholm integral

equations of the second kind (FIESK) [18,203]. Analytical solutions are not available except

for some special cases [241]. In general, one has to resort to some numerical techniques

for the FIESK. Approximations were made in [244] by omitting the overshoot when the test

statistic crosses one of the bounds. An iterative method was proposed in [199] to numerically

solve the FIESK, and the convergence property of this method has been examined in [114].

Besides, extensive studies have been done to compute the OC and ASN for the truncated

SPRT with some specific (e.g., Poisson and Binomial) processes [10, 11, 61, 67]. A method

was proposed in [72] to convert the FIESK to a system of linear algebraic equations (SLAE)

by approximating the integrals with a Gaussian quadrature. Although the SLAE method

was proposed under the Gaussian assumption, actually it is generally applicable provided

the Gaussian quadrature works well. Further, the fact that many probability densities can

be well approximated by Gaussian mixtures with only a few components also broadens its

15



applicability. A problem with a discontinuous core of the FIESK was considered in [181],

and the solution becomes more complicated. Other methods, such as finite element analysis

[14, 16, 92], can also be employed to find the numerical solutions of the FIESK. Further,

the bounds for the OC and ASN were calculated in [25, 73, 114, 244] (see the references

therein). However, all these studies of OC and ASN are based on the i.i.d. assumption. The

stationarity of an i.i.d. LLR sequence simplifies the analysis of OC and ASN greatly.

2.3.2 OC and ASN for Truncated SPRT

Unlike SPRT, the OC and ASN of the truncated SPRT (TSPRT) do not satisfy the FIESK

no matter the LLR are i.i.d. or not. Methods have been proposed to compute the exact

OC and ASN for TSPRT recursively and explicitly (“explicitly” means that they are not

in the form of a solution to an equation), for example, by the so-called direct method

proposed in [10–12]. Contrary to our method, this direct method actually does not compute

the OC and ASN “directly.” First, it computes recursively (from the initial time on) the

probabilities of rejection, acceptance, and continuation at each time. Then, the OC and ASN

are calculated based on the results of the first step. Convolutions over a finite range must

be evaluated in order to yield analytical solutions. In most cases, the convolution becomes

increasingly harder as the algorithm proceeds and numerical solutions are needed.

2.3.3 ARL for CUSUM

CUSUM’s behavior is characterized by its ARL function, which is similar to ASN for SPRT.

It can be computed based on the OC and ASN of the corresponding SPRT [25], which can

be viewed as the building block of CUSUM for the i.i.d. LLR case. ARL also satisfies

the FIESK [25,44,198] for this case. An ARL for exponentially distributed observations was

provided in [241] by solving the FIESK equation. All the aforementioned numerical methods

for SPRT are applicable to solve the ARL numerically. The upper and lower limits for the

ARL were provided in [25, 115].
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Multiple methods following another path have been proposed to approximate the OC and

ASN for SPRT, and ARL for CUSUM. The idea is to approximate the discrete-time sequence

by a continuous-time diffusion process. Then, the OC, ASN and ARL can be obtained by

solving the so-called first-passage problem for the approximated diffusion processes [2,47,224]

with different types of bounds (e.g., two absorbing bounds, or one absorbing bound and one

reflecting bound). The probability of the first-passage time was computed and the OC and

ASN can be inferred from it.

2.4 Brief Survey on Target Tracking Algorithms

2.4.1 Tracking without Measurement-Origin Uncertainty

If the correspondence between the measurements and targets are exactly known, it is a single

target tracking problem without measurement origin uncertainty. Target maneuver, which

may incur target motion-model uncertainty, and nonlinear filtering are two major problems

in this case. A series of comprehensive surveys was provided for different aspects of single

maneuvering target tracking: target dynamic model [150, 153], measurement model [148],

maneuver detection [149], model uncertainty [152] and nonlinear filtering [151,154–156].

2.4.2 Tracking in Clutter

The data association problem arises in multitarget tracking (MTT) or tracking in clutter

due to measurement-origin uncertainty. State estimation under the measurement-origin un-

certainty was pioneered by [192, 229]. However, what is involved in MTT is actually a joint

decision and estimation problem [143,158]. Although it is not necessary to resolve data asso-

ciation explicitly before inferring the (multiple) target state, the most widely used strategy

here is decide-then-estimate (i.e., data association followed by filtering).
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Validation Gate

For tracking in clutter, most often a gate for each track is formed to exclude extremely

unlikely measurement-track association. A gate is a region in the measurement space that

has a very high probability (called gating probability PG) of capturing the true measurement.

In most tracking systems, the gate takes simple shapes, such as rectangles, ellipses, and

trapezoids, although more sophisticated gates have also been developed [21, 31, 33, 152, 221,

222,228,249].

Nearest Neighbor Filter

Nearest neighbor (NN) association is one of the most widely used data association techniques

due to its simplicity. The NN filter (NNF) uses the measurement closest to the predicted

target state, as if it were the true measurement, to update the track by a conventional filter.

NNF’s performance was first examined in [221,226] and more thoroughly studied in [147,209].

NNF can be extended to multiple target tracking, leading to the global nearest neighbor

(GNN) algorithm [31, 33, 119], which is equivalent to solving an assignment problem. The

association probability of [64], generalized statistical distance of [31], and score gain of [33]

are examples of the proposed assignment cost. Suboptimal algorithms, such as Hungarian

algorithm [122], Munkres algorithm [186], JVC algorithm [99], auction algorithm [30, 38],

have been proposed. Their performance was evaluated in [56, 108, 135]. See [35, 36, 45, 46,

175,187] for more information and more details for the assignment problem and its solutions.

Strongest Neighbor Filter

If available, the signal intensity of a measurement can be used for data association. Like

NNF, the strongest neighbor filter (SNF) uses the strongest measurement (in terms of echo

intensity) to update the state estimate. SNF is widely used, especially for sonar tracking

[132, 133]. Its performance was examined in [141, 146]. A probabilistic SNF was proposed

in [162, 163, 233] with a significant performance improvement. SNF can also be extended
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to multiple target tracking, resulting in the global strongest neighbor (GSN) algorithm.

Nothing prevents us from using both the kinematic information and signal attribute of the

measurement for data association if they are available. This combination certainly has the

potential to beat both NNF and SNF.

Probabilistic Data Association

The probabilistic data association filter (PDAF) was proposed in [23] for single target track-

ing in clutter. It makes soft decision on association and updates the track using the expected

association. PDAF has been extended to MTT, resulting in the joint probabilistic data as-

sociation filter (JPDAF) [21, 65]. PDAF is incapable of track initiation, confirmation, or

termination. The “target observability” based PDAF (OPDAF) [40, 41] was the first piece

of work to overcome this limitation. The IMM-PDAF [19,21, 34, 88, 117] and the integrated

PDAF (IPDAF) [188,191] are more widely used. The IMM algorithm and IPDAF were com-

bined in [82] to deal with track decision with a maneuvering target. IPDAF was also extended

to multiple target tracking, resulting in the Joint IPDAF [189, 190]. A perceivability-based

PDA tracker was also proposed in [138–140,157].

Multiple-Hypothesis Tracking

The multiple-hypothesis tracker (MHT) was pioneered by [208]. Its seed for single target

tracking in clutter was planted in [227]. It is more powerful than previous methods and has a

built-in mechanism for track management, but at the cost of being much more complicated.

MHT does multi-scan association. It forms and propagates hypotheses, and decision on

these hypotheses is postponed until enough data are collected. In general, the number

of hypotheses increases exponentially as time goes. The combinatorial explosion must be

overcome to make MHT practical. It involves two key steps: a) evaluation of each hypothesis;

b) hypothesis management. See [32, 118, 185, 216] for more details and extensions of MHT.

A good coverage of MHT can be found in [31,33].
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Probabilistic Multiple-Hypothesis Tracking

The probabilistic MHT (PMHT) was first proposed in [236, 237]. It relaxes the assumption

that a target cannot generate more than one measurements at every sensor scan, which has

been widely used in other algorithms, and relies on the EM algorithm [51] to make a soft de-

cision on data association. Although quite realistic and reasonable, the assumption renders

the association of each measurement in every scan dependent and leads to a combinatorial

optimization problem [247]. Without this assumption, the association of different measure-

ments is relatively independent and hence simplifies the problem considerably. Applications

and more details of PMHT can be found in [59,68,214,247]. Extensions have been made to

deal with maneuvering targets [171, 213], multiple sensors [49, 121, 183, 207], and nonlinear

models [71]. An evaluation was provided in [91, 212]. [247] pointed out several design issues

and problems of PMHT, along with proposed solutions.

Data Association by Assignment

Data association can also be formulated as a multi-dimensional assignment problem [204],

where the optimal association minimizes the assignment cost between measurements (in

multi-scan) and tracks [33]. The optimal solution in general is infeasible for most practi-

cal applications. Other than the methods used in the GNN approach mentioned before,

Lagrangian relaxation [50, 205, 206] is a promising and efficient suboptimal algorithm. See

also [20] (chapter 2) for a good coverage of this topic.

Symmetric Measurement Equation Method

As mentioned before, the data association problem need not to be solve explicitly for target

tracking. Other than some density estimation based algorithms (e.g., PHD filter [173,174]),

the symmetric measurement equations (SME) method [26,112,113,136,137,215] addresses the

data association problem implicitly by converting it to a highly nonlinear filtering problem,

which is independent of the association. This conversion is done by a symmetric function φ
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which must be invariant (symmetric) under the permutation of its arguments [215]. Possible

symmetric functions φ, e.g., sum of power and sum of product, were proposed in [112,113,215]

and their pros and cons were compared based on simulations [113,137,215].
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Chapter 3

Generalized Linear Minimum

Mean-Square Error Estimation

3.1 Introduction

In a Bayesian framework, estimation is to infer a random quantity x based on prior infor-

mation and measurement z. It is well known that the posterior mean E[x|z] is the opti-

mal estimator that minimizes mean-square error (MSE). This minimum mean-square error

(MMSE) estimation in general requires knowledge of the entire distribution of x, which is not

achievable for most applications other than the linear Gaussian case. However, it provides

a theoretical basis for analysis and approximation techniques.

Instead of looking for the best estimator among all estimators, the best one in the set of

all linear (in the measurement z) estimators may be a good choice, resulting in the linear

minimum mean-square error (LMMSE) estimation. It makes a good compromise between

technical simplicity and performance for problems with moderate nonlinearity. The well-

known Kalman filter (KF) [110, 111] is a special case of the recursive LMMSE estimator,

which is optimal (i.e., MMSE estimator) for a linear Gaussian system. LMMSE estimation

plays a major role in nonlinear point estimation [151] and many popular nonlinear estimators,
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for example, the first-order extended Kalman filter (EKF) [22, 96, 178, 179, 231, 248], the

unscented filter (UF) [100–107, 251], the divided difference filter [196] and the Gaussian

filter [94], are either approximation of or based on LMMSE estimation. Further, LMMSE

estimation was successfully applied directly to radar tracking [58, 252] with linear target

dynamics model and nonlinear measurement model. It was also applied to state estimation

for Markovian jump linear systems [43, 76], which, however, should be better handled by

multiple-model estimation [152].

Intuitively, LMMSE estimation should work well for problems with low degree of nonlin-

earity. However, if x and z are related highly nonlinearly, a linear estimator, even the best

one, may not be adequate to provide acceptable accuracy. Instead of searching for the best

in the set of all linear (in z) estimators, as LMMSE estimation does, we can look for the

best estimator in a larger or different set, and hence improve estimation performance. We

propose generalized LMMSE (GLMMSE) estimation by employing this idea. The candidate

set in GLMMSE estimation can be determined by a vector-valued measurement transform

function (MTF) g(z), and we may search for the best estimator within the set L(g) of all

estimators that are linear in g(z), rather than in z. Clearly, this includes LMMSE estima-

tion as a special case with g being an identity function. Theoretically speaking, GLMMSE

estimation with a proper MTF g(z) performs at least as well as LMMSE estimation if the

moments involved can be evaluated exactly. However, similar to LMMSE estimation, ana-

lytical evaluation of the moments needed is difficult to achieve in general. Fortunately, many

approximation techniques, e.g., unscented transform and numerical integration, developed

for LMMSE estimation are also applicable to GLMMSE estimation.

The idea of applying LMMSE estimation to converted measurements exists in the target

tracking literature. In [58,252], the radar measurements in polar coordinates were converted

to Cartesian coordinates, resulting in the pseudo-linear measurements, and then LMMSE

estimation was applied to the converted measurement. The converted-measurement Kalman

filters proposed in [134, 182, 239] also followed this idea. However, they are all special cases
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of our proposed GLMMSE. First, they all converted the measurements to be pseudo-linear

in the target (partial) state, which may be difficult to achieve for some cases (e.g., the range

rate). Besides, the pseudo-linear conversion may not always be beneficial. Further, most

often the converted measurements have the same dimension as the original measurements,

which is not a necessity in our GLMMSE estimation framework. Actually, we may argu-

ment the original measurements by the converted measurements in MTF g(z) to enhance

performance, provided they are not linearly dependent.

Clearly, “what g(z) to use?” is the key to GLMMSE estimation. Design of g(z) is

evidently problem dependent and up to the preference of users. It is difficult to come

up with rigorous rules for constructing MTF in general. However, design guidelines are

provided and discussed based on a numerical example in this chapter. A general guideline

can be made that x should be less nonlinear in the converted data y = g(z) than in z. A

measure of nonlinearity [145] can be employed to quantify the degree of nonlinearity and

thus provides criterion for designing function g. Also, an MTF can be selected from a family

of functions by solving an optimization problem, i.e., minimizing the estimated mean-square

errors computed in the estimator. Cautions are needed to consider the problems of the

numerical instability and algorithm’s sensitivity to the prior assumption.

Our method is illustrated by two nonlinear problems in target tracking: a) single target

tracking with nonlinear dynamics model and measurement model; b) multi-target tracking

(MTT) with a linear dynamics model and a nonlinear measurement model. Note that MTT

is a nonlinear estimation problem due to the uncertainty of measurement origin, i.e., data

association problem, no matter if the target dynamics model and measurement model are

linear or not.

This chapter is organized as follows. LMMSE estimation is briefly reviewed in Sec. 3.2.

GLMMSE estimation is proposed in Sec. 3.3 and the design guidelines for MTF are discussed

in Sec. 3.4. Computation of GLMMSE estimator based on Gaussian density approximation

and Gaussian-Hermite quadrature is given in Sec. 3.5. Our method is demonstrated by two
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target tracking problems in Sec. 3.6 and 3.7, respectively. Its performance is compared with

the conventional LMMSE estimation based on the results of Monte Carlo simulation. A

summary is made in Sec. 3.8.

3.2 Review of LMMSE Estimation

Consider a parameter estimation problem, where the quantity to be estimated x and mea-

surement z are related by a nonlinear function ϕ

z = ϕ(x) + v (3.1)

with zero-mean additive noise v. The LMMSE estimation finds the best estimator in the set

L(z) of all linear (more rigorously, affine) estimators (i.e., x̂ = a+Bz), that is,

x̂LMMSE , arg min
x̂=a+Bz

MSE(x̂) (3.2)

The coefficients a and B are determined such that the MSE is minimized. It turns out

LMMSE estimation can be computed based on the first and second moments of (x, z), that

is,

x̂LMMSE = x̄+ CxzC
−1
z (z − z̄) (3.3)

P = Cx − CxzC
−1
z C ′

xz (3.4)

where

x̄ = E[x], z̄ = E[z]

are the prior means of x and z, respectively. C(·) is the covariance matrix of (·). P is the

(estimated) MSE matrix.
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The estimator above is a batch algorithm, which is computationally inefficient for a

dynamic problem. Recursive LMMSE estimation is desirable for filtering systems (2.1) and

(2.2), which are repeated in the following for convenience

xk+1 = fk(xk) + wk (3.5)

zk = hk(xk) + vk (3.6)

where, without loss of generality, we assume wk ∼ (0, Qk) (mean and covariance) and vk ∼

(0, Rk). The corresponding recursive LMMSE estimation for the discrete-time system (3.5)–

(3.6) is given by

x̂LMMSE
k = x̂k|k−1 +Kkz̃k

Pk = Pk|k−1 −KkCz̃kK
′
k

where

Kk = Cx̃k|k−1z̃kC
−1
z̃k

, Zk = [z′1 z′2 · · · z′k]
′

ẑk|k−1 = E[zk|Zk−1], x̂k|k−1 = E[xk|Zk−1]

z̃k = zk − ẑk|k−1, x̃k|k−1 = xk − x̂k|k−1

and Pk|k−1 and Pk are the predicted and updated MSE matrices at time k.

3.3 Generalized LMMSE Estimation

For a highly nonlinear system, the performance of a linear estimator, even the best one, may

not be good enough. We can enhance the performance of LMMSE estimation by enlarging or

appropriately selecting the candidate set of estimators, rather than stick to the set of linear

(in z) estimators. That is, we introduce a vector-valued measurement transform function
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(MTF) y = g(z), and find the best one within all estimators that are linear in the MTF,

leading to the GLMMSE estimation:

x̂GLMMSE , argmin
x̂

MSE(x̂)

where

x̂ = a+By, y = g(z)

Clearly, it includes LMMSE estimation as a special case with g being the identity function.

The candidate set is determined by g, which is evidently problem dependent and up to the

user’s preference. Taking a scalar case as an example, g may be chosen to include monomials

of z up to the third-degree:

g(z) = [z z2 z3]′

Then x̂ is actually a third-degree polynomials and x̂GLMMSE is the best one within the

set of all polynomial functions of z to the third-degree, which clearly includes the set of

linear estimators as a subset. However, although increasing to a higher degree polynomial

is theoretically promising, it should be avoided in general due to its numerical instability.

Theoretically speaking, GLMMSE estimation with a proper MTF g(z) should perform at

least as well as LMMSE estimation if all the moments involved can be evaluated exactly.

However, inaccurate approximation of these moments may result in worse performance.

For a parameter estimation problem (3.1), a similar derivation of LMMSE estimation

yields

x̂GLMMSE = x̄+ CxyC
−1
y (y − ȳ) (3.7)

P = Cx − CxyC
−1
y C ′

xy (3.8)
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This is actually exactly the same formula of LMMSE estimation except that the first and

second moments of (x, y), rather than (x, z), are used. Actually, it is simply applying the

LMMSE estimation to the transformed measurement model. Hence, to avoid potential am-

biguity, in this chapter, LMMSE estimation denotes specifically the linear estimation with

original measurement model, and we refer all LMMSE estimation with transformed mea-

surement model as GLMMSE estimation.

3.4 Design Guidelines

“What g(z) to choose?” is clearly a central question for GLMMSE estimation. Unfor-

tunately, rigorous rules to construct g(z) that guarantees enhanced performance for the

general case are difficult to come up and need further effort. In this section, some guidelines

and observations based on a numerical example are provided to facilitate the design process

for practical problems.

Example: Consider a scalar parameter estimation problem

z = ϕ(x) + v = x3 + v (3.9)

where v is zero-mean Gaussian white noise with variance R, and it is independent of x, which

has a prior Gaussian density N (0, Cx). We define the signal-to-noise ratio (SNR) as

SNR , E[z′tR
−1zt]

which is the ratio between the power of the noise-free signal

zt , ϕ(x) = x3
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and the power of the noise. In this example, we have

SNR =
15C3

x

R

There are some options for applying GLMMSE estimation to this problem. GL(g2)

(i.e., GLMMSE estimator with MTF g2) and GL(g4) (see Table 3.2) are two widely used

methods. Although x appears linear in g4(z) = z1/3, the noise is no longer additive and is

state dependent. Further, other MTF, e.g. g(z) = z|z|r−1, may be also considered for this

case, where r is a real number. The root mean square errors (RMSE) of GL(gi), i = 1, · · · , 6,

with different prior variances Cx, are given in Table 3.2. Note that the GL(g2) is actually

the LMMSE estimator. The RMSE of the MMSE estimation in the last row are estimated

by density estimation and serve as performance lower bound for this example. The numbers

in boldface are the lowest RMSE among gi, i = 1, · · · , 6.

When the SNR is small (i.e., from C1
x to C3

x), the LMMSE estimation performs the

best. In these cases, the degree of the nonlinearity of the measurement model does not

have a significant impact on the performance due to the low SNR. The additive and state-

independent noise in g2 benefits the estimation performance. Further, the low SNR leads to

insignificant performance differences among these estimators.

For the cases with high SNR (i.e., C8
x and C9

x), GL(g4) outperforms the others. This

can be intuitively understood that the degree of nonlinearity of the measurement model

determines the performance in this case since a linear (in g(z)) estimator is used and the

impact of the noise term is small. This becomes clearer when the noise is diminishing, which

implies SNR→ +∞, GL(g4) approaches the perfect estimate, that is,

lim
R→0

x̂GLMMSE(g4) =
E[xz1/3]

E[z1/3z1/3]
z1/3 =

E[x2]

E[x2]
x = x

However, none of the other GL(gi) in Table 3.2 achieve this, since x is nonlinearly related

to gi, i ̸= 4, and a linear estimator (in gi) is used. For example, even with a perfect
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(a) GL(g4) (b) GL(g2)

Figure 3.1: When R → 0, estimation error is solely determined by the degree of nonlinearity of
the measurement model. Although this is an extreme case, it reveals the situation with high SNR.
However, for cases with low SNR, the resulting non-additive and state-dependent noise may make
the estimator suffer.

measurement, GL(g2) does not equal to x in general (see Fig. 3.1), that is,

lim
R→0

x̂GLMMSE(g2) =
E[xz]

E[zz]
z =

E[x4]

E[x6]
z =

x3

5Cx

̸= x

lim
R→0

MSE = Cx − CxzC
−1
z C ′

xz =
2Cx

5

Hence, the estimation error in this case is purely due to the degree of nonlinearity of the

(transformed) measurement model. So, g(z) can be constructed by reducing the degree of

nonlinearity of the measurement model for the high SNR case.

A measure of nonlinearity for estimation was proposed in [145], which can serve as a

criterion for design. A normalized measure of nonlinearity for Eq. (3.1) was defined as

M = min
L∈L(x)

√

E[||L(x)− ϕ(x)||22]
tr(Cφ)

(3.10)
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Table 3.1: measure of nonlinearity of gi, with Cx = 10, R = 1.

g g1 g2 g3 g4 g5 g6

Normalized MoN 98.34% 63.47% 32.43% 0 21.10% 31.42%

where Cφ is the covariance matrix of ϕ(x), and L(x) is the set of all linear functions

L(x) = a+Bx (3.11)

Note that we are interested in the nonlinearity between x and z, and hence additive noises

are not considered in the measure. Intuitively, M quantifies the portion (or percentage) of

the nonlinear part that cannot be accounted for by a linear function in ϕ. As shown in [145],

it has a standard range of [0, 1]. Clearly, {M = 0} implies that ϕ is linear almost everywhere,

and {M = 1} implies that {L̂ = 0}, roughly meaning that ϕ contains no “linear component”

at all. The computation of M requires knowledge of probability density function (PDF) p(x)

of x. If it is difficult to evaluate analytically due to the nonlinearity or the dynamics of the

system, a sample representation of p(x) can be obtained by various techniques, e.g., sequen-

tial Monte Carlo method, based on the prior distribution. For the measure of nonlinearity

of the transformed model, simply replace the nonlinear function ϕ(x) by g(ϕ(x)). Table 3.1

shows the measure of nonlinearity of the transformed measurement models gi, i = 1, · · · , 6.

It appears that the conversion leading to the pseudo-linear measurements may be the first

choice for the high SNR case. However, this may not be achievable in practice, or doing so

may incur numerical problems, as explained later.

Further, it does not have to reduce the degree of nonlinearity to zero to benefit the

performance, as demonstrated by the superior performance of GL(g3) in Table 3.2 for a

certain range of SNR. In this case, g3(z) outperforms other MTF due to a good combination

of the reduction of the degree of nonlinearity and the statistical property of the noise term

in the converted measurement model. Hence, design of g(z) depends on the SNR of the

problem.
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4( )g44
2( )g22

7( )g77

Figure 3.2: Candidate sets of estimators for searching.

Most often, conventional MTF applied in target tracking have the same dimension as the

original measurements. They often correspond to coordinate transforms. For example, the

converted-measurement Kalman filter converts the radar measurements in polar coordinates

to Cartesian coordinates. Existing methods used either the original or the converted mea-

surements for tracking. However, GLMMSE estimation can beat both methods by including

both measurements in g(z), which has a higher dimension than the original data. For exam-

ple, GL(g7) beats both GL(g2) and GL(g4), as shown in Table 3.2. Actually, it is equivalent

to augment the original measurement with the transformed measurement. Let L(g) denote

the set of all estimators that are linear in g. GL(g7) finds the best estimator within L(g7),

which clearly includes the candidate sets L(z) in LMMSE estimation and L(g4) in GL(g4)

as subsets, and hence results in superior performance. See Fig. 3.2 for illustration. Other

augmentations are optional. For example, g(z) = [g3 g4]
′ or g(z) = [g2 g3 g4]

′ may be

preferred to g(z) = [g2 g4]
′ for the cases of C4

x to C7
x in Table 3.2. Theoretically speaking the

more converted measurements are augmented (provided they are not linearly dependent),

the better it should perform. This may not be true in practice. If the dimension of the

augmented measurement (i.e., the dimension of g(z)) is much higher than that of x, comput-

ing the inversion of the second moment of g(z) may become more difficult and numerically

unstable.
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The computed MSE P (Eq. (3.8)) can also serve as an optimality criterion for comparing

g(z). An optimal g(z) in a set G of candidate functions may be obtained by minimizing

trace(P ), that is,

g(z) = argmin
g∈G

trace(P ) (3.12)

This requires solving a nonlinear (maybe constrained) optimization problem, which, for

parameter estimation, can be done off-line (i.e., without measurements). Note that P is the

filter computed MSE, which would be accurate if the assumed prior information is precise and

the numerical approximation involved is accurate. However, the actual filter performance

depends on the credibility of these factors [161]. Consider the MTF

g(z) = sign(z)|z|r, r ∈ [0.1, 1] (3.13)

as an example. We want to find the optimal r for Eq. (3.13) based on Eq. (3.12). Clearly,

the optimal r depends on the SNR of the problem. Several levels of SNR are considered

in Table 3.3 by setting Cx = 1 and varying R. The optimal r under each SNR and the

corresponding RMSE are given in Table 3.3, where the RMSE of the MMSE estimation

provides a performance lower bound. For the dynamic case, the relation between the optimal

r and SNR may be also calculated off-line, i.e, a function r(SNR) can be computed. At each

filter step, the SNR can be estimated and corresponding r(SNR) can be used for MTF.

Otherwise, at the cost of additional online computational demands, r can be calculated

online, as explained in the next section.

The estimator’s sensitivity to the assumptions and stability to the numerical approxima-

tions should be seriously considered for designing g(z). For example, measurement conver-

sions that result in a high power of z, e.g., g1(z) in Table 3.2, should be avoided in general.

GLMMSE estimation with such an MTF requires computing high-order moments of z or

x, and they are in general sensitive to the assumed prior information (e.g., distributions
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of x and v, which are hard to obtain precisely in practice) and the accuracy of numerical

approximation. Further, they often cause numerical problems, e.g., ill-conditioned matrices,

in the computation.

3.5 Numerical Approximation for GLMMSE Estima-

tion

Similar to LMMSE estimation, the first and second moments of (x, y) are required in

the GLMMSE estimator (3.7)–(3.8) and they are difficult to evaluate analytically in gen-

eral. Fortunately, the approximation techniques for LMMSE estimation can also be applied

to GLMMSE estimation. We present our algorithm based on moment-matched Gaussian-

density approximations and Gaussian-Hermite quadratures (GHQ), as does in the Gaussian

filter [94].

For a scalar-valued x, the GHQ approximates an integral by a weighted sum:

∫ +∞

−∞
f(x)e−x2

dx ≈
n
∑

i=1

ωif(xi)

where n is the number of sample points xi, which are the roots of the Hermite polynomial

Hn(x) = (−1)nex
2 dne−x2

dxn

and the corresponding weights are

ωi =
2n−1n!

√
π

[nHnxi]2
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The generalization of GHQ to the vector case with a general Gaussian density is

∫

· · ·
∫

f(x)N (x; x̄, C)dx1 · · · dxnx

shorthand
=

∫

f(x)N (x; x̄, C)dx

x=C
1
2 r+x̄
=

∫

f(C
1
2 r + x̄)N (r; 0, I)dr

=

∫

1
√

(2π)nx
f(C

1
2 r + x̄)e−

1
2
rr′dr

r=
√
2s

=

∫

1√
πnx

f((2C)
1
2 s+ x̄)e−ss′ds

=

∫

· · ·
∫

a(s)e−s21 · · · e−s2nxds1 · · · dsnx

where a(s) = f((2C)
1
2 s+x̄)√

πnx
and nx is the dimension of x. Therefore, the GHQ can be applied

to each dimension of s separately.

For parameter estimation (3.1), let η = [x′ v′]′, and approximate the distribution of η by

a Gaussian density

η ∼ N (η; η̄, Pη)

where

η̄ =







x̄

0






, Pη =







Cx 0

0 R






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Table 3.2: RMSE of GLMMSE estimation with different g(z), R = 1.

Function g(z) C
(1)
x = 0.1 C

(2)
x = 0.3 C

(3)
x = 0.5 C

(4)
x = 0.75 C

(5)
x = 1 C

(6)
x = 1.5 C

(7)
x = 2 C

(8)
x = 5 C

(9)
x = 10

SNR 0.015 0.405 1.875 6.33 15 50.625 120 1875 15000
g1(z) = z3 0.3152 0.5369 0.6968 0.8543 0.9868 1.2087 1.3957 2.2069 3.1210
g2(z) = z 0.3148 0.4981 0.5517 0.6021 0.6614 0.7858 0.9000 1.4148 2.0001

g3(z) = z
3
5 0.3150 0.5083 0.5731 0.5884 0.5847 0.5822 0.5946 0.7660 1.0415

g4(z) = z
1
3 0.3152 0.5174 0.6058 0.6558 0.6715 0.6711 0.6553 0.5607 0.4836

g5(z) = z
1
5 0.3153 0.5225 0.6223 0.6990 0.7403 0.7887 0.8136 0.8804 0.9828

g6(z) = z
1
7 0.3154 0.5261 0.6306 0.7178 0.7704 0.8430 0.8903 1.0599 1.2791

g7(z) = [g2 g4]
′ 0.3148 0.4944 0.5516 0.5879 0.6083 0.6186 0.6145 0.5478 0.4818

RMSE of MMSE 0.3137 0.4645 0.5511 0.5692 0.5598 0.5535 0.5205 0.4474 0.3645

Table 3.3: Optimal r, with Cx = 1.

R 0.001 0.01 0.1 0.25 0.5 0.75 1 2.5 5 7.5 10
SNR 15000 1500 150 60 30 20 15 6 3 2 1.5

Optimal r 0.3670 0.4064 0.4895 0.5426 0.5947 0.6302 0.6575 0.7673 0.8750 0.9508 1.0000
RMSE 0.1449 0.2391 0.3849 0.4577 0.5181 0.5550 0.5816 0.6695 0.7360 0.7739 0.8000

RMSE of MMSE 0.1207 0.2082 0.3481 0.4302 0.5002 0.5305 0.5598 0.6570 0.7342 0.7725 0.7992
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and x̄ and Cx are the assumed prior mean and covariance matrix of x, respectively. Then,

the moments involved in Eqs. (3.7) and (3.8) are computed by

ȳ =

∫

y(η)N (η; η̄, Pη) dη =

∫

g(ϕ(x) + v)N (η; η̄, Pη) dη

Cy =

∫

(y(η)− ȳ)(y(η)− ȳ)′N (η; η̄, Pη) dη

Cxy =

∫

(x− x̄)(y(η)− ȳ)′N (η; η̄, Pη) dη

where ϕ(x) is given in Eq. (3.1), and all the integrals are evaluated by GHQ.

The recursive GLMMSE estimation for the dynamic system (3.5)–(3.6) can be obtained

similarly

x̂GLMMSE
k = x̂k|k−1 +Kkỹk

Pk = Pk|k−1 −KkCỹkK
′
k

where

Kk = Cx̃k|k−1ỹkC
−1
ỹk

Y k = [y′1 y′2 · · · y′k]
′

yk = g(zk)

ŷk|k−1 = E[yk|Y k−1]

ỹk = yk − ŷk|k−1

Following the same idea of the Gaussian filter [7, 94], which successively approximates the

probability densities needed by moment-matched Gaussian densities and evaluates integrals

by GHQ, we have the recursive GLMMSE estimation. One cycle of it is given below:

1. State prediction
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Approximate the posterior density of xk−1 by a moment-matched Gaussian density:

PDF(xk−1|Y k−1) ≈ N (xk−1; x̂k−1, Pk−1)

where PDF(·) stands for probability density function of (·). Then

x̂k|k−1 ≈
∫

fk−1(x)N (x; x̂k−1, Pk−1)dx

Pk|k−1 ≈
∫

(fk−1(x)− x̂k|k−1)(fk−1(x)− x̂k|k−1)
′N (x; x̂k−1, Pk−1)dx

+Qk−1

2. Measurement prediction

Let ηk = [x′
k v

′
k]

′. Approximate the probability density by a moment-matched Gaussian

density:

PDF(ηk|Zk−1) ≈ N (ηk; η̄k, P
η
k )

where

η̄k =







x̂k|k−1

0






, P η

k =







Pk|k−1 0

0 Rk







Let yk(ηk) = g(hk(xk) + vk). Then

ŷk|k−1 ≈
∫ +∞

−∞
yk(ηk)N (ηk; η̄k, P

η
k )dηk

3. Filter gain

Kk = CxyS
−1
k (3.14)
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where

Sk ≈
∫

(yk(ηk)− ŷk|k−1)(yk(ηk)− ŷk|k−1)
′N (ηk; η̄k, P

η
k )dηk

Cxy ≈
∫

(x− x̂k|k−1)(yk(ηk)− ŷk|k−1)
′N (ηk; η̄k, P

η
k )dηk

All the integrals above are evaluated by the GHQ.

4. Update

x̂ = x̂k|k−1 +Kk[g(zk)− ŷk|k−1]

Pk = Pk|k−1 −KkSkK
′
k

As mentioned in the previous section, trace(Pk) may serve as an optimization criterion

for selecting an MTF g(zk). For example, if Eq. (3.13) is chosen as the MTF, then

Pk is a function of r. An optimal or suboptimal r for each time step k may be found

adaptively by a numerical optimization procedure, which may iterate steps (2-4) a

few times. Although searching for the optimal solution is usually computationally

demanding, we stress that it does not have to find the best r to benefit the performance.

Instead of a single Gaussian density, the PDF can be approximated by a Gaussian mixture

to promote approximation accuracy, similarly as the Gaussian sum filter or mixed Gaussian

filter does [94]. GHQ is chosen due to its superior performance to the unscented transform

in our simulation. However, other approximation techniques may be preferred for a specific

problem. It is well known that GHQ suffers from the “curse of dimensionality” and is

computationally inefficient for high dimensional x or η. Many methods are available to

mitigate, to some extent, this effect (see [4, 6, 8, 42, 70, 79, 164,184,194,200,230,232,238]).
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3.6 Application to Radar Tracking

We first illustrate our method by a 2 two-dimensional tracking problem with radar measure-

ments. The performance of LMMSE estimation, GLMMSE estimation with pseudo-linear

measurement and GLMMSE estimation with augmented measurement is compared. As

mentioned before, the first two methods are widely used in tracking. As demonstrated by

the simulation results, we can further improve the performance by using both the original

measurement and the converted measurement.

3.6.1 Simulation Scenario

Assume a target flies in a (nearly) constant-turn (CT) motion with an unknown turn rate

ωk. Let the target state be

xk = [x ẋ y ẏ ω]′k

where subscript k denotes the time index, (x, y) are Cartesian coordinates of target position,

and (ẋ, ẏ) are the velocities along x and y directions, respectively. Then the target dynamics

can be described by [150]

xk =

























x + sinωT
ω

ẋ− 1−cosωT
ω

ẏ

(cosωT )ẋ− (sinωT )ẏ

y + 1−cosωT
ω

ẋ + sinωT
ω

ẏ

(sinωT )ẋ + (cosωT )ẏ

ω

























k−1

+ wk (3.15)

where T is the sampling interval. Due to the unknown turn rate ωk, the target dynamics

(3.15) model is nonlinear and ωk is estimated online together with the target position and

velocity. Assume the range rk and the bearing θk of the target are available from each radar
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scan at time t = kT :

zk =







r

θ







k

=







√

x2 + y2

arctan y
x







k

+ vk (3.16)

The additive noises wk and vk in Eqs. (3.15)–(3.16) are assumed zero-mean white Gaus-

sian noises with covariance Qk and Rk, respectively. We consider two MTF for GLMMSE

estimation

g1(zk) =







r cos θ

r sin θ







k

and

g2(zk) =













z

r cos θ

r sin θ













k

Clearly, g1 results in pseudo-linear measurements and g2 arguments the pseudo-linear mea-

surements into the original measurements.

3.6.2 Ground Truth

The true initial state of the target is set to be

x0 = [50000m 200m/s − 50000m 200m/s 0.01rad/s]′
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and it follows the CT model (3.15). The initial state and MSE matrix for each filter are

chosen to be

x̂0 ∼ N(x0, P0)

P0 = diag[108 102 108 102 0.001]′

The sampling interval is T = 10s and totally k = 50 steps are simulated.

3.6.3 Performance Measure

The following performance measures are computed based on 1000 Monte Carlo (MC) runs.

Each measure reveals different aspects of an estimator’s performance.

1. Root mean-square error (RMSE):

RMSEk =

√

√

√

√

1

I

I
∑

i=1

(x̃
[i]
k )

′x̃
[i]
k

where x̃
[i]
k = x

[i]
k − x̂

[i]
k is the estimation error at time k on the ith MC run, and I is the

total number of MC runs. This measure evaluates an estimator’s (average) accuracy.

2. Filter credibility:

Other than estimation accuracy, we also evaluate the credibility of each estimator—

how close the estimator’s self-assessments are to the true performance—by evaluating

the accuracy of the estimated MSE. The non-credibility index (NCI)

γk =
10

I

I
∑

i

| log10(ρik)|

and inclination index (I.I.)

ξk =
10

I

I
∑

i

log10(ρ
i
k)
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were proposed for such a purpose in [159,161], where

ρ
[i]
k =

(x̃
[i]
k )

′(P̂
[i]
k )−1x̃

[i]
k

(x̃
[i]
k )

′(P̂ )−1
k x̃

[i]
k

P̂k =
1

I

I
∑

i=1

x̃
[i]
k (x̃

[i]
k )

′

and [i] is the index of the MC run, P̂
[i]
k is the filter computed MSE matrix on the ith run,

P̂k can be understood as the (approximated) real MSE based on simulated estimation

errors, and ρk is the ratio of squared estimation errors normalized by computed and real

MSE matrices, respectively. Hence, an estimator is more credible if the NCI is smaller,

meaning that the computed MSE is closer to the true MSE. The inclination (pessimistic

or optimistic) of an estimator is indicated by I.I.: if I.I. is significantly larger than zero

and γk ≈ ξk, it implies that the estimator tends to be optimistic, meaning that the

computed MSE is smaller than the truth; if I.I. is significantly smaller than zero and

γk ≈ −ξk, then the estimator tends to be pessimistic since the computed MSE is larger

than the truth in this case.

3.6.4 Simulation Results

Two cases of different levels of measurement noises are considered. Three estimators—

LMMSE estimator, GL(g1) and GL(g2)—were simulated and the results of these two cases

are given in Figs. 3.3 and 3.4, respectively.

Case 1: We consider a moderate level of measurement noise,

Rk =







1 0

0 0.001







The true and estimated trajectories are given in Fig. 3.3a. The RMSE of the filters are

given in Fig. 3.3b. GL(g2) outperforms the other two filters in terms of estimation accuracy,
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Figure 3.3: Radar tracking (Case 1).

and the LMMSE filter is slightly better than GL(g1). The NCI and I.I. are shown in Figs.

3.3c and 3.3d, respectively. As indicated by NCI, the GL(g1) is significantly less non-credible

than the other two filters in the beginning stage (from start to about k = 25) and then their

performance difference becomes insignificant. Based on the I.I., LMMSE filter is somewhat

optimistic, GL(g2) tends to be slightly optimistic and GL(g1) shows no persistent inclination.

Case 2: The covariance of the measurement noise is increased to

Rk =







10 0

0 0.005






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Figure 3.4: Radar tracking (Case 2).

The trajectories and estimation errors are given in Figs. 3.4a and 3.4b, respectively. The

estimation errors of all three estimators become larger than Case 1, as expected. Although

GL(g2) still outperforms the other filters, the performance gap between GL(g2) and LMMSE

filter becomes insignificant. Similar observations (as in Case 1) on NCI, shown in Fig. 3.4c,

can be made here. However, unlike Case 1, GL(g1) tends to be slightly pessimistic in this

case, as shown by I.I. in Fig. 3.4d.
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3.7 Application to Multitarget Tracking

In this section, we demonstrate our method by an example of multitarget tracking (MTT).

In general,a major difficulty in MTT arises from the uncertainty of measurement origin, that

is, the data association problem. MTT algorithms abound in the tracking literature and they

all have pros and cons. We proceed based on the symmetric measurement equations (SME)

method [26,112,113,136,137,215], which avoids the data association problem by converting

it to a highly nonlinear filtering problem. Since we focus on the performance of nonlinear

filtering, a simplified MTT scenario is considered here. Assume the number of targets in the

surveillance region is known, and the sensor has a perfect detection rate and no false alarm.

That is, each target generates one and only one measurement at each sensor scan. However,

the SME method can be generalized to deal with clutter and miss detection. Let

Xk = [(x1
k)

′, · · · , (xn
k)

′]′

be the multitarget state vector obtained by stacking together the state vectors of individual

targets xi
k, and X̂k be its estimate. The state vector of each individual target is defined as

xi
k = [xi ẋi yi ẏi]′k, i = 1, · · · , n

in the 2D Cartesian coordinate system, where k is the time step and n is the total number of

targets, which is assumed known and constant. Assume all the targets move in the (nearly)

constant velocity (CV) model [150]

Xk = FkXk−1 +Wk (3.17)
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where

Fk = diag(F, · · · , F )

F =



















1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1



















Wk = [(w1
k)

′, · · · , (wn
k )

′]′

and T is the sampling interval, wi
k is the process noise of target i. Based on the assumptions

of perfect sensor detection and no false measurement, each target will generates one and

only one measurement at each sensor scan. Let

Zk = {z1k, · · · , znk}

be the measurement set at time k, which contains n measurements from the n targets. We

assume the range and azimuth are measured

zjk ,







zjx

zjy







k

= Hk(x
i
k) + vik (3.18)

if zjk is from target xi
k, where

Hk(x
i
k) =







√

(xi)2 + (yi)2

arctan(yi/xi)







k

and vik is the measurement noise. As mentioned before, even if the target dynamics model

(3.17) and measurement model (3.18) were all linear, MTT is a non-linear estimation problem

due to the unknown correspondence between the measurements and targets. The SME
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method avoids data association by system conversion, results in association-independent

measurement model. This conversion is done by a symmetric function φ. Then a nonlinear

filter is needed to tackle the converted nonlinear system. Note that nonlinear filters based

on density estimation, e.g., particle filter, may not be computationally feasible because of

the high-dimensionality of this system.

The symmetric function φ in SME must be a vector-valued function of measurement set

Zk, that is, the function value must be invariant (symmetric) under the permutation of its

arguments:

φ(z1k, · · · , znk ) = φ(zπ1
k , · · · , zπn

k )

where {π1, · · · , πn} could be any permutation of the index {1, · · · , n}. Further, some reg-

ularity conditions [215] on φ should be satisfied. Some symmetric functions, e.g., sum of

power and sum of product, were proposed in [112, 113, 215] and their pros and cons were

compared based on simulations [113,137,215].

3.7.1 Simulation Scenario

We consider n = 3 targets in a CV motion in the surveillance region. Their initial states are

x1
0 = [5000m − 10m/s 1000m 10m/s]′

x2
0 = [4400m 10m/s 1000m 10m/s]′

x3
0 = [4700m − 2m/s 1000m 10m/s]′

The sensor sampling interval is T = 1s and totally k = 50 steps were simulated. Two

symmetric functions φ can be used:
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Sum of power:

φe(Zk) =

































z1x + z2x + z3x

z1y + z2y + z3y

(z1x)
2 + (z2x)

2 + (z3x)
2

(z1y)
2 + (z2y)

2 + (z3y)
2

(z1x)
3 + (z2x)

3 + (z3x)
3

(z1y)
3 + (z2y)

3 + (z3y)
3

































k

(3.19)

Sum of product:

φπ(Zk) =

































z1x + z2x + z3x

z1y + z2y + z3y

z1xz
2
x + z1xz

3
x + z2xz

3
x

z1yz
2
y + z1yz

3
y + z2yz

3
y

z1xz
2
xz

3
x

z1yz
2
yz

3
y

































k

(3.20)

Hence the converted measurement

Zs
k = φ(Zk) ,

































φ1

φ2

φ3

φ4

φ5

φ6

































k

= φ(Hk(Xk) + Vk) (3.21)
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is invariant with respect to the association between the measurements and targets, where φi

is the ith element in vector Zs
k and

Hk(Xk) = [Hk(x
1
k) Hk(x

2
k) Hk(x

3
k)]

′

Vk = [(v1k)
′, (v2k)

′, (v3k)
′]′

So, after the symmetric conversion, MTT can be addressed without the data association.

However, Eq. (3.21) becomes highly nonlinear. We choose φ = φπ since it outperforms φe

in our scenario, agreeing with the observations in [113].

Directly applying LMMSE estimation to system (3.17) and (3.21) tends to suffer from

numerical problems. The condition number of Sk in Eq. (3.14) is larger than 1020 and hence

results in vulnerable performance. Further, converting Zs
k to make it pseudo-linear in Xk is

difficult, if not impossible. However, with the flexibility introduced by MTF in GLMMSE

estimation, many options are at hand to reduce the degree of nonlinearity. We proceed by

choosing the following MTF:

g1(Z
s
k) =

































φ1

φ2

sign(φ3)
√

|φ3|

sign(φ4)
√

|φ4|
3
√

φ5

3
√

φ6

































k

, g2(Z
s
k) =

































φ1

φ2

3
√

φ3

3
√

φ4

5
√

φ5

5
√

φ6

































k
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and

gadapt(Z
s
k) =

































φ1

φ2

sign(φ3)|φ3| 1r

sign(φ4)|φ4| 1r

sign(φ5)|φ5| 2
3r

sign(φ6)|φ6| 2
3r

































k

, rl ≤ rk ≤ ru (3.22)

Note that gadapt is a function parameterized by rk, which is computed adaptively by min-

imizing the trace(Pk) online. Further, rk is confined within the interval [rl ru] to avoid

numerical problems. If we set rk = 2, then gadapt = g1.

We demonstrate the performance of GL(g1), GL(g2) and GL(gadapt) by comparing them

with the performance lower bound provided by the unscented filter (UF) with exact associ-

ation. All the filters were initialized by

X̂0 ∼ N(X0, P0), P0 = diag(p0, p0, p0)

where

X0 = [(x1
0)

′, (x2
0)

′, (x3
0)

′]′, p0 = diag(1000 0.01 1000 0.01)

3.7.2 Performance Measure

All the filters are evaluated by the optimal subpattern assignment (OSPA) metric [220]

proposed for evaluating MTT algorithms. Since the number of targets is known in our

scenario, OSPA can be simplified to

D(Xk, X̂k) = min
π∈Πn

n
∑

i=1

do(x
i
k, x̂

π(i)
k )
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where Πn is the set of all possible permutations of the index {1, · · · , n}, and we choose the

distance function

do(x
i
k, x̂

j
k) , ||xi

k − x̂j
k||2

due to its popularity. The measure is evaluated based on 100 MC simulation runs.

3.7.3 Simulation Results

Two cases of different levels of measurement noise were simulated and the results are given

in Figs 3.5 and 3.6, respectively.

Case 1: The covariance of the measurement noise is set to

Rk =







100 0

0 0.0001







rl = 2.5 and ru = 3.5 are chosen for gadapt. One realization of the true and estimated

trajectories of the three targets are given in Fig. 3.5a. The OSPA of each filters are given

in Fig. 3.5b. The UF with exact association provides the performance lower bound. GL(g2)

and GL(gadapt) perform similarly and they outperform GL(g1) greatly. The average rk for

GL(gadapt) is shown in Fig. 3.5c. The ratio of computational requirements of GL(g2) and

GL(gadapt) is 1/5.5. In this case, the performance gain to GL(g2) achieved by the optimization

procedure in GL(gadapt) is insignificant, meaning that GL(g2) may be preferred due to its

good combination of accuracy and computation complexity.

Case 2: The covariance of measurement noise is increased to

Rk =







1000 0

0 0.001






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(c) Average rk for GL(gadapt) in Eq. (3.21)

Figure 3.5: MTT (Case 1).
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Figure 3.6: MTT (Case 2).
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rl = 2.1 and ru = 3 are chosen for gadapt. The true and estimated trajectories are given

in Fig. 3.6a, and the estimation errors are shown in Fig. 3.6b. Due to the increase in

measurement noise, all the filters have much larger estimation errors than in Case 1, and

GL(g1) even diverges. The performance gaps among the UF with exact association, GL(g2)

and GL(gadapt) become much larger than in Case 1. The average rk for GL(gadapt) is shown

in Fig. 3.6c.

3.8 Summary

By introducing a vector-valued measurement transform function (MTF), the GLMMSE es-

timation finds the best estimator among all estimators that are linear in MTF, rather than

in the measurement itself. With a properly designed MTF, GLMMSE estimation should

have superior performance to LMMSE estimation due to the benefit of a more appropriate

or enlarged candidate set of estimators (than the set of all linear estimators in LMMSE esti-

mation) for searching. Although the rules for constructing an MTF is difficult to obtain for

the general case, several design guidelines based on a numerical example have been provided

to facilitate the design process. GLMMSE estimation and LMMSE estimation have similar

formulas. Hence, similar to LMMSE estimation, moments involved in GLMMSE estima-

tion are difficult to evaluate exactly in general. Fortunately, many numerical approxima-

tions for LMMSE estimation are also applicable to GLMMSE estimation. Approximation

of GLMMSE estimation based on Gaussian density approximation and Gaussian-Hermite

quadrature has been presented. Our GLMMSE estimation is demonstrated by applications

to two nonlinear problems in target tracking.
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Chapter 4

Recursive Joint Decision and

Estimation

4.1 Introduction

Solutions to many practical problems involve both decision and estimation. Difficulties

often arise when decision and estimation are tightly coupled. This is the so-called joint

decision and estimation (JDE) problem. To be clear, we interpret estimation as inferring

a continuous-valued (random or non-random) quantity, while decision is to make a choice

from a discrete candidate set. JDE problems are not uncommon, such as target tracking and

classification and multitarget tracking with an unknown number of targets. Inference of the

target state is an estimation problem; determination of the target attribute or the number

of targets is a decision process; and they clearly affect each other. The inter-dependence

between estimation and decision often incurs additional difficulty for solving JDE problems.

For example, without knowing the class or the number of targets, it is hard to estimate

the target state. On the other hand, good decision relies heavily on accurate estimation of

the target state. Conventional solutions ignore this inter-dependence either completely (e.g.,
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separate estimation and decision) or partially (e.g., decision-then-estimation or estimation-

then-decision), making their performance suffers.

This chapter follows the spirit of the batch JDE algorithm [143, 158] and develops a

recursive implementation [167]. In many applications (e.g., radar and sonar), measurements

are obtained sequentially. Thus a recursive JDE (RJDE) algorithm would be attractive and

would fit the problem more naturally. RJDE uses and updates the existing results based only

on the new data when they are available. Therefore, RJDE is computationally more efficient

than a batch algorithm. It is important to point out that, in general, this RJDE algorithm is

only an approximation of the batch JDE method and may have degraded performance. This

is similar to the case where the optimal linear estimator does not always have a recursive

form [142]. As explained later, if the decision partition of the data space and the expected

estimation cost can be computed recursively, RJDE would have the same performance as

batch JDE. However, this is difficult in practice. Approximations have been made in RJDE

to obtain a recursive algorithm, and thus may result in degraded performance. Our RJDE is

applied to a joint target tracking and classification problem and a multitarget detection and

tracking problem. Its performance is demonstrated by the results of Monte Carlo simulation.

This chapter is organized as follows. The batch JDE method is reviewed in Sec. 4.2. Our

RJDE algorithm is developed in Sec. 4.3. A joint performance measure for JDE algorithms

is given in Sec. 4.4. Applications of RJDE to (a) joint target tracking and classification and

(b) multitarget detection and tracking are presented in Sec. 4.5 and Sec. 4.6, respectively.

A summary is made in Sec. 4.7.

4.2 Joint Decision and Estimation Algorithm

The Bayes decision risk is defined as

R̄D ,
∑

i

∑

j

cijP{Di, Hj}
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where cij is the cost of deciding on Di while the true hypothesis is Hj. P {Di, Hj} is the

joint probability of decision and hypothesis. The optimal decider minimizes this Bayes risk.

For a JDE problem, this risk is generalized as [143]

R̄ ,
∑

i

∑

j

(αijcij + βijE[C(x, x̂)|Di, Hj])P{Di, Hj} (4.1)

where x is the quantity to be estimated and x̂ the estimate, C(x, x̂) is the estimation cost

function. By introducing the weight coefficients {αij, βij} and the conditional expected

estimation cost E[C(x, x̂)|Di, Hj], both estimation errors and decision errors contribute to R̄,

and the correlations between decision and estimation are accounted for explicitly. Although

various C(x, x̂) are possible (provided they satisfy some admissibility conditions), quite often

the mean square error (mse) is adopted:

E[C(x, x̂)|Di, Hj] = E[(x− x̂)′(x− x̂)|Di, Hj]

= mse(x̂|Di, Hj) (4.2)

In the sequel, this square error is chosen as the estimation cost function unless stated other-

wise. The weight coefficients (design parameters) αij and βij are application-dependent and

up to the user to choose.

The basic idea of the JDE algorithm [143,158], [250] searches the solution by minimizing

R̄ with an iteratively procedure, which is given below:

Algorithm I : The batch JDE algorithm.

1. Initialize the algorithm by an initial decision partition D0 = {D0
1,D0

2, · · · ,D0
m} of the

data space Z. (Actually any set of decision region, not necessarily a partition, works

in this framework [143]. For simplification, however, we only consider partition here.)

2. E-step: At each iteration l, for the given partition Dl = {Dl
1,Dl

2, · · · ,Dl
m} of the data

space Z, compute the optimal state estimate x̂l by minimizing R̄. If the expected cost
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function is chose to be Eq. (4.2), for Z ∈ Dl
i, we have

x̂l = x̌
(i)
l =

∑

j

x̂
(j)
l P̄ (i){Hj|Z}

x̂
(j)
l = E[xl|Z,Hj]

P̄ (i){Hj|Z} =
βijP{Hj|Z}

∑

h βihP{Hh|Z}

3. D-step: Compute the conditional expected estimation cost based on Dl

ϱlij , E[C(x, x̂l)|Dl
i, Hj]

=

∫

z∈Dl
i

∫

x∈X
C(x, x̂l)dF (z, x|Hj), ∀i, j (4.3)

where X is the state space of x. Given ϱlij, determine the new decision partition

Dl+1 = {Dl+1
1 ,Dl+1

2 , · · · ,Dl+1
m } by minimizing R̄, which is a standard Bayes decision

problem.

4. Repeat the E- and D-steps until the change of the generalized Bayes risk R̄ is smaller

than a prespecified threshold.

5. Output the final decision and estimation {D̂, x̂}.

The generalized Bayes risk, which is the foundation of the JDE method, extends the

traditional Bayes risk in several aspects [143]: (a) It is a joint risk for both decision and

estimation. The decision cost, the estimation error and their couplings are all considered in

this framework. (b) Unlike hypothesis testing, the decision candidate set and the hypothesis

set are not necessarily one-to-one in the JDE framework. (c) The estimation cost function

C(x, x̂) rather than C(x̃) is involved (where x̃ , x − x̂), which empowers the algorithm

to cope with the case where x and x̂ are of different dimensions. This is a typical case in

multitarget tracking with an unknown number of targets. Further, the coefficient βij converts

possibly incommensurable estimation risks E [C(x, x̂) |Di, Hj ] to a unified risk, rendering the
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summation meaningful. (d) The weight coefficients {αij, βij} provide extra flexibility to fine

tune the algorithm. The relative weights of the decision and estimation in a JDE problem

are captured by the relative magnitudes of {αij, βij} [143,158], [250].

Convergence of the batch JDE algorithm is guaranteed, since the E-step and the D-step

make R̄ at least non-increasing during iterations. Let

c′ij = (αijcij + βijE[C(x, x̂)|Di, Hj])

be the generalized cost. For a given expected estimation cost E[C(x, x̂)|Di, Hj], c
′
ij is fixed.

Then, as in step 3, the partition D = {D1,D2, · · · ,Dm} is chosen to minimize

R̄ =
∑

i

∑

j

c′ijP{Di, Hj}

similarly as the traditional Bayes decision procedure does. R̄ is clearly non-increasing in this

step. Next, for the given partition D, it yields

R̄ =
∑

i

∑

j

cijP{Di, Hj}+
∑

i

∑

j

βijE[C(x, x̂)|Di, Hj]P{Di, Hj} (4.4)

The first term in Eq. (4.4) is a constant and the second term can be minimized by choosing

the optimal x̂ (conditioned on the partition D) as in step 2, which also does not increase

R̄. Thus the iteration converges, but not necessarily to the joint optimal solution in general,

since the iterations may be “trapped” at some local optimum.

4.3 Recursive JDE

In many dynamic applications the measurements are observed sequentially. Although the

JDE method of [143] is theoretically superior, because of its developed algorithm’s batch na-
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ture, it may be computationally inefficient. A recursive JDE (RJDE) algorithm is developed

in this section. It avoids starting from scratch when new measurements become available.

The RJDE searches for a JDE solution recursively by minimizing Eq. (4.1) based on

sequential data. Ideally, if the decision partition of the data space Zk (the space of Zk,

where Zk is given in Eq. (4.8)) and ϱij of Eq. (4.3) can be calculated recursively, the RJDE

and batch JDE would have the same results, which is, unfortunately, difficult in general.

Hence some approximations are made to develop a recursive algorithm. As the data arrive

sequentially for each time k, unlike the batch JDE which computes the decision partition of

Zk, only the space Zk of the current data zk is partitioned conditioning on all previous data

Zk−1. Further, the conditional expected estimation cost ϱij is approximated by εkij of Eq.

(4.7) at time k, which is computed based on the partition of Zk with additional conditions on

Zk−1. Here, for simplicity, it is assumed that the underlying hypothesis Hj does not change

over time, but it can be generalized to a first-order Markov chain, as mentioned in Sec. 4.6.

Algorithm II : The RJDE algorithm.

1. Initialize the algorithm by the initial parameters, i.e., expected estimation cost ε0ij and

P{Hj}.

2. The posterior cost at time k is

Ck
i (Z

k) =
∑

j

ckijP{Hj|Zk} (4.5)

where

ckij = αijcij + βijε
k
ij (4.6)

εkij = E[C(xk, x̂k)|Zk−1, Dk
i , Hj] (4.7)

Zk = [z′1, z
′
2, · · · , z′k]′ (4.8)
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3. At time k + 1, the decision partition (conditioned on Zk) of space Zk+1

Dk+1 = {Dk+1
1 ,Dk+1

2 , · · · ,Dk+1
M }

can be determined by

Dk+1
i = {zk+1 : C

k
i (zk+1|Zk) ≤ Ck

l (zk+1|Zk), ∀l}

where

Ck
i (zk+1|Zk) =

∑

j

ckijP{Hj|zk+1, Z
k} (4.9)

4. The state estimate x̂k+1 and conditional expected cost εk+1
ij are computed based on

{Dk+1|Zk}. Update Ck
i (zk+1|Zk) to Ck+1

i (zk+1|Zk) by replacing ckij in Eq. (4.9) with

ck+1
ij .

5. Recalculate the decision partition {Dk+1|Zk} based on Ck+1
i (zk+1|Zk) obtained in step

4.

6. Repeat steps 4 and 5 until the termination conditions (e.g., between two iterations the

decision does not change and the change of the expected estimation cost is smaller

than a prespecified threshold) are satisfied. Output the JDE solution {D̂k+1, x̂k+1}.

7. let k = k + 1 and go to step 2.

The iteration of steps 4 and 5 is guaranteed to converge, which can be proved similarly as

for the batch JDE.
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4.4 Performance Evaluations

Decision performance and estimation performance are often evaluated by the correct-decision

rate and the estimation mean square error (mse) respectively. For a JDE problem, however,

these two evaluation criteria are incomprehensive and often incapable of comparing different

algorithms—e.g., one algorithm may have a higher correct-decision rate but a larger mse.

In this case, it is not straightforward to tell which algorithm is superior. Further, these

measures require precise knowledge of the ground truth, which is hardly available except in

simulations. A joint performance measure (JPM) based on the statistical distance between

the real measurement and the predicted measurement was proposed in [158]. Following the

same spirit, we propose a JPM for dynamic problems. The mean prediction-measurement

distance γk is defined as

γk ,
∫ ∫

d(zk, ẑk|k−1)dF (ẑk|k−1|x̂k−1, D̂k−1)× dF (zk, xk, Hj) (4.10)

where

d(z1, z2)—distance between z1 and z2, which is up to the user to choose;

zk—real measurement at time k;

ẑk|k−1—one-step predicted measurement.

The philosophy of choosing the distance between the real measurement zk and the pre-

dicted measurement ẑk|k−1 as a performance measure lies in the following remarks:

“A first-rate theory predicts; a second-rate theory forbids and a third-rate theory

explains after the event.” —Aleksander Isaakovich Kitaigordski [160]

and

“A theory is a good theory if it satisfies two requirements: It must accurately

describe a large class of observations ... and it must make definite predictions

about the results of future observations.” — Stephen Hawking [80]
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Therefore, a better algorithm should predict the future measurement better (in terms of some

distance measures), and hence, the mean prediction-measurement distance γk is justified to

be a performance measure. Further, γk jointly evaluates the decision and estimation parts

of the RJDE algorithm since the errors resulting from both parts contribute to γk. So, γk is

eligible to be a JPM.

In a discrete setting, γk can be approximated by the sample average εk,

γk ≈ εk ,
1

I

I
∑

i=1

ε
[i]
k

where

ε
[i]
k =

1

J

J
∑

j=1

d(z
[i]
k , z

[i]
k|k−1,j)

and

ẑ
[i]
k|k−1,j ∼ f(ẑk|x̂[i]

k−1, D̂
k−1,[i])—the jth one-step predicted measurement on the ith MC run;

J—total number of the one-step predicted measurements generated at each step;

I—total number of runs;

z
[i]
k —real measurement at time k on the ith run.

Note that εk can be computed even without knowing the ground truth, since the real data

are used as a “ruler” to evaluate different algorithms. Other measures usually require the

precise knowledge of the ground truth, which is hardly available except in simulations. The

distance function d(z1, z2) is problem dependent and needs to be carefully selected for dif-

ferent applications. Examples of d(z1, z2) are given in the following sections, in which our

RJDE algorithm is applied to JDE problems in target tracking.
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4.5 Application to Joint Target Tracking and Classifi-

cation

Now consider a simplified joint target tracking and classification problem. The target belongs

to two possible classes Hj, j = 1, 2. Based on measurements, we want to simultaneously

identify the target class and estimate its state. Clearly this is a JDE problem. The dynamics

model and measurement model of the target are given by the following linear equation system

xk+1 = F
(j)
k xk + w

(j)
k (4.11)

zk = H
(j)
k xk + v

(j)
k (4.12)

It is assumed that the target class does not change over time; the initial target state is

normal distributed; the target class is Bernoulli distributed; and their distributions are all

known:

x0 ∼ N (x̄0, P0) (4.13)

P{H0} = p0, P{H1} = 1− p0 (4.14)

Further, suppose the standard Kalman filter assumptions [1,142] apply to this example: the

process noise w
(j)
k and measurement noise v

(j)
k are mutually uncorrelated white Gaussian

noise sequences with zero mean and covariances Q
(j)
k and R

(j)
k respectively. They are also

uncorrelated with the initial state x0.

The RJDE algorithm presented in Sec. 4.3 is given below:

1. Initialize the algorithm by Eqs. (4.13)–(4.14).

2. Assume at time k, ckij and P{Hj|Zk} are obtained from the previous loop.
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3. When the new measurement zk+1 is available, compute the state x̂
(j)
k , E[xk|Zk, Hj]

and the corresponding MSE matrix P
(j)
k+1 by the Kalman filter [110,111]

x̂
(j)
k+1 = x̂

(j)
k+1|k +K

(j)
k (zk+1 − ẑ

(j)
k+1|k) (4.15)

P
(j)
k+1 = P

(j)
k+1|k −K

(j)
k+1S

(j)
k+1(K

(j)
k+1)

′ (4.16)

where

ẑ
(j)
k+1|k = H

(j)
k+1F

(j)
k x̂

(j)
k

P
(j)
k+1|k = F

(j)
k P

(j)
k (F

(j)
k )′ +Q

(j)
k

S
(j)
k+1 = H

(j)
k+1P

(j)
k+1|k(H

(j)
k+1)

′ +R
(j)
k+1

K
(j)
k+1 = P

(j)
k+1|k(H

(j)
k+1)

′(S
(j)
k+1)

−1

Then, the posterior probability of target class Hj follows

P{Hj|Zk+1} =
f(zk+1|Zk, Hj)P{Hj|Zk}
∑

l f(zk+1|Zk, Hl)P{Hl|Zk}

=
N

(j)
k+1(zk+1)P{Hj|Zk}

∑

l N
(l)
k+1(zk+1)P{Hl|Zk}

where N
(j)
k+1(zk+1) = N (zk+1; ẑ

(j)
k+1|k, S

(j)
k+1).

4. Calculate the intermediate cost Ck
i (zk+1|Zk) by Eq. (4.9).

5. The decision partition Dk+1 = {Dk+1
0 ,Dk+1

1 } is determined by

(ck01 − ck11)L
k+1

D1

≷
D0

(ck10 − ck00)
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where

Lk+1 ,
P{H1|Zk+1}
P{H0|Zk+1} =

f(zk+1|Zk, H1)

f(zk+1|Zk, H0)
Lk

6. Based on the decision region Dk+1, if zk+1 ∈ Dk+1
i , a JDE solution is computed

D̂k+1 = {Di : zk+1 ∈ Dk+1
i } (4.17)

x̂k+1 = x̌
(i)
k+1 ,

∑

j

x̂
(j)
k+1

βijP{Hj|Zk+1}
∑

l βilP{Hl|Zk+1} (4.18)

and εk+1
ij is updated by

εk+1
ij , mse(x̂|Zk, Di, Hj)

= E[mse(x̂(ij)|Zk+1, Di, Hj)|Zk, Di, Hj] + E[(x̂(ij) − x̂)2|Zk, Di, Hj]

= E[mse(x̂(j)|Zk+1, Hj)|Zk, Di, Hj] + E[(x̂(j) − x̌(i))2|Zk, Di, Hj]

where the index k + 1 for Di and x is dropped for simplicity. The third equality holds

if zk+1 ∈ Dk+1
i since

x̂
(ij)
k+1 , E[x|Zk+1, Dk+1

i , Hj]

=

∫

xf(x|Zk+1, Dk+1
i , Hj)dx

=

∫

xf(x|Zk+1, Hj)dx

= E[x|Zk+1, Hj] = x̂
(j)
k+1

and by Eq. (4.18), it yields x̂k+1 = x̌
(i)
k+1. These quantities are not defined if zk+1 /∈

Dk+1
i . Further, in this case, mse(x̂

(j)
k+1|Zk+1, Hj) = tr(P

(j)
k+1) (see Eq. (4.16) for P

(j)
k+1)

66



does not depend on measurement Zk+1, so

εk+1
ij = E[tr(P

(j)
k+1)|Zk, Dk+1

i , Hj] + ε̃k+1
ij

= tr(P
(j)
k+1) + ε̃k+1

ij

where ε̃k+1
ij , E[(x̌

(i)
k+1− x̂

(j)
k+1)

2|Zk, Dk+1
i , Hj] is difficult to calculate. It can be approx-

imated by ˜̃εk+1
ij numerically using the Monte Carlo method:

ε̃k+1
ij ≈ ˜̃εk+1

ij , E[(x̌
(i)
k+1 − x̂

(j)
k+1)

2|x̂(j)
k , Dk+1

i , Hj]

=

∫

zk+1∈Dk+1
i

(x̌
(i)
k+1 − x̂

(j)
k+1)

2dF (zk+1|x̂(j)
k , Hj)

≈ 1

Li

Li
∑

li=1

[x̌
(i)
k+1(z

(ij)
k+1,li

)− x̂
(j)
k+1(z

(ij)
k+1,li

)]2

where z
(ij)
k+1,li

(li = 1, 2, · · · , Li) are the simulated measurements (from the distribution

f(zk+1|x̂(j)
k , Hj)) that lie inside the decision region Dk+1

i . And

x̂
(j)
k+1(z

(ij)
k+1,li

) = E[xk+1|z(ij)k+1,li
, Zk, Hj]

x̌
(i)
k+1(z

(ij)
k+1,li

) =
∑

j

x̂
(j)
k+1(z

(ij)
k+1,li

)
βijP{Hj|z(ij)k+1,li

, Zk}
∑

l βilP{Hl|z(ij)k+1,li
, Zk}

can be calculated by the Kalman filter. If some Dk+1
i are empty, then x̂

(j)
k+1(z

(ij)
k+1,li

) and

x̌
(i)
k+1(z

(ij)
k+1,li

) can be replaced by predictions.

7. Based on the updated estimation error {εk+1
ij }, ckij us updated to ck+1

ij by replacing εkij

with εk+1
ij in Eq. (4.6).

8. The decision partition Dk+1 is recalculated according to ck+1
ij :

(ck+1
01 − ck+1

11 )Lk+1
D1

≷
D0

(ck+1
10 − ck+1

00 )
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9. Go to step 6 until the termination criterion is satisfied. Output the JDE solutions

{D̂k+1, x̌
(i)
k+1} at time k + 1 by Eqs. (4.17)–(4.18).

10. Let k = k + 1 and go to step 2.

Two cases of an illustrative numerical example and their simulation results are given later.

The RJDE method is compared with the traditional decision-then-estimation (DTE) and

estimation-then-decision (ETD) methods in terms of the root mean square error (RMSE), the

probability of correct classification (Pc) and the joint performance measure (JPM) εk. The

performance of the ideal case (which always classifies the target correctly) is also provided

as a performance bound.

In the DTE method, decision is made first at each time k based on the ratio Lk of the

posterior probabilities of H1 and H0 (provided c10 > c00 and c01 > c11):

if Lk >
c10 − c00
c01 − c11

, decide D̂k = 2;

else, decide D̂k = 1.

Then estimation is obtained by assuming this decision is always correct, x̂k = E[x|Zk, Hĵk
].

Since the decision part is optimal in that it minimizes the Bayes decision risk, this method

should performs the best in terms of the Pc (if cij is chosen as in Table 4.1).

In the ETD method, the best estimate of the target state is obtained by the autonomous

multiple model (AMM) algorithm [152], x̂k =
∑2

j=1 x̂
(j)
k µ

(j)
k , where µ

(j)
k is the model prob-

ability. (AMM is chosen since the target class is invariant overtime. See [152] for details.)

This step is optimal in the sense that it minimizes the unconditional estimation mse. Then

decision is made based on the ratio of the measurement likelihoods conditioned on x̂k and

Hj.

Although the first steps of these two two-stage algorithms are optimal (optimal decider

and optimal estimator respectively) in their own domains (in terms of Bayes decision risk and

estimation mse respectively), the JDE algorithm has the potential to simultaneously beat
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them in terms of both these two criteria. This relies on specific types of available data: [143]

elaborates the case and [158] gives an example and simulation results.

Two numerical cases with different parameter sets are given in Table 4.1 and simulation

results are given in Figs. 4.1 and 4.2. We are trying to jointly track and classify the target.

The ground truth was generated according to Eqs. (4.11)–(4.12). All the simulation results

were obtained from 1000 MC runs. The initial target state was Gaussian distributed with

mean x̄0 and covariance P0 and the target class was Bernoulli distributed with p0 = 0.5.

Case 1 : The dynamics matrix Fk depends on the target class but the measurement

matrix Hk does not. Since there is no model ambiguity, obviously the ideal case sets the

performance lower bounds for RMSE and JPM and an upper bound (Pc = 1) for Pc. In terms

of RMSE, the ETD performs the best, as expected, the RJDE is in the middle, and the DTE

is the worst. Their performance differences are not significant. With respect to Pc, RJDE

and DTE have almost the same performance and are much better than ETD. However, as

mentioned before, each of these criteria only measures one aspect of algorithm’s performance

for the JDE problem. In terms of JPM, our RJDE method beats the two traditional methods,

meaning that it can make a better tradeoff between the estimation error and decision error.

DTE also outperforms ETD in terms of JPM, since DTE has much better decision accuracy

than ETD does, while DTE is only slightly worse than ETD in terms of RMSE.

Case 2 : Fk and Hk are all dependent on the target class. The measurement noise

covariance R is also increased to a larger value than in case 1. In terms of RMSE and

Pc, the RJDE method still performs in the middle of the other two algorithms. But unlike

case 1, the performance differences among these three algorithms are much more significant,

especially in RMSE. RJDE is still the best in terms of JPM, while ETD is better than DTE

in this case. The simulation results also show that the correct-decision rate and estimation

mse together are incapable of telling which algorithm is better for a JDE problem, since

an algorithm may win in one but lose in the other. So, the power of JPM emerges since it

provides a unified measure and evaluates the overall performance of decision and estimation.
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Figure 4.1: Joint target tracking and classifi-
cation, Case 1.
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Figure 4.2: Joint target tracking and classifi-
cation, Case 2.
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Table 4.1: Simulation parameters

Parameter [F (1), F (2)]k [H(1), H(2)]k αij βij cij R
(j)
k x̄0 P0

Case 1 [1, 1.2] [1, 1] 1

[

0.5 0.2
0.2 0.5

] [

0 1
1 0

]

2 1 10

Case 2 [1, 1.2] [1, 0.8] 1

[

0.5 0.25
0.25 0.5

] [

0 1
1 0

]

5 1 10

4.6 Application to Multitarget Detection and Tracking

In this section, RJDE is applied to multitarget tracking (MTT) in clutter with an unknown

number of targets. In general, this is a tough problem and is still open in the tracking

community. Most existing methods follow the decision-then-estimation, that is, determine

(estimate) the number of targets first and then estimate the target state based on the deter-

mined number of targets. This problem is actually a JDE problem since both the number

of targets and their states are of interest and they are clearly tightly coupled. Our RJDE

algorithm provides a easily implementable framework to handle this difficult scenario. For

simplicity, the following assumptions are made:

1. The number of targets mt
k is unknown but constant over time k, and its maximum is

N .

2. One target can only generate at most one measurement (with detection probability

Pd), and one measurement only has one source—either from a target or clutter. This

is a common assumption in MTT.

3. The number mf of false measurements is Poisson distributed Pf{mf}. The false

measurements are i.i.d. and uniformly distributed in the surveillance region, i.e.,

ff (z) = 1/V , where V is the volume of surveillance region. The true measurements

are independent of false measurements.

71



4. All targets follow a CV model with linear position measurements. That is, for a 2-

Dimensional case, a target’s dynamics and measurement models are

xk = Fxk−1 + wk (4.19)

zk = Hxk + vk (4.20)

where

F =



















1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1



















, H =







1 0 0 0

0 0 1 0







and

xk = [x ẋ y ẏ]′ (4.21)

is the target state vector with position and velocity in the Cartesian coordinate system,

T is the sampling period.

The goal of JDE is to jointly infer the number of targets and their states. Let Hj

denote the hypothesis that j (1 ≤ j ≤ N) targets are present in the surveillance region

and Dk
i the decision that i (1 ≤ i ≤ N) targets are present at time k. For simplicity and

without loss of generality, we do not consider the case that no target is in the surveillance

region. Let Zk = {z1, z2, · · · , zk} denote the set of all measurements up to time k and

zk = {z1k, z2k, · · · , z
mz

k
k } the set of measurements at scan k, where zik is the ith measurement

and mz
k is the number of measurements at k. Denote by µj

k , P{Hj|Zk} the posterior

probability of each hypothesis and by X̂j
k , E[Xk|Zk, Hj] the posterior mean conditioned on

each Hj. Note that conditioned on hypothesis Hj, Xk is a stacked vector of j target states,
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that is, Xk = [(x1
k)

′, (x2
k)

′, · · · , (xj
k)

′]′. We choose the expected estimation cost to be

εkij = E[C(Xk, X̂k)|Zk−1, Dk
i , H

k
j ]

≈











τ(i)
i
mse(X̂k|Dk

i , Hj), if i = j

η, if i ̸= j
(4.22)

where η is a cost parameter, τ(i) is a non-increasing positive function of i and τ(1) = 1, X̂k is

the estimate of Xk which depends on the decision Dk
i . That is, conditioned on decision Dk

i ,

X̂k is a stacked vector of i target estimates. The expected cost εkij is defined this way since

Xk and X̂k have different dimensions if Dk
i does not match Hj, rendering the “estimation

error” not well defined. The cost for this mismatch case can be reflected by a cost parameter

η, which may be either a constant or a function of Dk
i and Hj. For the case that Dk

i

matches Hj, the normalized mean square error (mse) is adopted. The normalization factor

is a ratio between the determined number i of targets and an adjustment function τ(i). If

an algorithm tracking 10 targets has the same average mse (i.e., normalized only by factor i)

as an algorithm tracking only 1 target, it makes much sense to say the first algorithm does a

better job than the second. τ(i) is introduced to favor the algorithms tracking more targets.

RJDE for multitarget detection and tracking:

1. Initialized the algorithm:

Conditioned on each hypothesis Hj, initialize the state X̂j
0 and its MSE P j

0 . Initialize

the probability µj
0 = P{Hj} = 1/N .

2. At time k, conditioned on each hypothesis Hj, the conditional estimate X̂j
k and its

MSE P j
k are computed based on X̂j

k−1 and P j
k−1. This is actually a multitarget tracking

with a known number of targets (hypothesized by Hj), which can be solved by many

algorithms. We adopt the joint probabilistic data association filter (JPDAF) [21, 65]

for its popularity and simplicity. The fundamental idea of JPDAF is to compute the

probabilities of all feasible measurement-to-target association events θik jointly. The
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track update is obtained by the probabilistic average over all θik. Details of JPDAF

are given in Appendix A.

3. The posterior probability of each hypothesis Hj is updated

µj
k =

1

c
f(zk|Hj, Z

k−1)µj
k−1

where

f(zk|Hj, Z
k−1) =

∑

i

f(zk|Hj, θ
i
k,m

z
k, Z

k−1)P{θik|Hj,m
z
k}

is the likelihood of Hj, the summation is over all possible θik, and c is a normalizing con-

stant. f(zk|Hj, θ
i
k,m

z
k, Z

k−1) and P{θik|Hj,m
z
k} are provided by JPDAF in Appendix

A.

4. Based on the expected cost function (4.22), once a decision Dk
i is made, the corre-

sponding state estimate is X̂k = X̂ i
k. So we have

εkii =
τ(i)

i
mse(X̂k|Dk

i , Hi) =
τ(i)

i
mse(X̂ i

k|Dk
i , Hi) ≈

τ(i)

i
tr(P i

k)

and εkij = η if i ̸= j. Then we have

ckij = αijcij + βijε
k
ij

5. Decision is made by

Dk
l = {l : Cl(Z

k) ≤ Ci(Z
k), ∀i}
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where

Ci(Z
k) =

N
∑

j=1

ckijµ
j
k

is the posterior cost. Output the result {Dk
l , X̂

l
k} at time k.

6. Let k = k + 1 and loop to Step 2.

Note that the JPDAF may be replaced by other MTT algorithms, e.g., nearest neighbor

filter (NNF) or multiple hypothesis tracker (MHT).

The above algorithm can be generalized to the case that the number of targets is time

varying. Then Hk
j is time dependent and it may be modeled as a first-order Markov chain.

The hypothesis transition probability P{Hk
i |Hk−1

j } needs to be introduced in updating µj
k.

Further X̂j
k = E[Xk|Zk, Hk

j ] must be approximated since it is an average over all possible

hypothesis sequences up to k that end up with Hk
j , and the number of such sequences

increases exponentially as time goes. This is similar to the computation of model conditional

estimate in multiple model estimation [152], where many approximations are available. For

example, we may approximate X̂j
k based on the most likely sequence.

Five numerical cases are given to demonstrate the performance of our RJDE algorithm

for multitarget detection and tracking. Our JDE method is compared with a decision-

then-estimation (DTE) method. All simulation results are obtained by Monte Carlo (MC)

simulation with 1000 runs.

4.6.1 Ground Truth

For each target, the state xt is defined by Eq. (4.21). Each target’s position is initialized

by uniformly sampling from a region [100 100]′ × [100 100] in the Cartesian coordinate

system. The target dynamics and measurement models are given in Eqs. (4.19) and (4.20)

with process noise covariance Q = diag[1, 0.01, 1, 0.01] and measurement noise covariance

R = diag[100, 100], respectively. The sampling period is T = 1 second.
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For each target, the initial position estimate is sampled uniformly from the region

[500 500]′ × [500 500]′ and the velocities are set to zero. The corresponding MSE matrix is

P0 = diag[10002, 202, 10002, 202]

The surveillance region is [1500 1500]′×[1500 1500]′ in the 2-dimensional Cartesian coordinate

system. The number of false measurements at each time step k is sampled from a Poisson

distribution

Pf{m} =
e−λV (−λV )m

m!

where λ is the clutter density and V is the volume of the surveillance region. All the false

measurements are uniformly distributed within the region and independent of each other.

The parameters in our RJDE algorithm are chosen to be

αij = 1, βij = 1, cij = 150|i− j|, η = 100

The decision cost cij is proportional to the error of the determined number of targets. The

DTE method decides the number of targets based on this cij first and then estimates the

state based on this decision. Also, the performance of a JPDAF knowing the true number

of targets (we call it the “ideal algorithm”) is also given, which sets a performance lower

bound for the other algorithms.

The following performance measures are evaluated:

1. Optimal subpattern assignment (OSPA) metric [220]:

It is a refined measure from the measures proposed in [55,57,86,210] for MTT with an

unknown number of targets. For the true number mt
k and the determined number D̂k
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of targets, let

m = min{mt
k, D̂k}, n = max{mt

k, D̂k}

Then the OSPA is defined as

D(Xk, X̂k) =

[

1

n

(

min
π∈Πn

m
∑

i=1

(min[do(x
i
k, x̂

π(i)
k ), c])p + cp(n−m)

)]1/p

where xi
k and x̂i

k are the position vectors of the ith target in Xk and X̂k (velocity

errors can be computed similarly based on the velocity entries), respectively, c and p

(c = 100, p = 2 in our simulation) are design parameters, Πn is the set of all possible

permutations of {1, · · · , n}, and the Euclidean distance is chosen for function do.

2. Joint performance measure (JPM):

For the true number mz
k and the predicted number m̂z

k of measurements, let

m = min{mz
k, m̂z

k}

The predicted measurement ẑk|k−1 is generated based on X̂k−1 and Eqs. (4.19) and

(4.20). Then we choose the distance function d in the JPM (Eq. (4.10)) as

d(zk, ẑk|k−1) =

[

1

N

(

min
π∈Πn

m
∑

i=1

(zik − ẑ
π(i)
k )′(zik − ẑ

π(i)
k ) + c2(N −m)

)]1/2

(4.23)

where zik and ẑik are the ith measurement in zk and ẑk|k−1, respectively, c (c = 102

in our simulation) is a design parameter which penalizes an algorithm with a small

determined number of targets. N is the maximum possible number of targets in the

surveillance region. The OSPA and our JPM function similarly. They both count

estimation errors and decision errors. However, OSPA requires precise knowledge of

the ground truth, while JPM doesn’t.
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3. Probability of decision error (Pe):

The probability of making a wrong decision on the number of targets at each time step.

4.6.2 Case 1, Moderate Clutter Density

In this case, we choose the clutter density λ = 10/V , target detection probability Pd = 0.95,

and the maximum number of targets N = 3. The number of targets is uniformly sampled

from 1 to N on each run and remains constant. The simulation results are given in Fig. 4.3.

One realization of the true and estimated target trajectories are given in Fig. 4.3a. The

OSPA and JPM are given in Figs. 4.3b and 4.3c, respectively. The average decision error rate

is shown in Fig. 4.3d. The ideal algorithm performs the best in terms of OSPA and JPM, as

expected. Clearly, JDE is superior to DTE in terms of all three performance measures. We

found that JDE algorithm is less effective to determine the number of targets at beginning (in

transient time) due to a large initial estimation error, while DTE method is less vulnerable

to this error since the estimation error is not considered in decision. Therefore, we can take

advantage of the flexibility of our JDE algorithm and use the results from DTE for the first

25 steps (and thereafter switch to the full RJDE algorithm) to mitigate the negative impact

of the large initial errors. The RJDE algorithm is implemented in the same way in the

following cases.

4.6.3 Case 2, Heavy Clutter Density

The clutter density is increased to λ = 20/V , while other parameters are the same as in

Case 1. The simulation results are given in Fig. 4.4. Comparing with Case 1, the increase

in clutter density has little impact on the ideal algorithm, as expected, while JDE and DTE

deteriorate significantly.
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Figure 4.3: Simulation results of MTT, Case 1. The number of targets is randomly sampled on
each run and remains constant. λ = 10/V and Pd = 0.95.
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4.6.4 Case 3, Low Detection Rate

In this case, we set clutter density λ = 5/V and detection rate Pd = 0.75. A low detection rate

may be encountered when we track a dim target or when the detection threshold is increased

to suppress the number of false measurements. The simulation results are given in Fig. 4.5.

Comparing with Case 1, the performance of all three algorithms deteriorate significantly,

and their performance differences become much smaller than in Case 1, meaning that they

are all sensitive to Pd. This makes sense since missing a true measurement indeed has a

great impact on these algorithms.

4.6.5 Case 4, Varying Number of Targets

In the previous cases, the number of targets is constant over each run. In this case, we

examine their capabilities of tracking a varying number of targets in the surveillance region.

The hypothesis transition probability is chosen to be

P{Hk
i |Hk−1

i } = 0.98, i = 1, 2, 3

P{Hk
i |Hk−1

j } = 0.01, 1 ≤ i ̸= j ≤ 3

Assume initially three targets are present in the surveillance region. Two targets disappear

at time k = 100 and a new target appears at time k = 200. The results are given in Fig.

4.6. Large errors (peaks) occur at the time of target death or birth. All the algorithms take

some time to adapt to the change in the number of targets, while JDE converges slightly

faster than DTE.

4.6.6 Case 5, Simultaneous Target Birth and Death

In this case, the number of targets is uniformly sampled from 1 to N on each run (same as

Cases 1). At time k = 50, a target disappears and a new target appears simultaneously.

The same hypothesis transition probability as in Case 4 is used and the results are given in
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Fig. 4.7. Although the number of targets on each run remains constant in this case, the

death and birth of targets incur large errors for all algorithms, as expected. Similarly as in

Case 4, RJDE adapts to the change slightly faster than DTE. Note that although OSPA and

JPM are computed in different spaces (state space and measurement space, respectively),

they always have similar patterns in these cases. This happens due to the specific choice of

the distance function (i.e., Eq. (4.23)) and the direct measurement of target position (Eq.

(4.20)).

4.7 Summary

A recursive joint decision and estimation (RJDE) algorithm is proposed in this chapter. It

fits dynamic JDE problems well since usually measurements are made and processed se-

quentially. The RJDE is an approximate recursive version of the (batch) JDE method based

on a generalized Bayes risk and thus inherits its virtues and theoretical superiorities. The

JDE method explicitly considers the inter-dependence between decision and estimation. Our

RJDE algorithm is applied to two problems: (a) joint target tracking and classification and

(b) multitarget detection and tracking. Its performance is demonstrated by the results of

Monte Carlo simulation. Further, a general joint performance measure for evaluating JDE

algorithms is proposed. The measure is in the measurement space since the true measure-

ments are a good “reference point” to rank different JDE algorithms, especially when the

ground truth is unknown. To our knowledge, this is the only comprehensive and systematic

measure available to evaluate the performance of dynamic JDE algorithms.
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Figure 4.4: Simulation results of MTT, Case
2. This scenario differs from Case 1 only in
increased λ = 20/V .
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Figure 4.5: Simulation results of MTT, Case
3—tracking with low detection rate Pd = 0.75.
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Figure 4.6: Simulation results of MTT, Case
4. Initially three targets are present in the
surveillance region. Two targets disappear at
time k = 100 and a new target appears at time
k = 200.
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Figure 4.7: Simulation results of MTT, Case
5. The number of targets is randomly sampled
on each run. One target disappears and a new
target appears simultaneously at time 50.
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Chapter 5

Performance Analysis of Sequential

Probability Ratio Test

5.1 Introduction

This chapter studies the operating characteristic (OC) and average sample number (ASN)

of the sequential probability ratio test (SPRT) and the average run length (ARL) of the

cumulative sum test (CUSUM) [166,169,170].

The development of SPRT [243,244] marked the birth of sequential analysis, a branch of

statistics. SPRT is widely used in medicine, social science and engineering, such as clinical

test, quality control, and radar signal processing. Many generalizations and modifications of

SPRT (e.g., GSPRT and truncated SPRT) have been proposed [2,9,10,60,202,246] to improve

the performance further for more complicated applications or to meet the requirements

for more general settings than the simplest case of binary simple hypothesis testing with

i.i.d. observations. Their behavior was studied in [60, 116]. Further, SPRT also forms the

foundation of many sequential techniques, such as the celebrated Page’s CUSUM test [198].

A comprehensive survey of sequential analysis as well as the challenges was provided by [127]

and the subsequent extensive comments and discussions by the reviewers.
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Theoretically speaking, SPRT requires neither the hypotheses to be simple nor the ob-

servations to be i.i.d., provided the LLRs can be computed sequentially. Further, the bounds

for the test do not have to be constant over time. However, analysis of SPRT’s properties

and behavior becomes much more complicated without these assumptions.

The performance of SPRT has been studied extensively. Its optimality for binary simple

hypothesis testing with i.i.d. observations was proved in [131,176,245]—the expected sample

sizes under both hypotheses are simultaneously minimized among all the tests that do not

exceed the given type I and type II error rates. This optimality is remarkable and rarely

achievable elsewhere. But when it comes to the composite hypothesis problem, this “miracle”

is gone and analysis of the optimality becomes much more difficult (see [116, 125, 127, 172]

and the references therein). Also, the optimality properties of the SPRT without the i.i.d.

assumption for observations have been studied, but only a few asymptotic results for some

special cases are available (see [60, 93, 126,165,240]).

Two important functions—OC and ASN—characterize the behavior of SPRT. Unlike

the optimality problem, the existing methods proposed to evaluate these two functions are

almost all based on the assumption of an i.i.d. LLR sequence with constant bounds. In

this dissertation, we consider the case of an independent but non-stationary LLR sequence

⟨st⟩, meaning that the LLRs need not be identically distributed. Two inductive integral

equations governing the OC and ASN respectively for the non-stationary LLR sequence with

time-varying bounds are obtained. They can be viewed as a generalization of the Fredholm

integral equation of the second kind (FIESK). The governing equations are in an inductive

form due to the loss of stationarity of the LLR sequence. Unfortunately, the uniqueness of

solution can not be guaranteed in general, rendering numerical solution difficult. However,

the theoretical value of these two governing equations can not be ignored since they form a

foundation to analyze the OC and ASN and help understand the behavior of SPRT. For two

frequently encountered special cases—constant bounds with (a) the LLR sequence converges

in distribution or (b) it has periodic distributions—additional conditions (equations) can be
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imposed, rendering a unique numerical solution, which can be easily obtained by solving a

system of linear equations. As explained later, these two special cases are not uncommon in

applications and their solutions are simple.

For computation of the OC and ASN for truncated SPRT (TSPRT), our methods may

provide analytical solutions in general by backward induction. However, the convolutions

involved in the induction process may become more and more difficult to evaluate analytically

and thus impede analytical solutions. Hence, numerical methods are also provided. The

fundamental ideas for these numerical methods are all similar—approximating the integral

equation by a system of linear algebraic equations, which can be solved straightforwardly.

Our method is also applicable to compute the average run length (ARL) of CUSUM [198],

which is closely related to SPRT and they share many similarities in their performance

analyses.

This chapter is organized as follows. SPRT is briefly described in Sec. 5.2. The two

inductive integral equations governing the OC and ASN of SPRT with a non-stationary

LLR sequence and time-varying bounds are derived in Sec. 5.3. Numerical solutions for two

special cases are presented in Sec. 5.4. Application of our methods to TSPRT and CUSUM

is elaborated in Sec. 5.5 and Sec. 5.6, respectively. Several illustrative examples are offered

in Sec. 5.7 to demonstrate our methods and results. Summary is made in Sec. 5.8.

5.2 Overview of Sequential Probability Ratio Test

For a binary simple hypothesis testing problem,

H0 : θ = θ0 vs. H1 : θ = θ1

where θ is the parameter under test, if the observations zt are collected sequentially, then

the SPRT computes the cumulative sum St of the LLRs and the decision is made when data
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are conclusive:

Declare H1 (or H0) if St ≥ Bt (or St ≤ At)

Else, continue St+1 = St + st+1 (5.1)

where st = ln f(zt|H1)
f(zt|H0)

is the LLR at time t. At and Bt are the lower and upper bounds

depending on the type I error probability α and type II error probability β. We explicitly

consider time-varying bounds, indicated by the subscript t. It is assumed that Bt > At, ∀t.

f (zt|Hi) is the likelihood of Hi.

If the LLR sequence ⟨st⟩ is i.i.d. (conditioned on true θ) and the bounds are constant

(i.e., At = A and Bt = B), extensive results for the OC and ASN are available. Denote the

probability density function (PDF) of st as f
t
θ(x) = fθ(x), where the subscript θ denotes the

ground truth of the underlying parameter, which need not be either θ0 or θ1. First, define

τk = min {t : St ≤ At or St ≥ Bt, t > k} (5.2)

as the stopping time of the test. The subscript k denotes the start time of the test. That

is, the test is initialized at time k with initial value Sk = s, and St (where t > k) are

computed sequentially based on observations zk+1, zk+2, · · · . Because of the stationarity of

the i.i.d. LLR sequence, it does not matter when SPRT with constant bounds starts (i.e.,

its statistical properties do not change w.r.t. k). Without loss of generality, we assume the

test starts at time k = 0. For this case, the OC is defined as the probability that the test

statistic finally drops below A as a function of the test initial value s (i.e., S0 = s) and the

ground truth θ:

Pθ(s) , Pθ{Sτ0 ≤ A|S0 = s} = 1− Pθ{Sτ0 ≥ B|S0 = s} (5.3)
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Notice that Pθ(·) denotes the OC while Pθ{·} denotes the probability of an event — the

reader should be able to distinguish them from the context without ambiguity. The second

equality of Eq. (5.3) holds if and only if the SPRT terminates in finite steps almost surely:

Pθ{τ0 < ∞} = 1 (5.4)

Wald [244] has proved it under very mild conditions for Wald’s SPRT. One of the sufficient

conditions for this case is [73]

Pθ{st = 0} < 1, ∀t (5.5)

Define Nθ(s) , Eθ [τ0 |S0 = s ] as the average sample number (ASN) [244], which is also a

function of s and θ. The existence of a finite ASN for Wald’s SPRT was examined in [37,131].

Note that Eq. (5.4) is a necessary condition for the existence of a finite ASN.

It is known [25, 44, 198] that Pθ(s) and Nθ(s) satisfy the following Fredholm integral

equations of the second kind (FIESK) [18,203],

Pθ (s) = Fθ (A− s) +

∫ B

A

Pθ (x) fθ (x− s) dx (5.6)

Nθ(s) = 1 +

∫ B

A

Nθ (x) fθ (x− s) dx (5.7)

where Fθ (·) is the CDF of st. The existence and uniqueness of the solution for the general

FIESK are guaranteed under mild conditions, given in [75,97]. In general, one has to resort

to numerical approximation to the solutions.
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5.3 The OC and ASN with Independent but Non-

stationary LLRs and Time-Varying Bounds

If the LLR sequence ⟨st⟩ is independent but not stationary and/or the bounds are time-

varying, it does matter when the SPRT starts. So we define

P k
θ (s) , Pθ{Sτk ≤ Aτk |Sk = s}

= 1− Pθ{Sτk ≥ Bτk |Sk = s}

as the OC for this case with the superscript k explicitly indicating the test start time. Note

that the second equality is correct if SPRT terminates in finite steps almost surely:

Pθ{τk < ∞} = 1, ∀k (5.8)

Similarly, Eq. (5.8) is a necessary condition for the existence of a finite ASN for this case.

Unfortunately, for an independent but non-stationary LLR sequence, Eq. (5.5) is no longer

sufficient. Evaluating the existence of a finite ASN requires knowledge of its distribution,

which is not easy to gain in general. [120, 217] provided sufficient conditions for Eq. (5.8)

and for the existence of a finite ASN respectively under very general settings, but the results

are not easy to apply. In most practical problems, we believe the ASN should be finite. The

case that the ASN diverges to infinity is beyond our consideration. Define

Nk
θ (s) , Eθ [τk − k |Sk = s ]

as the ASN. Note that the start time k is subtracted since we only consider how many future

samples are needed on average.
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Then P k
θ (s) and Nk

θ (s) are governed by the following inductive integral equations,

P k
θ (s) = F k+1

θ (Ak+1 − s) +

∫ Bk+1

Ak+1

P k+1
θ (x) fk+1

θ (x− s) dx (5.9)

Nk
θ (s) = 1 +

∫ Bk+1

Ak+1

Nk+1
θ (x) fk+1

θ (x− s) dx (5.10)

where fk
θ (·) and F k

θ (·) denote the PDF and CDF of sk, respectively. The derivation follows

the idea in [25, 44] and is given in Appendix B.

Unlike Eqs. (5.6)–(5.7), even the numerical solutions of Eqs. (5.9)–(5.10) are difficult to

obtain (if not impossible) in general. There are two major difficulties. First, although these

two equations are in an inductive form (w.r.t. time k), it is virtually impossible to implement

the induction, be it forward or backward, since no initial value (this is actually exactly what

we want to have) is available for the induction. Second, the solutions for P k
θ (s) and Nk

θ (s)

are not unique since clearly they depend on the distributions of the future LLRs from time

k+ 1 on. Without specifying these distributions, Eq. (5.9) and (5.10) are under-determined

and therefore solutions are not unique. It is clear that for cases with an i.i.d. LLR sequence

and constant bounds, Eqs. (5.9)–(5.10) degenerate to Eqs. (5.6)–(5.7) since the test start

time has no impact on OC and ASN. In the next section, we try to solve these two equations

numerically for two special cases.

5.4 Numerical Solutions for Special Cases

In this section, numerical solutions for two special cases of SPRT are explored. If the bounds

are constant and (a) the LLR sequence converges in distribution or (b) LLRs are periodically

distributed, then unique solutions can be obtained by extending the SLAE method.
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5.4.1 System of Linear Algebraic Equations (SLAE) Method

If the bounds are constant, the SLAE method can be employed, which was proposed [72]

to solve Eqs. (5.6) and (5.7) numerically under the Gaussian assumption. It approximates

the integral term by a Gaussian quadrature to form a system of linear equations. Numerical

values of Pθ (s) and Nθ (s) on every quadrature point are calculated by solving this linear

equation system. Although the SLAE method was developed under the Gaussian assump-

tion, actually it is generally applicable provided the integral terms in Eqs. (5.6)–(5.7) can be

well approximated by Gaussian quadrature. Further, the fact that many density functions

can be well approximated by Gaussian mixtures of only a few components also broadens

its range of applications. We modify the SLAE method and convert Eqs. (5.9) and (5.10)

to systems of linear equations. Replacing integral terms with n-point Gaussian quadrature

with weights ωi and points yi, we have the following for OC
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and for ASN
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where

Mk+1 is an n × n matrix with the entry for ith row and jth column M
(ij)
k+1 =

−ωif
k+1
θ (yi − yj);

m is a positive integer;
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1n = n× 1 vector of all 1’s;

I is the n× n identity matrix;

Φk+1 =
[

F k+1
θ (A− y1) , · · · , F k+1

θ (A− yn)
]T
;

Pk =
[

P k
θ (y1) , P

k
θ (y2) , · · · , P k

θ (yn)
]T
;

Nk =
[

Nk
θ (y1) , N

k
θ (y2) , · · · , Nk

θ (yn)
]T
.

The derivation is given in Appendix C. However, Eqs. (5.11) and (5.12) are under-

determined since there are only nm equations but n (m+ 1) unknowns. Additional n equa-

tions are needed to have unique solutions. The following two special cases are considered.

5.4.2 Case with Convergent LLR Sequence

First, we consider a special case that ⟨st⟩ converges to š in distribution [223] and the PDF

of st are continuous. That is, limt→∞ F t
θ(s) = F̌ (s), ∀s, where F̌ (s) is the CDF of š. In this

case, ⟨st⟩ becomes i.i.d. asymptotically and thus there exists a positive integer M such that

P k
θ (s) ≈ P k+1

θ (s) ≈ · · · ≈ P∞
θ (s)

Nk
θ (s) ≈ Nk+1

θ (s) ≈ · · · ≈ N∞
θ (s)











∀k > M

Hence

Pk ≈ Pk+1 ≈ · · · ≈ P̂

Nk ≈ Nk+1 ≈ · · · ≈ N̂











∀k > M (5.13)

where P̂ and N̂ are the solutions of Eqs. (5.6)–(5.7) respectively with fθ(s) replaced by the

distribution of š. This can be intuitively understood: If M is large enough, for t > M the

distributions of st become almost idential (i.e., approximately i.i.d.), and then the impact of

the test start time on the statistical properties of the SPRT can be ignored, which validates

Eq. (5.13). Therefore, any existing techniques for the i.i.d. case can be applied to obtain P̂

and N̂. Then, we choose the m in Eqs. (5.11)–(5.12) such that k +m = M . Plugging Eq.
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(5.13) into Eqs. (5.11) and (5.12) respectively yields the following two n (m+ 1)×n (m+ 1)

equation systems for OC
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(5.14)

and for ASN
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(5.15)

Note that the coefficient matrices in Eq. (5.14) and (5.15) are always invertible. The equation

system can be solved by a linear-equation-system solver.

5.4.3 Case with LLRs of Periodic PDF

If the distributions of st are periodic with period T (a positive integer), i.e., f t
θ(s) =

f t+T
θ (s), ∀t. Then,

P k
θ (s) = P k+T

θ (s) , Nk
θ (s) = Nk+T

θ (s) , ∀k

and hence

Pk = Pk+T , Nk = Nk+T , ∀k (5.16)
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It is easily understood since the SPRT starting at time k or k+T are statistically equivalent,

provided the initial values are the same. Inserting Eq. (5.16) into Eqs. (5.11) and (5.12)

respectively yields the following two equation systems for OC
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and for ASN
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The solutions are readily obtained. It is clear that when T = 1, Eqs. (5.17)–(5.18) degenerate

to the i.i.d. case.

5.5 Application to Truncated SPRT

In many applications, the sample size has to be limited. This leads to the truncated SPRT

(TSPRT), in which the test is terminated (if the decision has not been made yet) after a

maximum sample size is reached and a decision is made based on a pre-specified truncation

rule Υ(·). Compared with SPRT, this truncation will increase the actual α or β. One
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complete cycle of TSPRT at time t is:

If t < K, St = St−1 + st;

Declare H1 (or H0), If St ≥ Bt (or St ≤ At)

Else, t = t+ 1, continue.

Else If t = K, SK = Υ(St−1 + st);

Declare H1 (or H0), If SK = BK (or SK = AK)

where K is the truncation time. The termination rule Υ(·) can be a deterministic or random

mapping of its input to {AK , BK}, that is, the outcome of Υ(·) equals either AK or BK . It

is assumed that Bt > At for t = 1, 2, · · · , K. The stopping time τk for TSPRT is defined as

τk , min{t : St ≥ Bt or St ≤ At|t > k}, k = 1, · · · , K − 1

and τK , K. Recall that k denotes the start time of the test. Since TSPRT terminates no

later than K (a finite time), P{τk < +∞} = 1 and E[τk] < +∞ is guaranteed.

Unlike the case of SPRT, the OC and ASN now are not governed by Eqs. (5.6) and (5.7)

no matter whether ⟨st⟩ is i.i.d. or not. Since the SPRT is truncated at time K, the statistical

properties of TSPRT with different start times are different even when observations are i.i.d.

and the bounds are constant. This is similar to the case of SPRT with independent but non-

stationary ⟨st⟩. Consequently, P k
θ (s) and Nk

θ (s) are governed by similar inductive integral

equations for OC

P k
θ (s) =F k+1

θ (Ak+1 − s) +

∫ Bk+1

Ak+1

P k+1
θ (x) fk+1

θ (x− s) dx (5.19)

PK
θ (s) =Pθ{Υ(s) = AK} (5.20)
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and for ASN,

Nk
θ (s) = 1 +

∫ Bk+1

Ak+1

Nk+1
θ (x) fk+1

θ (x− s) dx (5.21)

NK
θ (s) = 0; (5.22)

where k = 0, · · · , K − 1. Note that unlike the SPRT (Eqs. (5.19) and (5.21)), Eqs. (5.20)

and (5.22) are obtained directly from the truncation rule Υ(·). The derivation in Appendix

B is also valid for TSPRT.

5.5.1 Analytical Solutions

Theoretically speaking, the Eqs. (5.19)–(5.22) can be solved analytically by backward induc-

tion. Since for most applications PK
θ (s) can be easily obtained by truncation rule Υ(·) and

NK
θ (s) = 0 is already known, the induction of Eqs. (5.19) and (5.21) can be done backwards

from k = K − 1 to 0, and exact solutions for P k
θ (s) and Nk

θ (s) are obtained provided the

convolution and the CDF involved can be evaluated analytically. An example is provided in

Sec. 5.7.

5.5.2 Modified SLAE Method

When the convolution is hard to evaluate analytically, numerical solutions should be con-

sidered. If the bounds are constant, the modified SLAE method in Sec. 5.4 is directly
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applicable. By incorporating Eqs. (5.20) and (5.22) into Eqs. (5.11) and (5.12), we have
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for OC and ASN respectively, where

P̂K , [Pθ{Υ(y1) = AK}, · · · , Pθ{Υ(yn) = AK}]T (5.25)

Note that the matrices in Eqs. (5.23) and (5.24) are always invertible. Solutions are readily

obtained by a linear-equation-system solver.

5.5.3 Finite Element Solutions

If the bounds At or Bt is time-varying, the modified SLAE method is difficult to apply since at

each k the Gaussian quadrature points yi are different, and consequently the linear equation

systems (5.23) and (5.24) can not be obtained. In this case, a finite element analysis (FEA)

can be adopted. Unlike the modified SLAE method, it approximates P k
θ (s) and Nk

θ (s) by

piecewise shape functions and evaluates the integral based on this approximation. We use
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linear shape functions for simplicity. Let

Am = minAi, Bm = maxBi, i = 1, 2, · · · , K

Divide the interval [Am, Bm] into ne segments with nodal points: Am = x0 < x1 < · · · <

xne = Bm. In general, a larger ne leads to a better approximation at the cost of more

computation. Note that these segments do not necessarily have an equal length. But the

maximum length should be small in order to be accurate. It is beneficial to choose the nodal

points xe such that

Ai, Bi ∈ {x0, · · · , xne}, ∀i (5.26)

That is, the upper and lower bounds are both nodal points. As explained in Appendix D,

this makes the integration easier. Denote the nodal values of P k
θ (s) and Nk

θ (s) on xe as

Uk
e = P k

θ (xe) , V k
e = Nk

θ (xe) , e = 0, · · · , ne

Let le = xe − xe−1 be the length of the eth element. See Fig. 5.1 for illustration of these

indices.

..

Nodal points and nodal values

.• .•. •. •. •. •. •. •.1 . 2.
e

.
ne − 1

.
ne.

x0

.
x1

.
x2

.
xe−1

.
xe

.
xne−2

.
xne−1

.
xne

.

U0

.

U1

.

U2

.

Ue−1

.

Ue

.

Une−2

.

Une−1

.

Une

Figure 5.1: Finite element approximation. The interval [Am, Bm] is divided into ne segments with
nodal points xe and nodal values Ue = Pθ (xe). Pθ (s) is approximated by a piecewise linear function

P
(e)
θ (s). On each subinterval [xe−1, xe], P

(e)
θ (s) is a linear function of two terminal values Ue−1

and Ue, which need to be determined.
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Then, P k
θ (s) on interval [xe−1, xe] can be approximated by a linear function

P
k,(e)
θ (s) = ϕ(e) (s)Uk,(e)

where Uk,(e) , [Uk
e−1, U

k
e ]

T = [P k
θ (xe−1), P

k
θ (xe)]

T , and the shape function ϕ(e) (x) =

[ϕ
(e)
1 (x) , ϕ

(e)
2 (x)] is defined on interval [xe−1, xe]:

ϕ
(e)
1 (x) ,











1− ξ(x), ξ(x) ∈ [0, 1]

0, otherwise
(5.27)

ϕ
(e)
2 (x) ,











ξ(x), ξ(x) ∈ [0, 1]

0, otherwise
(5.28)

ξ(x) = (x− xe−1)/le, x ∈ [xe−1, xe] (5.29)

Graphically, P
k,(e)
θ (s) is simply a linear segment on interval [xe−1, xe] with two terminal

values specified by Uk,(e), to be determined. Hence, P k
θ (s) on interval [Am, Bm] can be

approximated by a piecewise linear function:

P k
θ (s) ≈

ne
∑

e=1

P
k,(e)
θ (s) (5.30)

By replacing P k
θ (s) in Eq. (5.19) with Eq. (5.30), calculation, and matrix manipulation, the

following linear equation system can be derived for OC

























I −Q1

I −Q2

. . .

I −QK

I











































U0

U1

...

UK



















=

























F 1

F 2

...

FK

ÛK

























(5.31)
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and for ASN

























I −Q1
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. . .
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I











































V0

V1

...

VK



















=

























1ne+1

1ne+1

...

1ne+1

0ne+1

























(5.32)

where

Qk is given in Appendix D;

Uk = [Uk
0 , U

k
1 , · · · , Uk

ne
]T ;

Vk = [V k
0 , V

k
1 , · · · , V k

ne
]T ;

F k = [F k
θ (Ak − x0) , · · · , F k

θ (Ak − xne)]
T ;

ÛK is obtained by the truncation rule (5.20).

Although the idea is simple and the method is straightforward, the derivation is some-

what tedious, as given in Appendix D. The solutions for Uk and Vk can be obtained by a

linear-equation-system solver. Note that the matrices in Eqs. (5.31) and (5.32) are always

invertible. A numerical example is given in Sec. 5.7.

Compared with the modified SLAE method, the FEA can deal with the more general

case. For example, the bounds can be time-varying, and the positions of the nodal points

xi can be chosen by the user. This is desirable if the user has particular interests of OC

and ASN on some special points. However, if the bounds are time invariant, the SLAE

method is preferable due to its simplicity and efficiency, because n-point Gaussian quadrature

approximates the integrand by a (2n− 1)-degree polynomials, while the FEA (with a linear

shape function) approximates the integrand by a piecewise linear function. Much more points

are needed to achieve the same accuracy by FEA. Of course, the efficiency of FEA can be

improved by choosing a higher order shape function, for example, a quadratic function or a

Hermite cubic shape function [124]. But the derivation will become more complicated.
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5.6 Application to CUSUM Test

CUSUM is a sequential test for the change detection problem. Consider a parameter-change

detection problem. Assume a change from H0 : θ = θ0 to H1 : θ = θ1 is to be detected.

CUSUM computes the cumulative sum St and makes a decision when it crosses a pre-specified

bound Bt, that is,

Declare the change if St ≥ Bt

Else, continue St+1 = max{At, St + st+1} (5.33)

where Bt is the test bound which depends on the false alarm level, and At is the bound to

re-initialize the test (usually At = 0 in practice). CUSUM may be viewed as a repeated

SPRT; that is, when St drops below the lower bound At, the SPRT is re-started until a

change is detected (i.e., St crosses Bt). Hence, their performance analyses are also tightly

connected.

The performance of CUSUM is characterized by the average run length (ARL) function

Lθ(s). If the bounds are constant (i.e., Bt = B and At = 0) and ⟨st⟩ is i.i.d., Lθ(s) can be

computed based on the OC and ASN of the corresponding SPRT, see [25, 170]. Also, it is

known that Lθ(s) follows the following FIESK [198]

Lθ(s) = 1 + Lθ(0)Fθ(−s) +

∫ B

0

Lθ(x)fθ(x− s)dx (5.34)

As mentioned in Sec. 5.1, many numerical methods have been proposed to solve this equation

(see [25, 72, 73] and references therein).

When the LLR sequence is independent but not identically distributed or the bounds are

time-varying, the statistical properties of CUSUM change with its start time because of the

non-stationarity of the LLR sequence, similar to ASN for SPRT. Then, the computation of

ARL based on OC and ASN of the corresponding SPRT, as in the i.i.d. case, is no longer
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valid and hard to be extended to the non-stationary case. Besides, like OC and ASN, ARL

does not satisfy an FIESK (Eq. (5.34)) any more in this case. Hence numerically solving

Eq. (5.34) is not valid, either.

However, as mentioned before, ASN and ARL share many similarities because of the

strong connection between CUSUM and SPRT. An inductive integral equation governing

ARL can be derived, which can be solved numerically for the same special cases in Sec. 5.4.

The stopping time of CUSUM is defined as

τk = min {t : St ≥ Bt, t > k} (5.35)

and the ARL Lk
θ(s) in this case is defined as

Lk
θ(s) , Eθ [τk − k |Sk = s ] (5.36)

which explicitly takes the start time k into consideration. Note that in Eq. (5.36), the start

time k is subtracted from τk since we only care how large the future sample size is needed

on average. Then the governing equation for Lk
θ(s) is derived as

Lk
θ(s) =1 +

∫ Bk+1

Ak+1

Lk+1
θ (x)fk+1

θ (x− s) dx+ Lk+1
θ (Ak+1)F

k+1
θ (Ak+1 − s) (5.37)

The derivation is given in Appendix E and is based on the assumption that the ARL is finite,

which should be the case for most practical applications.
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When the bounds are constant (i.e., At = A and Bt = B), the modified SLAE method

in Sec. 5.4 can be applied in a similar manner and yields [170]
















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
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


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...
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

















=



















1n

1n

...

1n



















where

M̂k= Mk−[Φk 0];

0 is the n× (n− 1) zero matrix;

Lk =
[

Lk
θ (y1) , L

k
θ (y2) , · · · , Lk

θ (yn)
]T
.

Clearly, there are nm equations but n(m + 1) unknowns. So n additional independent

equations are needed to enable a unique solution, similar as the SPRT case. For the two

cases in Sec. 5.4, unique solutions are enabled and can be solved similarly.

5.7 Illustrative Examples

Numerical examples are provided in this section to illustrate our methods for finding OC and

ASN of SPRT and TSPRT and the ARL of CUSUM. Our numerical or analytical solutions

are compared with the Monte Carlo (MC) simulation with 10, 000 runs. On each MC run,

the LLR sequence ⟨st⟩ is generated based on the assumed distribution to implement the test.

The results (OC, ASN or ARL) of the MC simulation are computed based on the results

and run length of these tests.
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Example 1: OC and ASN of SPRT, with Converging ⟨st⟩

Assume st have Gaussian distributions

f t
θ(s) = N (s;µt, σ

2), ∀t (5.38)

where µt = θ+ ce−t, θ is the ground truth of the underlying parameter, c a constant, and σ2

the variance. It is easy to verify that ⟨st⟩ converges in distribution: limt→+∞ Ft(s) = F̌ (s),

where F̌ (s) is the Gaussian CDF with mean θ and variance σ2. Two groups of parameters

(in Table 5.1) were used in the simulation and the results were compared with those of our

algorithm, given in Fig. 5.2. The constant bounds A and B were computed by Wald’s

approximation with type I and type II error rates both setting to 0.01. m is the parameter

in Eqs. (5.14)–(5.15) and n is the number of Gaussian quadrature points.

It can be observed from Fig. 5.2 that P k
θ (s) monotonically decreases w.r.t. s, as expected.

This should happen by the definition of OC. Since the distribution of st converges pretty fast

(the term ce−t diminishes exponentially), the differences of the OC P k
θ (s) curves for different

start times k are almost unobservable for k > 10. Likewise for ASN Nk
θ (s). Further, as the

mean of st is converging to θ exponentially, for θ > 0 the mean of the cumulative sum St is

increasing, rendering St less likely to drop below the lower bound A. For θ < 0, the mean of

St will finally decrease, increasing the chance that St drops below A. Hence, P k
θ (s) for group

one is much smaller than for group two. For Nk
θ (s), when the initial value s of the test is

close to the bounds, it is more likely that the test statistic crosses the bounds in fewer steps.

It makes sense for the test to take more steps if the test starts around the middle of the two

bounds.

Table 5.1: Parameters for Example 1

θ σ2 c A B m n
Group 1 1 9 10 −4.6 4.6 10 20
Group 2 −1 9 10 −4.6 4.6 10 20
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Figure 5.2: Results for Example 1. The modified SLAE solutions and the MC simulation results

of P k
θ (s) and Nk

θ (s) are compared. The left and right columns correspond to parameters in the

first and the second groups in Table 5.1, respectively. The abscissa of each figure represents the

initial value s and the vertical axis is the OC P k
θ (s) or ASN Nk

θ (s). The different curves in the

figures correspond to the different start times k of the test. From the plots, it is clear that the MC

simulation results match the modified SLAE solutions very well.

105



Example 2: ARL of CUSUM, with Convergent ⟨st⟩

Now we compute the ARL of CUSUM with st distributed similarly as in Example 1 but

with different bounds, as given in Table 5.2. Our numerical solutions and the results of MC

simulation are given in Fig. 5.3. All the curves monotonically decrease w.r.t. the initial value

s. This makes sense since the larger the initial value s, the more likely the cumulative sum

St will cross the upper bound B in fewer steps. It can be seen by comparing the two figures

in Fig. 5.3 that the ARLs for the first group of parameters are significantly smaller than for

the second group. Since the mean of st approaches θ fast, if θ > 0, then the mean of St will

increase eventually, making the test more likely to terminate with a small ARL. If θ < 0,

the mean of St is decreasing, rendering St more likely to drop below A and hence the test is

restarted. This makes the test last longer. Further, since ⟨st⟩ approaches an i.i.d. process

as k increases, the curves can not be distinguished when k > 10 in this example. Finally, it

is evident that our solutions agree well with the results of MC simulation.
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Figure 5.3: Results for Example 2, where the modified SLAE solutions and MC simulation results of

the Lk
θ(s) are compared. The left and right figures correspond to parameters of the first and second

groups in Table 5.2, respectively. The start time k of CUSUM is indicated. Since the distributions

of st converge exponentially, the curves also converge and are almost indistinguishable when k > 10.
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Table 5.2: Parameters for Example 2

θ σ2 c A B n m
Group 1 1 9 10 0 5 20 10
Group 2 −1 9 10 0 5 20 10

Example 3: OC and ASN of SPRT, with Periodically Distributed

st

Again, st is assumed of the Gaussian distribution (5.38), but the mean µt is changing pe-

riodically: µt = θ + cos(2πt
T
), where the period T = 9. It is obvious that f t

θ(s) = f t+T
θ (s).

Two groups of parameters, given in Table 5.3, were simulated by the MC method and the

results were compared with our solutions. The results are plotted in Fig. 5.4. The differ-

ences between the MC results and our numerical solutions are tiny. Some patterns of the

curves—e.g., P k
θ (s) monotonically decreases and Nk

θ (s) has its peak value in the middle of

A and B—are similar as in Example 1 for the same reasons. But in this case, the curve for

k and k + T are exactly overlapped, meaning that there are only T different curves.

Table 5.3: Parameters for Example 3

θ σ2 T A B n
Group 1 0.6 4 9 −4.6 4.6 20
Group 2 −0.6 4 9 −4.6 4.6 20

Example 4: ARL of CUSUM, with Periodically Distributed st

In this example, the ARL of CUSUM is computed. Assume the st has a similar distribution

as in Example 3. Two groups of parameters, as given in Table. 5.4, are simulated. The

numerical solutions and results of MC simulation are given in Fig. 5.5.
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Figure 5.4: Results for Example 3. The left and right columns correspond to parameters in the first

and the second groups in Table 5.3, respectively. Again, the MC simulation verifies our methods.
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Figure 5.5: Results for Example 4. The left and right figures correspond to parameters of the first

and second groups in Table 5.4, respectively. In this case, there are only T different curves since

LLRs have periodic distributions.
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Table 5.4: Parameters for Example 4

θ σ2 T A B n
Group 1 0.6 4 9 0 5 20
Group 2 −0.6 4 9 0 5 20

Example 5: Analytical Solutions for ASN of TSPRT

Consider the following binary hypothesis testing problem of the parameter θ:

H0 : θ = θ0 = 1, H1 : θ = θ1 = 0.01

Assume zt are i.i.d. and exponentially distributed

f t
θ(x) = fθ(x) = θe−θx, θ, x > 0 (5.39)

Note that the true θ need not be θ0 or θ1. The type I and type II error rates are set

to be α = β = 0.1 and constant bounds A and B are used and calculated by Wald’s

approximation [244]. The test is truncated at K = 10 and we want to evaluate the ASN of

TSPRT. The TSPRT compares St with the bounds A and B, which is equivalent to testing

s+
t
∑

i=1

zi≤At or s+
t
∑

i=1

zi≥Bt

where (since θ0 > θ1 > 0)

At =
A

θ0 − θ1
+ tµ,Bt =

B

θ0 − θ1
+ tµ, µ =

ln θ0 − ln θ1
θ0 − θ1
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By replacing fk
θ (·) in Eq. (5.21) with the PDF (5.39) of observation zk and backward

induction of Eq. (5.21), the following solutions for ASN are obtained











NK
θ (s) = 0, NK−1

θ (s) = 1

NK−i
θ (s) = 1 +

∑i−1
j=1 a

K−i
j (s), i = 2, · · · , K

(5.40)

where aK−i
j (s) is given as below [169]

aK−i
j (s) =

∫ BK−i+1

AK−i+1

· · ·
∫ BK−j−1

AK−j−1

∫ BK−j

AK−j

fK−j
θ

(

xK−j − xK−j−1

)

· · · fK−i+2
θ (xK−i+2 − xK−i+1)

× fK−i+1
θ (xK−i+1 − s) dxK−jdxK−j−1 · · · dxK−i+1, 2 ≤ i ≤ K

a0j (s) =

∫ B1

A1

· · ·
∫ BK−j−1

AK−j−1

∫ BK−j

AK−j

fθ
(

xK−j − xK−j−1

)

· · · fθ (x2 − x1)

× fθ (x1 − s) dxK−jdxK−j−1 · · · dx1

=















∫B1

max{A1,s}
· · ·

∫BK−j−1

AK−j−1

∫BK−j

AK−j
θK−je−θ(xK−j−s)dxK−jdxK−j−1 · · · dx1, s < B1

0, s ≥ B1

=



























θ(B1 −max{A1, s})(θd)K−j−2eθs(e−θAK−j − e−θBK−j ), j = 1, · · · ,K − 2, s < B1

eθs(e−θmax{A1,s} − e−θB1 ), j = K − 1, s < B1

0, s ≥ B1

d =Bk −Ak =
B −A

θ0 − θ1

The analytical solution of N0
θ (s) and results of MC simulation are plotted in Fig. 5.6. The

OC can be computed similarly, although more tediously.

Example 6: Finite Element Solutions for ASN and OC of TSPRT

with Time-Varying Bounds

This example computes the OC and ASN of TSPRT when the LLR sequence ⟨st⟩ is i.i.d.

and Gaussian distributed with mean µ = 1 and variance σ2 = 4 (conditioned on the true θ).
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Figure 5.6: Analytical solutions and MC simulation results of the ASN for Example 5. The left

figure shows ASN N0
θ (s) vs. initial value s for θ = 0.5. The right figure shows N0

θ (0) vs. θ.

The test is terminated at time K = 20 with the truncation rule

Υ(x) =











AK with probability BK−x
BK−AK

BK with probability x−AK

BK−AK

, AK < x < Bk

That is, the probability that the test is truncated as an acceptance test is proportional to

the distance between the test statistic at time K and the upper bound BK . Hence, UK

of (5.31) can be calculated readily from this truncation rule (see Eq. (5.20)). The bounds

are time-varying and set to be At = A + 0.1t and Bt = B − 0.1t (with −A = B = 5,

t = 1, 2, · · · , K). The nodal points xe are spread on interval [A,B] with an equal distance

and ne = 100. It is clear that At and Bt are all included in the set {xe}ne
e=0. This choice is

beneficial to the integration since a segment [xe, xe+1] lays either entirely inside or entirely

outside the interval of integration (see Appendix D). The FEA solutions are given in Fig.

5.7 and compared with the results of MC simulation. The exact solutions are not given due

to the difficulty of evaluating the convolution analytically.
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Figure 5.7: Results of FEA and MC simulation for Example 6. The left figure shows P k
θ vs. the

initial value s, and the right figure shows Nk
θ . Different curves are for different start time k.

5.8 Summary

In this chapter we have developed two inductive equations governing the OC and ASN

of SPRT, respectively, when the LLR sequence is independent but non-stationary and the

bounds are time-varying. They can be viewed as a generalization of the Fredholm integral

equation of the second kind for the case with i.i.d. LLR sequence and constant bounds. Nu-

merical algorithms for two special cases, (a) the LLR sequence converges in distribution and

(b) LLRs are periodically distributed, have been obtained by the modified SLAE method.

Our methods have also been applied to compute the OC and ASN of truncated SPRT, which

may lead to analytical solutions if the convolution involved can be evaluated. In addition to

the SLAE method, a finite element analysis has been applied to obtain the numerical solu-

tions for the TSPRT in the general case. Further, takeing advantage of the tight connection

between SPRT and CUSUM, our methods have also been applied to computing the ARL

function of CUSUM. An inductive integral equation governing the ARL has been derived

and numerical solutions explored for the same two special cases for SPRT. Several numerical

examples are provided and compared with the results of MC simulation to demonstrate our

methods.
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Chapter 6

Conclusion and Future Work

GLMMSE estimation and RJDE have been proposed for nonlinear point estimation and JDE

problems, respectively. They are demonstrated by applications to target tracking. Further,

the performance for SPRT and CUSUM with independent but non-stationary LLR sequence

are analyzed in this dissertation.

GLMMSE estimation generalizes LMMSE estimation by employing a vector-valued MTF

and finds the best estimator among all estimators that are linear in MTF, rather in the mea-

surement itself (as LMMSE estimation does). Hence, the MTF introduces the flexibility

of choosing different kinds of estimators for different problems. GLMMSE estimation with

a proper MTF can be superior to LMMSE estimation in performance. Design guidelines

for MTF have been studied to facilitate the design process. GLMMSE estimation has been

applied to radar tracking, space-object tracking and multi-target tracking. Further applica-

tions will be exploited. We intend to develop GLMMSE estimation toward a standard tool

for nonlinear point estimation, readily to be implemented when a problem is at hand. One

major competitor to GLMMSE estimation is the density based methods, e.g., particle filter.

Although very powerful, density estimation may be a overkill. As such, GLMMSE has the

potential to outperform density estimation for nonlinear point estimation problem. Further

study on the design of MTF is also needed. Although a systematic design procedure for
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general applications may be difficult to come up with, good MTF may be obtained for some

specific applications, e.g., radar/sonar measurements and angle/range only tracking, which

are frequently encountered in tracking applications.

The RJDE algorithm has been developed for dynamic JDE problems. The inter-

dependence between decision and estimation is accounted for by iterations of estimation-step

and decision-step, which make the generalized Bayes risk non-increasing during the iteration.

RJDE has been applied to joint tracking and classification and joint detection and tracking.

Future work includes further improving the computational efficiency for applications with

large data set, e.g., data fusion. Finding guidelines for determining the design parameters in

realistic applications are also desired. Further, evaluating the performance gap between the

batch JDE and RJDE may provide insight and feedback to improve our RJDE procedure.

Additional analysis of our joint performance measure for JDE algorithm are also important

and worth more effort.

A performance analysis for SPRT and CUSUM has been also studied. Two inductive

equations governing the OC and ASN functions, respectively, of SPRT have been developed

for independent but non-stationary LLR sequence. They can be viewed as a generalization of

the Fredholm integral equations of the second kind for the i.i.d. case. Numerical algorithms

have been obtained for two special cases: the LLR sequence converges in distribution or

it has periodic distributions. Our methods can be readily applied to the truncated SPRT

and the ARL of CUSUM. Identifying more cases that have unique solutions of the inductive

equations are under further investigation. Some lower- or upper-bounds of these functions

for the general cases may be obtained by our methods if the numerical solutions are difficult

to have. Basically, the performance of a sequential test can be approximated by its truncated

version. Intuitively, the impact of the truncation on the performance should diminish as the

truncation time increases. The bounds of the approximation errors may be obtained based

on the inductive equations we developed. Future work also includes extending our analysis

to other sequential tests that are more sophisticated than SPRT or CUSUM (e.g., Multi-
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hypothesis sequential test and two-sided CUSUM), and consequently providing a more solid

alternative to Monte Carlo simulation for performance evaluation for sequential tests.
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Appendix A

Joint Probability Data Association

Filter

Assume there are mt
k (known) targets present in the surveillance region and mz

k measure-

ments are received at scan k. The posterior probability of each feasible association event θlk

(conditioned on Assumptions (2) in Sec. 4.6) is computed:

P{θlk|zk, Zk−1} = P{θlk|zk,mz
k, Z

k−1}

=
1

c
f(zk|θlk,mz

k, Z
k−1)P{θlk|mz

k}

Assuming conditional independence of each measurement yields

f{zk|θlk,mz
k, Z

k−1} =

mz
k
∏

j=1

f(zjk|θlk,mz
k, Z

k−1)

and

f(zjk|θlk,mz
k, Z

k−1) =











f i
t (z

j
k), if zjk is associated to target i in θlk

ff (z
l
k), if zjk is not from any target in θlk
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where f i
t (·) and ff (·) are the probability density functions of the true and false measurements.

Given θlk, the correspondences between the targets and measurements as well as the number

of true measurements nt
k are all known. Given mz

k and nt
k, there are m

z
k!/(m

z
k−nt

k)! different

θlk, which are assumed equally probable. Then P{θlk|mz
k} can be derived by

P{θlk|mz
k} = P{θlk, nt

k|mz
k} = P{θlk|nt

k,m
z
k}P{nt

k|mz
k}

where

P{θlk|nt
k,m

z
k} =

(mz
k − nt

k)!

mz
k!

P{nt
k|mz

k} = (PdPG)
nt
k(1− PdPG)

mt
k−nt

kPf{mz
k − nt

k}

and Pf{·} is the probability mass function of the number of false measurements. Pd and PG

are the detection and gate probabilities, respectively. A validation gate is not necessary but

could increase the computational efficiency. If no gate is used, PG = 1. Once all P{θlk|Zk}

are computed, the probability µij
k of associating zjk to target i is obtained by summing up

all the probabilities of θlk that contains this association. Then the track of target i can be

updated by

x̂k = x̂k|k−1 +Kk
¯̃zk (A.1)

Pk = P 0
kµ

i0
k + (1− µi0

k )P
KF
k + P̃k (A.2)
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where µi0
k = 1−∑mz

k
j=1 µ

ij
k is the probability that no measurement is associated to the target,

¯̃zk =
∑mz

k
j=1 z̃

j
kµ

ij
k is the average measurement residual, and

PKF
k = Pk|k−1 −KkS

−1
k K ′

k

P̃k = Kk[

mz
k

∑

j=1

z̃jk(z̃
j
k)

′µij
k − (1 + µi0

k )¯̃zk ¯̃z
′
k]K

′
k

P 0
k = Pk|k−1 +

1− β

1− PdPG

KkS
−1
k K ′

k

Kk is the KF gain at time k, β =
Γγ/2(nz/2+1)

nz/2Γγ/2(nz/2)
, and Γ is the incomplete Gamma function. The

derivation for P 0
k—the MSE matrix for the case that none of the measurements is associated

to the target—is given in [141]. A simple track management scheme is included in JPDAF,

that is, if a track has n (n = 4 in the simulation) successive steps that do not contain any

validated measurement in a gating process, the track is deleted and re-initialized so that the

number of tracks in JPDAF remains constant.
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Appendix B

Derivation of Eqs. (5.9) and (5.10)

Since by definition P k
θ (s) is the probability of the event that the test statistic crosses the

lower bound with the start time k and initial value s, this event can be partitioned into two

mutually exclusive events:

Λ1 = {Sk+1 = Sk + sk+1 = s+ sk+1 6 Ak+1}

Λ2 = {Ak+1 < Sk+1 < Bk+1} ∩
{

Sτk+1
≤ Aτk+1

|Sk+1

}

For Λ1, the test statistic crosses Ak+1 at time k + 1, while for Λ2, Sk+1 is between the two

bounds (i.e., the SPRT does not stop at time k + 1) and crosses the lower bound after time

k + 1. Λ2 can be viewed as all events in which the test starts at time k + 1 with the initial

value of Sk+1. It is clear that the probability of Λ1 equals

Pθ {Λ1} =

∫ Ak+1−s

−∞
fk+1
θ (x) dx
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The probability of Λ2 equals

Pθ {Λ2} =

∫ Bk+1

Ak+1

Pθ {Λ2 |Sk+1 = x}Pθ {Sk+1 = x} dx

=

∫ Bk+1

Ak+1

Pθ

{

Sτk+1
≤ A |Sk+1 = x

}

fk+1
θ (x− s) dx

=

∫ Bk+1

Ak+1

P k+1
θ (x) fk+1

θ (x− s) dx

Hence, Eq. (5.9) follows by Pθ {Λ1}+ Pθ {Λ2}.

The derivation for Nk
θ (s) follows similarly. First, define two mutually exclusive events for

the SPRT with the start time k

Γ1 = {Sk+1 6 Ak+1} ∪ {Sk+1 > Bk+1}

Γ2 = {Ak+1 < Sk+1 < Bk+1}

It is clear that

Pθ {Γ1} = 1− Pθ {Γ2}

Pθ {Γ2} =

∫ Bk+1

Ak+1

fk+1
θ (x− s) dx

Denote by Nk
θ (s|Γ1) and Nk

θ (s|Γ2) the ASN conditioned on events Γ1 and Γ2, respectively.

Obviously, conditioned on Γ1, SPRT only needs one observation, and thus, Nk
θ (s|Γ1) = 1.

Conditioned on Γ2, after one observation, the test continues. It is equivalent to view it as the

case where the test restarts at time k + 1 with the initial value Sk+1 after one observation.

This re-initialized test has ASN Nk+1
θ (x) if Sk+1 = x ∈ (Ak+1, Bk+1). Hence, we have

Nk
θ (s|Γ2) = 1 +

∫ Bk+1

Ak+1

Nk+1
θ (x)Pθ {Sk+1 = x|Γ2} dx
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Hence,

Nk
θ (s) = Nk

θ (s|Γ1)Pθ {Γ1}+Nk
θ (s|Γ2)Pθ {Γ2}

= 1 · (1− Pθ {Γ2}) + (1 +

∫ Bk+1

Ak+1
Nk+1

θ (x)Pθ {Sk+1 = x,Γ2} dx
Pθ {Γ2}

)Pθ {Γ2}

= 1 +

∫ Bk+1

Ak+1

Nk+1
θ (x) fk+1

θ (x− s) dx

This is Eq. (5.10).
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Appendix C

Modified SLAE Method

The modified SLAE method can be applied if the bounds are constant (i.e., At = A and

Bt = B). Replacing each integral term in Eqs. (5.9) and (5.10) with the n-point Gaussian

quadrature yields

∫ B

A

P k+1
θ (x) fk+1

θ (x− s) dx ≈
n
∑

i=1

ωiP
k+1
θ (yi) f

k+1
θ (yi − s)

where ωi and yi are the weights and points of the Gaussian quadrature, respectively. Applying

this approximation to Eq. (5.9) yields

P k
θ (s) = F k+1

θ (A− s) +
n
∑

i=1

ωiP
k+1
θ (yi) f

k+1
θ (yi − s)

where F k
θ (·) is the CDF of sk. Let s = y1, · · · , yn. Then, a system of linear equations is

obtained

P k
θ (yj)−

n
∑

i=1

ωiP
k+1
θ (yi) f

k+1
θ (yi − yj) = F k+1

θ (A− yj)
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j = 1, 2, · · · , n, which is, in the matrix form,

[

I Mk+1

]







Pk

Pk+1






= Φk+1 (C.1)

where

Mk+1 =
(

M
(ij)
k+1

)

and M
(ij)
k+1 = −ωif

k+1
θ (yi − yj);

Φk+1 =
[

F k+1
θ (A− y1) , · · · , F k+1

θ (A− yn)
]T
;

Pk =
[

P k
θ (y1) , P

k
θ (y2) , · · · , P k

θ (yn)
]T
.

Eq. (C.1) has n equations but 2n unknowns, so it is under-determined and there are

infinitely many solutions. Combining Eq. (C.1) for different times k yields Eq. (5.11). Eq.

(5.12) can be derived similarly.
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Appendix D

Derivation of Eqs. (5.31) and (5.32)

Replacing P k
θ (s) in Eq. (5.9) with Eq. (5.30) yields

ne
∑

e=1

P
k,(e)
θ (s) =F k+1

θ (Ak+1 − s)

+
ne
∑

e=1

[Ik+1
e

∫ xe

xe−1

fk+1
θ (x− s)ϕ(e) (x) dx]Uk+1,(e) (D.1)

where

Ike =











1, if [xe−1, xe] ⊆ [Ak, Bk]

0, else

is an indicator function. Since the bounds Ai and Bi are included in the set of nodal points

(see Eq. (5.26)), a segment [xe−1, xe] lays either entirely inside or entirely outside the interval

[Ak, Bk]. From Eq. (5.29) we have

x = xe−1 + leξ, ξ ∈ [0, 1]

124



and thus

∫ xe

xe−1

fk+1
θ (x− s)ϕ(e) (x) dx = le

∫ 1

0

fk+1
θ (leξ + xe−1 − s)ϕ(e) (ξ) dξ

where the row vector ϕ(e) (x) = [ϕ
(e)
1 (x) , ϕ

(e)
2 (x)] is given in Eqs. (5.27) and (5.28). In

general, this integral can be evaluated analytically and straightforwardly for most distribu-

tions, and then a system of linear equations is obtained. We proceed with the derivation by

assuming st are independent and Gaussian distributed, i.e., f t
θ (s) = N (s;µt, σ

2
t ), but the

method is generally applicable to other distributions. Denote

Q
k+1,(e)
1 (s) =Ik+1

e le

∫ 1

0

fk+1
θ (leξ + xe−1 − s) (1− ξ) dξ

=Ik+1
e q

k+1,(e)
1 (s) (D.2)

Q
k+1,(e)
2 (s) =Ik+1

e le

∫ 1

0

fk+1
θ (leξ + xe−1 − s)ξdξ

=Ik+1
e q

k+1,(e)
2 (s) (D.3)

where for the Gaussian distribution,

q
k+1,(e)
1 (s) = le

∫ 1

0

fk+1
θ (leξ + xe−1 − s) (1− ξ) dξ

= F (1)− F (0)− q
k+1,(e)
2 (s) (D.4)

q
k+1,(e)
2 (s) = le

∫ 1

0

fk+1
θ (leξ + xe−1 − s)ξdξ

=
−σ2

le
[fk+1

θ (le + xe−1 − s)− fk+1
θ (xe−1 − s)]

− (xe−1 − s− µ)

le
[F (1)− F (0)] (D.5)

F (x) = F k+1
θ (x;

−xe−1 + s+ µ

le
,
σ2

l2e
)
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and F k+1
θ (x; x̄, σ2) is the Gaussian CDF of sk+1 with mean x̄ and variance σ2. So plugging

Eqs. (D.2) and (D.3) into Eq. (D.1) yields

ne
∑

e=1

P
k,(e)
θ (s) = F k+1

θ (Ak+1 − s) +Qk+1(s)Uk+1 (D.6)

where

Uk = [ Uk
0 , U

k
1 , · · · , Uk

ne
]T

Qk(s) = Q1
k(s) +Q2

k(s)

Q1
k(s) = [ Q

k,(1)
1 (s) , Q

k,(2)
1 (s) , · · · Q

k,(ne)
1 (s) , 0 ];

Q2
k(s) = [ 0, Q

k,(1)
2 (s) , Q

k,(2)
2 (s) , · · · Q

k,(ne)
2 (s) ].

By choosing s = x0, x1, · · · , xne , a system of linear equations can be obtained,



















Uk
0

Uk
1

.

..

Uk
ne



















=



















Fk+1
θ (Ak+1 − x0)

Fk+1
θ (Ak+1 − x1)

.

..

Fk+1
θ (Ak+1 − xne )



















+



















Qk+1 (x0)

Qk+1 (x1)

.

..

Qk+1 (xne )





































Uk+1
0

Uk+1
1

.

..

Uk+1
ne



















which can be written in a matrix form as

Uk = Fk+1 +Qk+1Uk+1 (D.7)

Combining Eq. (D.7) with k = 0, 1, · · · , K − 1 yields Eq. (5.31), where

Qk = [Qk (x0)
T , Qk (x1)

T , · · · , Qk (xne)
T ]T

and ÛK can be obtained from the termination rule (in the same way as Eq. (5.25)). Eq.

(5.32) can be derived similarly. Note that for other distributions of sk, only F k and Qk

(k = 1, 2, · · · , K) need be re-calculated accordingly.
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Appendix E

Derivation of Eq. (5.37)

The governing equation for Lk
θ(s) can be derived as follows. If CUSUM starts at time k with

the initial value s (i.e., Sk = s), then one of the following three mutually exclusive events

must occur:

Γ1 = {Sk+1 ≥ Bk+1} , Γ2 = {Ak+1 < Sk+1 < Bk+1} , Γ3 = {Sk+1 = Ak+1}

Applying the total expectation theorem, Eq. (5.36) becomes

Lk
θ(s) = Eθ [τk − k|Γ1, Sk = s]Pθ {Γ1 |Sk = s}

+ Eθ [τk − k|Γ2, Sk = s]Pθ {Γ2 |Sk = s}

+ Eθ [τk − k|Γ3, Sk = s]Pθ {Γ3 |Sk = s} (E.1)

The conditional probabilities are computed straightforwardly

Pθ {Γ1 |Sk = s} =

∫ +∞

Bk+1

fk+1
θ (x− s) dx (E.2)

Pθ {Γ2 |Sk = s} =

∫ Bk+1

Ak+1

fk+1
θ (x− s) dx (E.3)

Pθ {Γ3 |Sk = s} =

∫ Ak+1

−∞
fk+1
θ (x− s) dx (E.4)
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Further, it is clear that

Eθ [τk − k|Γ1, Sk = s] = 1 (E.5)

since conditioned on Γ1, CUSUM stops at time k + 1 (i.e., τk = k + 1). For event Γ3, if

Sk + sk+1 < Ak+1, then Sk+1 will be reset to Ak+1 (see Eq. (5.33)). Hence after one step,

the test restarts at time k + 1 with the initial value Ak+1. This newly initialized CUSUM

has an ARL Lk+1
θ (Ak+1). Thus, the ARL conditioned on Γ3 is

Eθ [τk − k|Γ3, Sk = s] = 1 + Lk+1
θ (Ak+1) (E.6)

If Γ2 occurs, after one step, the test statistic Sk+1 falls between Ak+1 and Bk+1, and CUSUM

continues. Then, the PDF of Sk+1 conditioned on Γ2 is

fk+1
θ (x|Γ2, Sk = s) =

fk+1
θ (x− s)

∫ Bk+1

Ak+1
fk+1
θ (x− s)dx

, Ak+1 < x < Bk+1

By the total expectation theorem, we have

Eθ [τk − k|Γ2, Sk = s] =

∫ Bk+1

Ak+1

Eθ [τk − k|Sk+1 = x,Γ2, Sk = s] fk+1
θ (x|Γ2, Sk = s)dx

Conditioned on Γ2 and Sk+1 = x, it is known that the test does not terminate at k + 1. It

is equivalent to the new test starting at k + 1 with the initial value Sk+1 = x, and hence

Eθ [τk − k|Sk+1 = x,Γ2, Sk = s] = 1 + Lk+1
θ (x)
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So

Eθ [τk − k|Γ2, Sk = s] =1 +

∫ Bk+1

Ak+1

Lk+1
θ (x)fk+1

θ (x|Γ2, Sk = s)dx

=1 +

∫ Bk+1

Ak+1
Lk+1
θ (x)fk+1

θ (x− s) dx
∫ Bk+1

Ak+1
fk+1
θ (x− s) dx

(E.7)

Plugging Eqs. (E.2)–(E.7) into Eq. (E.1) yields Eq. (5.37).
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