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SUMMARY. Some failure time data come from a population that consists of some subjects who are suscep- 
tible to and others who are nonsusceptible to the event of interest. The data typically have heavy censoring 
at the end of the follow-up period, and a standard survival analysis would not always be appropriate. In such 
situations where there is good scientific or empirical evidence of a nonsusceptible population, the mixture 
or cure model can be used (Farewell, 1982, Biometrics 38, 1041-1046). It assumes a binary distribution to 
model the incidence probability and a parametric failure time distribution to model the latency. Kuk and 
Chen (1992, Biometrika 79, 531-541) extended the model by using Cox’s proportional hazards regression 
for the latency. We develop maximum likelihood techniques for the joint estimation of the incidence and 
latency regression parameters in this model using the nonparametric form of the likelihood and an EM 
algorithm. A zero-tail constraint is used to reduce the near nonidentifiability of the problem. The inverse of 
the observed information matrix is used to compute the standard errors. A simulation study shows that the 
methods are competitive to the parametric methods under ideal conditions and are generally better when 
censoring from loss to follow-up is heavy. The methods are applied to a data set of tonsil cancer patients 
treated with radiation therapy. 
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1. Introduction 
In survival analysis, it is usually assumed that if complete 
follow-up were possible for all individuals, each would even- 
tually experience the event of interest. Sometimes’ however, 
the data come from a population where a substantial propor- 
tion of the individuals do not experience the event at the end 
of the observation period. In some situations, some of these 
survivors are actually cured in the sense that, even after an 
extended follow-up, no further events are observed. An ex- 
ample is patients with tonsil cancer treated using radiation 
therapy (Withers et al., 1995), in which cure occurs if the ra- 
diation kills all the cancer cells. For such data, Kaplan-Meier 
(K-M) estimates of the survival function for time to local re- 
currence level off to nonzero proportions. Furthermore, there 
is a time window within which most or all of the recurrences 
are expected to occur, and so a patient without any recurrence 
beyond this window can usually be considered as being cured. 
This type of data is typical of diseases where the biology of 
the disease suggests the possibility of cure. A K-M survival 
curve that shows a long and stable plateau with heavy cen- 
soring at the tail may be taken as empirical evidence of a 
cured fraction. The use of standard survival analysis for such 
data may be inappropriate since not all the individuals are 
susceptible. 

In a cure model, the population is a mixture of suscepti- 
ble and nonsusceptible (cured) individuals. The objective is 
usually to study the cure rate and survival distribution and 
the effect of any covariates. We are interested in whether the 
event can occur, which we call incidence, and when it will 
occur, given that it can occur, which we call latency. In the 
tonsil cancer application, there are two types of covariates, 
patient variables such as tumor stage and treatment variables 
such as total dose of irradiation. How these covariates influ- 
ence the cure rate would be viewed as most important, but 
there is also interest in how they relate to when the recurrence 
happens. 

Various parametric and nonparametric methods have been 
proposed for the cure model. Farewell (1982) used logistic 
regression for the mixture proportion and a Weibull regression 
model for the latency. Peng, Dear, and Denham (1998) used 
a generalized F for the latency distribution. Kuk and Chen 
(1992) proposed a semiparametric generalization of Farewell’s 
model using a Cox proportional hazards (PH) model in the 
susceptible group; we call this the PH cure model. They used 
an estimation method involving Monte Carlo simulation. In 
this paper, we present a different estimation method. 

The cure model should not be used indiscriminately (Fare- 
well, 1986). There must be good empirical and biological ev- 
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idence of a nonsusceptible population. The model generally 
requires long-term follow-up and large samples, and censor- 
ing from loss to follow-up during the period when events can 
occur must not be excessive. Otherwise, identifiability prob- 
lems between the incidence and latency parameters can occur. 

2. The Proportional Hazards Cure Model 
Let Y be the indicator that an individual will eventually (Y = 
1) or never (Y = 0) experience the event, withp = Pr(Y = 1). 
Let T denote the time to occurrence of the event, defined only 
when Y = 1, with density f ( t  I Y = 1) and survival function 
S(t  I Y = 1). For a censored individual, Y is not observed. The 
marginal survival function of T is S( t )  = (1 - p )  +pS(t  I Y = 
1) for t < m. Note that S ( t )  + 1 - p  as t -+ 00. We assume 
an independent, noninformative, random censoring model and 
that censoring is statistically independent of Y. 

Farewell (1982) used a logistic regression model for the in- 
cidence p ( z )  = pr(Y = 1;x)  = exp(z’b)/(l +exp(z’b)), where 
the covariate vector z includes the intercept, and a parametric 
survival model for S(t  I Y = 1). Kuk and Chen (1992) general- 
ized this by using a Cox PH model with hazard function X ( t  I 
Y = 1; z )  = X o ( t  I Y = 1) exp(z’p), where z is a vector of co- 
variates other than the intercept and X o ( t  I Y = 1) is the con- 
ditional baseline hazard function. Through b and P, the model 
is able to separate the covariates’ effects on the incidence and 
the latency and, in that sense, provide a flexible class of mod- 
els when there is a priori belief in a nonsusceptible group. For 
the Kuk and Chen model, the conditional cumulative hazard 
function is A(t I Y = 1; z )  = Ao(t I Y = 1) exp(z’P), where 
Ao(t I Y = 1; z )  = J; Xo(u I Y = 1)du. The conditional sur- 
vival function is s(t I Y = 1; z )  = so(t I Y = 
where So(t I Y = 1) is the conditional baseline survival func- 
tion. 

It is not difficult to see that a mixture of PH functions is 
no longer proportional and in fact, for a binary covariate, a 
PH cure model can have marginal survival curves that cross. 
However, the standard PH model is a special case of a PH 
cure model in which p ( z )  = 1 for all z. 

The PH cure model is a special case of a multiplicative 
frailty model, in which the hazard for an individual, condi- 
tional on Y, can be written as X ( t  I Y ;  z )  = YX(t I Y = 1; z ) .  
As a frailty variable, Y is not entirely unobservable since an 
individual becomes labeled as Y = 1 if an event is observed. 

3. Estimation 
3.1 Maximum Likelihood Estimation 
Denote the observed data for individual i by (ti,  6,, z i ) ,  i = 
1, . . . , n, where ti is the observed event or censoring time, 6i = 
1 if ti is uncensored and Si = 0 otherwise, and zi is a vector of 
covariates. For convenience, we let xi = (1, z i ) ’ ,  although the 
covariates in zi and zi do not have to be identical. Denote 
the k distinct event times by t ( l )  < . . .  < t ( k ) .  It follows 
that, if 6i = 1, yi = 1 and, if 6i = 0, yi is unobserved, 
where yi is the value taken by the random variable Yi. The 
likelihood contribution of individual i is p , f ( t i  I Y = l ; z a )  
for 6i = 1 and (1 - p i )  + piS(ti I Y = 1; zi) for 6i = 0, where 
pi = pr(Y, = 1; zi). For the PH cure model, the observed full 
likelihood is then 

L(b, P, 

We want to obtain the estimates 6 and B that maximize 
L(b,P,Ao). In the ordinary Cox PH model, the standard 
analysis is to use the partial likelihood that does not depend 
on X o ( t ) .  Breslow (1972) used a semiparametric full likelihood 
construction and a profile likelihood technique in which Ro ( t )  
is replaced in the full likelihood by a nonparametric maximum 
likelihood estimate (MLE) given P. The estimator for Ao(t) 
is the Aalen-Nelson estimator. Breslow showed that this 
partially maximized likelihood function of P is proportional to 
the partial likelihood. This approach, however, does not work 
for the PH cure model. Unlike in the ordinary PH model where 
little information is lost by eliminating So(t) ,  one cannot 
eliminate So(t I Y = 1) in the estimation without losing 
information about b. We propose a maximum likelihood-based 
method that makes use of the full likelihood. 
3.2 The EM Algorithm 
Denote the complete data by (t,, S,, z,, y,), i = 1 , .  . . , n, which 
includes the observed data and the unobserved y2k. The 
complete-data full likelihood is 

a = l  r = l  

,-y&(t,IY=l) exp(z lP )  

= h ( b ;  Y)LZ(P, Ao; Y), (1) 
where y is the vector of y2 values. The likelihood factors into 
a logistic and a PH component. We use the notation L for 
likelihoods and 1 for log-likelihoods. 

The E step takes the expectation of l c ( b ,  P,  Ao; y) with 
respect to the distribution of the unobserved yak, given the 
current parameter values and the observed data 0, where 
0 = {observed y,’s, (t, ,  6,, z , ) ;  z = 1,. . . , n}. Note that, for 
censored cases, the y2’s are linear terms in the complete data 
log-likelihood so that we only need to compute 

( m )  

= E(Y, I dm’ ,O)  
TTT, 

1 = pr Y,  = 1 I T, > t,, 6, = 0 ,  z,; e(”) ( 
= p r ( x  = 1; b)So(t, I Y = I ) ~ ~ P ( ~ : P )  

+ [l - pr(Y, = 1; b) 

+ pr(K = 1; b)So(tz I Y = l ) e x ~ ( r ” ) ~  1e=e(m), 

for censored cases, where 0 = ( b , p , A o ) ,  d”) denotes the 
current parameter values at the mth  iteration, and So(t, I 
Y = 1) = exp{-Ao(t, I Y = 1)).  For uncensored 2, 

E(Y, I d m ) , O )  = y2 = 1. Thus, the E step replaces the 
y2’s in (1) with wz(”), which equals one if z is uncensored and 
equals ~z(”’ if z is censored. Denote the expected log-likelihood 
by l”c(b, P, Ao; dm))  = fl (b; w ( ~ ) )  + &(/3, Ao; w ( ~ ) ) ,  where 
w ( ~ )  = { ~ z ( ~ )  : z = 1,. . . ,n}.  Note that, for z censored, the 
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weight wjm) represents a fractional allocation to the 
susceptible group. 

The M step of the algorithm involves the maximization 
of l"c with respect to b and p and the function Ao, given 
w ( ~ ) .  To deal with the nuisance function Ao(t I Y = 1) or 
So(t I Y = l), we perform an additional maximization step in 
the M step using profile likelihood techniques. Two methods 
from the Cox PH model can be extended: the Breslow-type 
estimator for Ro(t I Y = 1) and the product-limit estimator 
for So(t 1 Y = 1). 

Breslow-type estimator (PFL approach). This profile like- 
lihood method is based on Breslow's (1972) likelihood 
for the standard PH model (see also Klein, 1992). Using 
f z ( p ,  A O ; W ( ~ ) ) ,  it can be shown that the nonparametric MLE 
of Ao(t I Y = 1) given p is a slight modification of the Aalen- 
Nelson estimator given by 

where d, is the number of events at time t ( i )  and Ri is 
the risk set at time t- Substituting &(t 1 Y = 1) into 

(2). 

Lz(P, ho; dm)) leads to  a partial likelihood of p, 
/ \ 6% 

This is similar to the Cox partial likelihood except for 
the inclusion of the weights w ( ~ ) .  The M step involves 
maximizing L3 with respect to p, given w ( ~ ) .  Then the PFL 
estimator for so(t I Y = 1) is exp{-l?o(t I Y = 1)). 

Product-limit estimator (NPL approach). This method is 
based on a nonparametric full likelihood construction that 
produces the generalized MLE for So(t I Y = 1).  Following 
the argument of Kalbfleisch and Prentice (1980, p. 85), the 
complete-data likelihood is 

lEC,  J 

where a discrete PH model is assumed and So(t I Y = 1) 
has the product-limit form So(t 1 Y = 1) = I I J , t ( 3 ) < t  a J ,  
with So(t(Zj I Y = 1) = So(t(,-,) I Y = 1). The a's are 
nonnegative parameters at each of the k distinct event times 
with a0 = 1, h(t(,); z )  = 1 - a, exp(Z'p) is the hazard function 
given Z, D, is the set of individuals experiencing an event 
at time t( ,) ,  and C, is the set of individuals censored in 
[t( ,) , t(z+l)) ,  z = 0,1, .  . . , k .  Rearranging terms and applying 
the E step, we obtain 

(4) 
Given p, we obtain independent estimating equations for each 

I 

( 5 )  
The solution for ai is not of closed form except when there 
are no ties at t ( i ) ,  in which case the MLE of ai given p is 

We then substitute (Yi into L ~ ( P , ~ ; W ( ~ ) )  and obtain a 
nonparametric profile likelihood of /? and obtain its MLE. But 
when there are ties, the MLEs for P and a must be jointly 
obtained from Lz(,B, a; dm)).  This requires the maximization 
of a potentially very high-dimensional function. 

Note that equations (2)-(6) all have analogous expressions 
in the standard PH model except for the inclusion of the 
weights w ( ~ ) .  Note also that, since w;"' depends on &(ti  1 
Y = I), the baseline function is involved in the estimation of 
b and p. 
3.3 Computational Aspects 
3.3.1 Zero-tail constraint, S o ( t ( k )  I Y = 1) = 0. In order 
tp obtain a good estimate for b and p, it is important for 
S ~ ( t ( k )  I Y = 1) to approach zero, where t ( k )  is the last 
event time. Our numerical experience suggests that the PFL 
approach does not work well because of the inability of 
S o ( t ( k )  1 Y = 1) = exp{-Ao(t I Y = 1)) to go to zero 
even when the data indicate a leveling off of the marginal 
survival curve. In contrast, the NPL approach is able to send 
S o ( t ( k )  I Y = 1) to zero because &k can equal zero; however, 
it is not guaranteed that this will occur at the global MLE. 
Thus, despite the simpler form for the estimate of in the 
PFL method, we prefer and use the NPL approach in the rest 
of this paper. 

Taylor (1995) suggested imposing the constraint So(t(k ,  1 Y 
= 1) = 0 in the special case of the PH mixture model with 
p = 0. The constraint occurs automatically when the weights 
wim) for censored observations after t ( k )  are set to zero in 
the E step, essentially classifying them as nonsusceptible. The 
solution with this constraint has better statistical properties 
and converges faster than the unconstrained MLE. For 
most of the data sets in simulation studies, the constrained 
and unconstrained MLEs were identical. In some of the 
cases for which they differed, the unconstrained MLE was 
quite unstable. A heuristic justification for this constraint is 
that we would only consider the model in situations where 
it is clear that a nonsusceptible group exists and where 
there is sufficient follow-up beyond the time when most 
of the events occur. The need for the constraint becomes 
clear upon examining the observed log-likelihood surface. In 
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the PH mixture model without the constraint, even with 
sufficient follow-up, the surface is sometimes not well behaved, 
especially for b. With the constraint, the log-likelihood surface 
is well behaved and approximately quadratic. 

3.3.2 Maximization algorithm in the M step. In the M 
step, we use a Newton-Raphson (NR) procedure to maximize 
& ( b ; ~ ( ~ ) )  to find 6. A simultaneous NR on ( P , a )  using 
&(p, a; w ( ~ ) )  is, however, sensitive to starting values and 
will easily fail to converge. The method we found to be 
most efficient is the two-step NR suggested by Prentice 
and Gloeckler (1978) in the grouped PH model wherein the 
updates of /3 and a are obtained alternately. We use the 
parameterization X i  = - logcq. Our experience was that the 
above algorithm did converge reliably. The observed data log- 
likelihood increased with each EM iteration, and different 
starting values gave the same mode. It is possible for the 
estimate for b and/or /3 to be infinite. This happened very 
rarely and only when the sample size was small and there was 
a very small number of either events or survivors. 

4. Standard Errors and Inference 
?&obtain an approximation of the asymptotic variance of 
( b , p )  based on the inverse of the observed full information 
matrix I ( b ,  p, A). Computations are based on the observed full 
likelihood parameterized according to the discrete PH model 

Formulas for I ( b , P , X )  are given in the Appendix. The 
submatrix of I (b ,  P,  A) corresponding to X is not diagonal, 
and there is no simple way to obtain I(b,,B,X)-l except to 
directly invert the entire matrix. This approach can handle 
ties and also provide standard errors for A. 

The appropriateness of the standard errors of (6, b) might 
be of concern here. The asymptotic theory developed for 
the standard PH model using classical (Tsiatis, 1981) or 
counting process (Andersen and Gill, 1982) methods is based 
on estimators using the Cox partial likelihood. Bailey (1984) 
showed that the inverse of I(/?, A) for the standard PH model 
based on the full likelihood provides an asymptotically correct 
and equivalent covariance matrix for @,I) to that based on 
the partial likelihood. The estimates for ,B and X using both 
approaches are also asymptotically equivalent. This implies 
that the large number of nuisance parameters does not cause 
serious difficulty in the joint estimation. In our numerical 
work, we find that the joint estimation of ( b , p )  with X does 
not give any problems in the properties of the estimators and 
inferential methods as long as the zero-tail constraint is used. 
Other methods of estimating the variance of (&, p) are possible 
(Sy and Taylor, unpublished manuscript). 

5. A Simulation Study 
5.1 Simulation Design 
In this study, we compare the performance of the parametric 
MLEs with the proposed semiparametric estimators. Data 
are generated from a logistic-exponential mixture model, 
where p(z) = 1/[1 + exp{-(bo + b l z ) } ] ,  S(t 1 Y = 1;z) = 
exp(-A(z)t), X(z) = exp(P0 + pz) .  The covariate z is fixed 
by design and is uniform between -0.5 and 0.5. Censoring 
times C are generated from an exponential distribution with 
censoring rate Xc. Various configurations of p ( z ) ,  X(z), and 
Ac are considered. For each configuration, 100 data sets are 
generated, each with sample size of either n = 50 or 100. Each 
observation is followed up for at most T = 10. The data for 
each observation are (t ,  6, z ) ,  where t = min(T, C, 10) is the 
observed time. Maximum likelihood estimation is carried out 
for the Weibull and PH mixture models, with the constraint 
S"(t(k) I Y = 1) = 0 for the latter. 

The proportion p(z) is (0.35, 0.65), 0.50, 0.20, or 0.80, 
where the first set denotes the range of p ( z )  on z from -0.5 
to 0.5 and the rest have bl  = 0. The hazard A(z) is (0.5, 1.5), 
1.0, or (1.5, 0.5), where the first and third denote the range 
of X(z) on z from -0.5 to 0.5 while for the second p = 0. A, 
is either 0.10 or 0.40, representing mild or heavy censoring, 
respectively. 

Fourteen configurations are considered for each sample 
size. The designs are grouped into three general groups: (A) 
intermediate p ( z )  designs-mild censoring, (B) low/high p(z) 
designs-mild censoring, and (C) intermediate p ( z )  designs- 
heavy censoring. We consider the bias, variability, and mean 
square error (MSE) of-60, 61, 8, f i ( z ) ,  S o ( t  I Y = l), and 
Soot). For &o, 61, and 0, we use the median and the square 
of the median absolute deviation from the median (MAD) 
to compute the bias and variability. The MSE is replaced by 
bias2 + MAD'. The bias of the mean, variance, and MSE are 
used for f i (z) ,  So(t 1 Y = l), and Soot).  For f i ( z ) ,  we consider 
estimates at z = -0.5,0,0.5. For So(t 1 Y = 1) and Soot), 
we consider estimates at the 5th, 50th, and 95th percentiles 
of the true So(t). We also compare the coverage rates of the 
normal approximation 95% confidence intervals for bo, bl , and 
p between the PH and Weibull mixture models. To evaluate 
the adequacy of the estimated variances for 60, 61, and ,8, 
we compare the median estimated variance with the observed 
variance of the estimates. 

5.2 Simulation Results 
Neither the PH nor the Weibull mixture model showed any 
significant bias, nor did one model show consistently larger 
bias than the other. The bias generally contributed little 
to the MSE. Table 1 gives the mean of the relative MSE 
(MSE(Weibull)/MSE (PH)) for 60, 61 ,  ,8, l j (z) ,  So(t 1 Y = l), 
and Soot) over designs according to the groups A, B, and C. 
For designs with mild censoring, the Weibull and PH mixture 
models are generally comparable for 60 and 61. For 8, the 
PH mixture is generally less efficient, which is to be expected 
since the true model is Weibull. When censoring is heavy, 
the PH mixture generally does better for all the parameters. 
For @ ( z ) ,  the Weibull is less efficient for designs with small 
$ ( z )  or heavy censoring. For S o ( t  1 Y = I) and So(,), the 
PH mixture model is mostly less efficient, but it improves at 
higher percentiles for designs with heavy censoring. 
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Table 1 
Mean of the relative MSE (MSE( Weibull)/MSE(PH)) of 60, b l ,  ,8, 

p ( z ) ,  &(t I Y = l), and &(t) at percentiles comparing Weibull to P H  over designs 

Mild censoring Mild censoring Heavy censoring 

A. Intermediate p ( z )  B. Low p ( z )  B. High p ( z )  C. Intermediate p ( z )  

Number of designs 10 4 4 10 
bo 1.05 1.03 1.09 1.22 

P 0.97 0.87 0.94 1.11 

p ( 0 . 5 )  1.03 1.16 1.05 1.21 

1.00 1.09 1.02 1.24 

@( -0.5) 1.03 1.88 1.01 1.41 
P(0) 1.06 1.31 1.03 1.53 

So(t 1 Y = l), 5th 0.46 0.49 0.44 0.50 
S o ( t  1 Y = l ) ,  50th 0.73 0.80 0.72 0.93 
S o ( t  I Y = l), 95th 0.66 1.38 0.61 0.98 
Soot), 5th 0.48 0.60 0.46 0.59 
Soot ) ,  50th 0.80 0.89 0.74 0.84 
Soot ) ,  95th 0.96 1.02 0.90 1.08 

In summary, when the true model is a Weibull mixture, un- 
der ideal conditions of sufficient follow-up and mild censoring, 
the PH mixture is comparable in efficiency in the estimation 
of the incidence parameters but is less efficient for the pa- 
rameters of the conditional survival distribution. But when 
censoring is heavy, the PH mixture model gets an upper hand 
in the incidence parameters and at times even does better 
with the latency parameters because of the constraint. 

The coverage rates (not shown) for bo and bl are reasonable 
and comparable between the PH and Weibull mixture. For 0, 
there can be undercoverage for both models but more often 
with the Weibull, mostly for designs with heavy censoring or 
small p ( z ) .  The undercoverage is due to underestimation in 
the variance of /3. 

Comparisons between the observed and estimated variabili- 
ty of bo, b l ,  and ,B are simikar in tee PH and Weibull mixture. 
The estimated variance of bo and bl generally agrees with the 
observed variance when censoring is mild but i s  muchA smaller 
when censoring is heavy. The estimated variance of ,B is gen- 
erally less than the observed variance, and the discrepancy 
becomes greater for small p ( z )  or heavy censoring. 

We observed that, for low pi.) when there are only a few 
events observed, the estimate 0 becomes unstable, and this 
gets reflected in a large estimated and observed variance. We 
also need a reasonable proportion of the nonsusceptibles to 
survive censoring to near the end of the follow-up period in 
order to get a reasonable estimate of the incidence propor- 
tion. We find that the Weibull mixture is more sensitive to 
the effects of small p ( z )  and heavy censoring because it does 
not get the help the PH mixture model does from the con- 
straint, which helps in stabilizing the tail of So(t I Y = 1) and 
improves the parameter estimates. 

6. Radiation Therapy for Tonsil Cancer 
The data consist of 672 patients from nine institutions world- 
wide (Withers et al., 1995). The subjects had squamous cell 
carcinoma of the tonsil and were treated with radiation dur- 
ing 1976-1985. The purpose of the study was to investigate 

the effects of different radiation treatment regimens on local 
cancer control. In this example, local recurrence is defined as 
the event and failure time is time from initial treatment to 
local recurrence. Six covariates are considered: T stage (cate- 
gorical) with levels T1, T2, T3, T4; node status (binary), with 
level zero for having negative neck nodes (NO) and level one 
for having at least one positive node (N+); total dose (contin- 
uous); overall treatment duration (continuous); sex (binary); 
and age (continuous). All covariates are included in both parts 
of the model. A przorz, we might expect the T stage, node 
status, and treatment variables to be more important for the 
incidence part of the model because incidence is directly de- 
termined by whether or not all the cancer cells are killed. If 
age is to be important, it may influence the latency part be- 
cause the time to recurrence is determined by the growth rate 
of the surviving tumor cells, which is potentially determined 
by patient specific factors such as age. Of the 672 subjects, 
206 had cancer recurring. The observed follow-up time ranged 
from 19 days to 14.5 years. The last three recurrences were at 
4.9, 5.1, and 8.2 years from initial treatment. Of the 466 cen- 
sored observations, 89 were censored after the last event and 
126 between the last two events. A K-M plot for the whole 
data set has a level region beyond about 3 years, which to- 
gether with the biology of this tumor is a clear indication of 
the appropriateness of a cure model. There were 170 distinct 
event times, 31 with ties, and the number of ties ranged from 
2 to 5. The log{- log S ( t ) }  plots of the K-M survival curves 
against log-time for most covariates show approximately par- 
allel curves, but not necessarily straight lines, across covariate 
levels, indicating that a standard PH model might provide a 
reasonably good fit to the observable marginal survival curves 
while a standard Weibull model might not. 

Tests for the joint significance of each covariate on incidence 
and conditional latency, ( b j ,  P j )  = 0, in the PH mixture were 
performed using the likelihood ratio test (LRT) and the nor- 
mal approximation Wald test. The results show that, except 
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Table 2 
Results from the PH mixture model, Weibull mixture model, and standard Cox PH model 

PH mixture model Weibull mixture model Standard Cox PH model 

Estimate SE Estimate SE Estimate SE 

Intercept 
T stage 

T2 
T3 
T4 

Node 
Total dose (Gray) 
Overall time 

(per 10 days) 
Sex: male 
Age (per 10 years) 

Intercept 
T stage 

T2 
T3 
T4 

Node 
Total dose (Gray) 
Overall time 

(per 10 days) 
Sex: male 
Age (per 10 years) 
Shape (Weibull) 

-0.181 

0.852 
1.655 
2.198 
0.355 

- 

-0.077 

0.463 
0.116 
0.134 

- 
- 

-0.625 
-0.108 

0.385 
0.339 

-0.005 

-0.007 
0.065 

-0.303 
- 

Logistic Model 
1.03 -0.070 

38.gab __ 
0.357 0.816 
0.345” 1.687 
0.430” 2.222 
0.204 0.402 
0.018” -0.079 

0.127” 0.473 
0.215 0.157 
0.097 0.117 

Survival Model 
__ 2.640 

0.365 -0.697 
0.352 -0.306 

13.6”b - 

0.383 0.358 
0.188 0.307 
0.014 -0.005 

0.078 -0.020 
0.198 -0.105 
0.097” -0.323 
- 1.178 

1.00 
43.1”” 
0.352 
0.342” 
0.428“ 
0.198 
0.018” 

0.125” 
0.209 
0.092 

0.876 
17.4ab 
0.336 
0.325 
0.358 
0.169 
0.013 

0.077 
0.175 
0.091” 
0.061 

- 

- 

0.572 
1.365 
1.857 
0.369 

-0.049 

0.281 
0.099 
0.032 
- 

- 

56.2”b 
0.309 
0.295” 
0.32ga 
0.148 
0.011” 

0.071” 
0.154 
0.065 
- 

”p-value < 0.01. 
Wald x 2  with 3 d.f. 

for sex, all the covariates are significant in at least one effect. 
The LRT and Wald test agree quite well. 

Table 2 gives the results for the PH and Weibull mixture 
models and the standard Cox PH model. T stage is significant 
on both incidence and latency. There is more probability of 
local recurrence with higher stage. The effect on recurrence 
time is, however, not monotonic. Node is marginally signifi- 
cant on both incidence and latency, with a higher recurrence 
rate and earlier recurrence times for those with positive nodes. 
Total dose and overall treatment duration are very significant 
on incidence but not on latency. A higher total dose lowers the 
risk of recurrence, while a longer duration results in a higher 
recurrence rate. Sex is neither significant on incidence nor la- 
tency. Age is not significant on incidence but is significant 
on latency. The positive estimate for by indicates a higher, 
though nonsignificant, recurrence rate for older patients, but 
the significant negative estimate for & indicates later recur- 
rence times for older patients. This has a plausible biological 
explanation and is an example of marginal survival curves 
that cross. The results from the Weibull mixture model are 
mostly similar. The standard errors are not much different be- 
tween the PH and Weibull mixture models. The results from 
the standard Cox PH model agree with those for the PH mix- 
ture model’s global test for @,&) = 0 except for age. The 

mixture model results in Table 2 use the zero-tail constraint. 
The parameter estimates obtained without this constraint are 
very similar, but not identical, to those in the table. 

To compare the fits from the PH and Weibull mixture mod- 
els, we construct curves for S(t  \ Y = 1; 2) and S( t ;  2) for se- 
lected values of z .  Figure 1 compares the estimated marginal 
survival curves and the estimated conditional survival curves 
for T stage and age. The fits from the PH and Weibull mod- 
els are very similar for the marginal curves, while they can be 
different for the conditional curves, especially near the tails 
of the curves, although the ordering of the curves is the same. 
The estimated curves from PH mixture model for age at 80 
years show a big jump at the tail. This is caused by the last 
event, which is a late event whose effect on the baseline con- 
ditional survival function is to shift it upward at the tail. Ex- 
cluding this observation reduces the jump size significantly. 
The plots for age show how and where the curves cross and 
illustrate the opposite effects of age on incidence and latency. 
This explains why the standard PH model was not able to 
detect an effect of age. 

7. Discussion 
The cure model allows the possibility of some useful inter- 
pretations that are not available using a standard Cox PH 
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Figure 1. Estimated marginal survival curves from the PH mixture model and the Weibull mixture model for 
(a) T stage, (b) age, and (c )  estimated conditional survival curves for age. The left panels are for the PH mixture 
model while the right panels are for the Weibull mixture model. For each covariate compared, the other covariates 
are fixed at selected values indicated in the plots. 
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model. For each covariate, there are two parameters, one de- 
scribing how the covariate affects long-term incidence and one 
describing how it affects latency. Neither of these has the same 
interpretation as the relative hazard in a Cox rnodel. A covari- 
ate that is important for incidence may not be important for 
latency and vice versa. In the tonsil cancer application, the 
eventual cure (i.e., incidence) is of more scientific interest than 
when the tumor recurred (i.e., latency). The data set also pro- 
vides examples of variables that are important for incidence 
but not for latency (e.g., dose and treatment duration) and 
vice versa (e.g., age). This feature of the model that covariates 
can influence both the incidence and the latency allows more 
flexible modeling but also opens up the possibility of overpa- 
rameterization. The relative importance of the two aspects of 
the model may differ between applications. In our experience, 
the incidence part of the model is usually of more scientific 
interest, in which case a minimal number or no covariates in 
the latency part may be appropriate. 

An important issue in cure models is goodness-of-fit. It is 
possible that, even in a cure model, a marginal PH model may 
hold, although this did not happen for the tonsil cancer data 
because of the effect of age. There are a number of ways that 
one might address whether a cure model is appropriate, the 
most important of which is having a biological rationale from 
the underlying science. The standard PH model is a special 
case of the PH cure model, with an infinitely large intercept 
in the logistic part. For our data, the estimate and standard 
error for the intercept are -0.18 and 1.03, respectively, not 
supporting the standard PH model. For assessing the appro- 
priateness of specific submodels, one could borrow ideas from 
standard approaches for these models. For example, for a ma- 
jor categorical variable, one could graphically examine a plot 
of log(- log((S(t) - (> -$))I$)) versus time for each level of 
the variable, where S( t )  is the estimated marginal distribu- 
tion and ?; is the estimated final level of the Kaplan-Meier 
curve. Approximately parallel lines would support the PH as- 
sumption for the conditional distribution. 

An alternative potential approach to assessing the need for 
a cure model is to extend the ideas in Maller and Zhou (1996), 
who developed a method in the one-sample, no-covariate para- 
metric model setting. They showed that a likelihood ratio 
test of the no-cure model versus cure model has, asymptot- 
ically, a mixture of chi-squared distributions. For the Kuk 
and Chen (1992) model, a likelihood ratio test could be con- 
structed by fitting both the full model and a restricted model 
with p ( z )  = 1 for all z. Then an empirical estimate of the 
sampling distribution of the statistic could be obtained by 
simulating observations from the restricted model. 

The semiparametric logistic-PH mixture niodel with covari- 
ates is identifiable for the parameters in the incidence proba- 
bility and the conditional survival distribution. But by leaving 
the conditional baseline survival function arbitrary, a condi- 
tion close to nonidentifiability can occur, which causes es- 
timation problems. The constraint that sets the conditional 
survival function to zero beyond the last event time plays 
a crucial role in the procedure; it is effectively eliminating 
the near nonidentifiability, leading to a vastly more regular 
likelihood surface and good properties in the estimators. The 
constraint could also be viewed as an alteration of the model, 
e.g., to a rnodel in which there is a finite time TTllar after 

which events can never occur. Then our zero-tail constraint 
is implicitly estimating Tmas by the largest event time. This 
is not unreasonable except in situations where there is poor 
follow-up beyond the period when events occur. Thus, this 
alteration to the model seems quite natural and appropriate 
to us except in situations where the cure model should not be 
used anyway. 

The estimation method proposed in this paper is a gen- 
eralization of the method of Taylor (1995) in his logistic K- 
M model where the conditional survival function does not 
depend on covariates. We simply set ,B = 0 and our b and 
So(t 1 Y = 1) reduce to his estimators. Statistical inference 
for b in Taylor (1995) was performed using likelihood ratio 
tests, and no standard errors were given. A special case of 
the information matrix given in the Appendix of the current 
paper can be used to find standard errors for the model con- 
sidered by Taylor (1995). 

Kuk and Chen (1992) in their estimation method for this 
model applied a marginal likelihood approach and eliminated 
So(t I Y = I )  by simulating the Y values of the censored 
individuals. Their method effectively simulates Y = 1 or 0 
with probability 112, ignoring the covariates and censoring 
times. They first maximize a Monte Carlo approximation of 
the marginal likelihood that is free of So(t I Y = 1) to es- 
timate (b,,B). Given ( k , , d ) ,  So(t 1 Y = 1) is then estimated 
using the nonparametric observed likelihood in an EM algo- 
rithm. The second step is similar to our method except that 
we jointly estimate ( b , p )  together with So(t 1 Y = 1) within 
the same EM algorithm. We note that their method requires 
repeated application of the procedure in order to obtain the 
standard errors of the estimates. Furthermore, in their two- 
sample simulation study, it appears that their method tends 
to overestimate the incidence proportion for the group with 
more censored observations. 
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RESUMB 
Certaines donnkes de survie peuvent Ctre issues d’une popula- 
tion comportant un mdlange de sujets susceptibles et de sujets 
non susceptibles de dkvelopper un Cvdnement d’intkr6t. Ces 
donnges se presentent typiquement avec un taux de censure 
klevk a la fin de l’ktude et une analyse standard ne sera pas 
toujours adaptke. Dans de telles situations oh l’on a de fortes 
presomptions scientifiques ou empiriques quant 8. l’existence 
d’une proportion de sujets non susceptibles, un modkle de 
melange ou de gukrison peut 6tre utilisk (Farewell, 1982). Ce 
modhle assume une distribution de Bernouilli pour modkliser 
la probabilitk d’6tre susceptible et un modble paramktrique 
pour la distribution des temps d’Bv6nements. Kuk et Chen 
(1992) ont ktendu ce modele en utilisant un modble semi- 
paramktrique de regression de Cox pour la distribution des 
dklais de survenue de l’Bv6nement. Nous ddveloppons des pro- 
cedures du maximum de vraisemblance, pour l’estimation 
jointe de l’incidence et des parametres de rkgression relative B 
la distribution de temps d’BvCnements, en utilisant une forme 
non parametrique de la vraisemblance et un EM-algorithme. 
Urie contrainte sur la fin de la distribution est utiliske pour 
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kviter un problgme de non-identifiabilitb. L’inverse de la ma- APPENDIX 
trice d’information observke est utiliske pour le calcul des 
Ccarts types. Une Btude de simulation montre que cette mk- 
thode est compktitive par rapport aux mkthodes paramktri- 
ques sous des conditions idkales, et est gBn6ralement plus per- 
formante quand la censure due aux perdus de vue est impor- 
t ank .  Les mkthodes SOnt aPPliqukes des donnkes de Pa- 
tients atteints d’un cancer de l’amygdale et trait& par ra- 
diothkrapie. 

Observed Information Matrix 

The first derivatives of the observed data log-likelihood can be 
obtained directly from (7). An easier, alternative way is to use 
the complete-data log-likelihood from the EM algorithm and 
derive the function using the method of ~~~i~ (1982). 
Let 
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x I (tl L t ( % ) )  I (tl 2 t( ,))  7 # j ,  z= l ,  . . . ,  k ,  

-- ” log L = 2 wl(1 - wl)zlz;e”lPAg(tl I Y = 1) 
abap 

where h,l = A, exp(ziP). Note that -a2 log L/db2, -a2 log L/ 
ap2, -a2 log L/aA2, and -6’’ log LlapaA, have analogous ex- 
pressions in the standard logistic regression and PH model 
except for negative terms for censored observations that in- 
volve wl( l -wl) ,  which reflects the variability in the estimated 
weights. When the constraint S o ( t ( k )  I Y = 1) = 0 is imposed, 
then a k  = 0 and = cm and the dimension of A is reduced 
to t - 1. 

1=1 

-- d2 logL = c Wl(1 - W l ) Z & P ,  

-- a2 logL = c wlzlez;P 

2 = 1 , .  . . , Ic, 
dbaAa l E R ,  

l E R ,  
aPaAa 


