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SUMMARY

Empirical demand systems that do not impose unreasonable restrictions on preferences are typically non-
linear. We show, however, that all popular systems possess the property of conditional linearity. A
computationally attractive iterated linear least squares estimator (ILLE) is proposed for large non-linear
simultaneous equation systems which are conditionally linear in unknown parameters. The estimator is
shown to be consistent and its asymptotic e�ciency properties are derived. An application is given for a
22-commodity quadratic demand system using household-level data from a time series of repeated cross-
sections. Copyright # 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

The empirical analysis of consumer demand has been given a new impetus by the renewed interest
in indirect tax reform and the welfare consequences of such reforms. This is as true of the move
toward sales tax reform in the USA as it is toward the reform of VAT in Europe, placing new
challenges on the analysis of demand. Estimation is required at the household level and across a
large number of disaggregated commodities.

Demand behaviour at the individual household level is non-linear. It is not reasonable to
assume linearity of expenditures in terms of total budget and relative prices, even the log linear
expenditure share models that form the underlying shape of the popular Translog and Almost
Ideal models of Jorgenson, Christensen and Lau (1975a,b) and Deaton and Muellbauer
(1980a,b) respectively have been shown to require further non-linear terms. These terms re¯ect
the growing evidence from a series of recent empirical studies that suggest quadratic logarithmic
income terms are required for certain expenditure share equations (see, for example, Atkinson
et al., 1989; Bierens and Pott-Buter, 1987; Hausman, Newey and Powell, 1995; Lewbel, 1991;
Blundell, Pashardes and Weber, 1993).

In addition to this move away from linearity, there is a growing interest in a greater
disaggregation of commodities. This partly re¯ects the detail required for tax reform analysis but
also partly re¯ects the objection to the crude grouping of commodities that used to characterize
empirical demand analysis. Demand systems can be expected to cover in excess of 20
commodities and cover several thousand individual observations. In our application the demand
for 22 commodities is modelled using household data from 20 annual household expenditure
surveys.
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For empirical purposes, exact estimation of non-linear equation systems for large data sets

with more than a small number of equations has typically been limited by the intrinsic non-

linearity of many models. The aim of this paper is to develop and implement a computationally

attractive Iterated Linear Least Squares Estimator (ILLE) which is applicable to many popular

non-linear demand (and cost share) systems in empirical microeconomics. This class include the

Translog and the Almost Ideal models as well as the recent quadratic extensions of these referred

to above. All are shown to have the characteristic of conditional linearity, that is, they are linear in

all the parameters of interest conditional on very general functions of explanatory variables and

parameters of interest themselves. Many models outside pure empirical consumer demand

analysis ®t this framework and what we develop here is equally applicable in models of factor

demands, etc.

We present theorems that show the consistency and the asymptotic normality of the estimator

based on the ILLE procedure. We also prove asymptotic equivalence to the 3SNLS estimator and

discuss relative e�ciency to the corresponding asymptotically optimal estimator. The estimator is

shown to be applicable in the context of a very broad class of non-linear equation systems. The

estimator is generalized to allow for endogenous regressors using an extension of the limited

information augmented regression technique of Hausman (1978) and Holly and Sargan (1982).

Identi®cation conditions are derived for this case and a test for overidentifying restrictions is

proposed.

In the application a 22-commodity demand system is estimated using 20 years of repeated

cross-sections from the British Family Expenditure Survey covering some ®ve thousand

households. A Quadratic Almost Ideal Demand System (QUAIDS), developed in Banks,

Blundell and Lewbel (1997), is estimated allowing for the endogeneity of total expenditure.

Disposable household income is used as an identifying instrument. The resulting estimates and

their implied elasticities are compared to those obtained from an Almost Ideal model. Estimation

uses a ¯exible GAUSS based subroutine which is developed for the QUAIDS model and for

demand models in this general class.1 The subroutine allows for the examination of homogeneity

and symmetry as well as the full distribution of elasticities and their precision. Convergence of the

ILLE is shown to be rapid and well behaved.

The plan of this paper is as follows. Section 2 characterizes the class of conditionally linear

models and reviews the importance of conditional linearity in popular demand models. Section 3

presents the Iterated Linear Least squares Estimator. Section 4 derives the asymptotic properties

of the estimator and Section 5 provides the extension to endogenous regressors. Section 6

presents the empirical application to expenditures in the UK Family Expenditure Survey. Section

7 presents a summary and conclusions.

2. CONDITIONALLY LINEAR SYSTEMS

We consider the class of non-linear equations systems that possess a conditional linearity

property. That is models which are linear in the parameters conditional on the same functions of

explanatory variables and parameters themselves. Speci®cally, we suppose that, when t varies, N

endogenous variables y1t; . . . ; yNt are related to a vector xt of M conditioning variables by the

1Available at cost from the authors.
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following system of equations:

yit � g�xt; y0�0y0i � uit i � 1; . . . ;N; t � 1; . . . ;T �1�

where y0i 2 P � RK is a parameter with y0 � �y001 ; . . . ; y0
0
N�0, and g is a K-vector of functions of xt

and y0.
We shall make the following assumptions:

Assumption 1 Let ut � �u1t; . . . ; uNt�0. The sets fut; xtg, t � 1; . . . ;T, are independent sets of
identically distributed random vectors.

This assumption is made to allow the use of the Strong Law of Large Numbers and the
Central-Limit theorem. It could easily be weakened but at the cost of additional assumptions on,
for example, the moments of fut; xtg. We maintain the independence assumption to simplify the
discussion. Note that it does not prevent the inclusion of a particular form of panel data dynamic
model.2 However, the asymptotic results we derive are based on large T and independence across
observations t � 1; . . . ;T.

Assumption 2 For all t 2 f1; . . . ;Tg,
E�ut j xt� � 0 E�utu0t jxt� � S0 �2�

Estimation will then be based on the following set of identifying conditions:

Assumption 3 There is one and only one solution to the NK identifying restrictions:

Efg�xt; y��yit ÿ g�xt; y�0yi�g � 0 i � 1; . . . ;N �3�

which is y0 the true value of the parameter.

2.1. An Example of Conditional Linearity in Demand Analysis

Consider the popular Almost Ideal demand system of Deaton and Muellbauer (1980a) in which
budget shares wit for each i � 1; . . . ;N goods are linear in the log price N-vector pt and log total
outlay ln xt . This `LAIDS' demand system has the form

wit � ai � g0i pt � bi�ln xt ÿ a� pt; y�� � uit

for i � 1; . . . ;N goods, with

a� pt; y � � a0pt � 1
2 p
0
tGpt

where a � �a1; . . . ; aN� and

G �
g01
..
.

g0N

0B@
1CA

2We allow for correlations between uit and ujt , and (yit) could thus refer to a panel where t is the individual index and i the
time index.
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Note that apart from the function a(pt , y) the system is linear with the same variables appearing
on the r.h.s. of each share equation. Each share equation has precisely the form of equation (1).

Many other popular demand systems ®t into this formulation (the Translog and Linear
Expenditure System, for example), the Almost Ideal model provides a convenient example at this
stage. In our application we consider a quadratic extension of the Almost Ideal model. These
alternatives and extensions follow naturally. It is also worth pointing out that if the variables in
the model are non-stationary, but the error in equation (1) is stationary, then (1) is an example of
a non-linear `cointegrated' model (see Att®eld, 1997; Ng, 1995; and Lewbel, 1991, 1996, for
example). Although little research has been done on such models, the estimation procedure
developed here is computationally e�cient, and if the analysis for the stationary case breaks
down then standard errors and test critical values can be simulated or bootstrapped.

3. THE ITERATED LEAST SQUARES ESTIMATOR

The estimator we are considering exploits the conditional linearity of equation (1), in particular,
®rst, conditioning on g(xt , y) given y and estimating each yi using a linear moment estimator,
then using these estimates to update g(xt , y) and continuing the iteration. Although an
apparently natural estimator for conditionally linear systems, by ignoring the derivative of g(xt ,

.)
it does not solve the minimization problem underlying the identifying condition of assumption
(3). As a result its asymptotic properties are not obvious implications of the standard GMM
arguments. The estimator consists of the following series of iterations: given an initial value y(p)

for y, compute y� p�1� by regressing yt on g�xt; y� p��; and repeat the iteration until numerical
convergence occurs.

This estimator avoids having to estimate the whole system simultaneously since each step is a
set of single-equation estimations. For large demand systems, of the sort estimated in Section 6,
this is a distinct advantage. If we let ŷ represent the limit of y(p) when p tends to in®nity, then,
provided it exists, we show that it is a consistent estimator of y0.3

A formal de®nition of the Iterated Linear Least Squares Estimator is as follows. Let
yi � �yi1; . . . ; yiT�0 and let G(y) be the matrix:

G�y� �
g�x1; y�0

..

.

g�xT; y�0

0B@
1CA �4�

The (p � 1)th iteration of the algorithm yields the following value for the parameter associated
with the ith equation:

y� p�1�i � �G�y� p��0G�y� p���ÿ1G�y� p��0yi

3 This estimator is reminiscent of, but di�ers in important respects from, the classical Iterated OLS estimator for bilinear
systems of equations which are symmetrically linear with respect to some parameter vector aÁ conditional on another
parameter vector b. In conditionally linear systems, all parameters of interest are contained in the yi . The bilinear method
is known to converge very slowly. In addition, even where non-linear systems of the form (1) above possess a bilinear
form, many more parameters appear in the estimation at each step. Moreover, the equation-by-equation characteristic of
(1) is lost. Finally, it should be stressed that popular forms are not bilinear.
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Hence any limit value of any such recursive sequence will thus be a ®xed point of the N-vector
C(y) of functions in which ith component is

Ci�y� � �G�y�0G�y��ÿ1G�y�0yi �5�

This yields the following precise de®nition:

De®nition 1 An Iterated Linear Least squares Estimator for model (1) is a ®xed point of C(y).

4. ASYMPTOTIC PROPERTIES

Let ŷ denote any ®xed point of the N-vector C(y). Under standard stochastic uniform
convergence assumptions that we state in Appendix A (see, for example, White, 1994, Chapter 3),
Theorem 1 shows that ŷ is a consistent estimator of y0.

Theorem 1. Consistency Under the regularity assumptions stated in Appendix A, ŷ converges
almost surely to y0.

Proof See Appendix A. j

The asymptotic normality of the estimator is another simple consequence of the asymptotic
expansion used in the proof of the convergence theorem.

Theorem 2. Asymptotic normality Under the regularity assumptions stated in Appendix A, ŷ is
asymptotically normal and ����

T
p
�ŷÿ y0�9N�0; Jÿ10 �S0 
 K0��J00�ÿ1� �6�

where 9 is weak convergence and

K0 � E�g�xt; y0�g�xt; y0�0�

J0 � IN 
 K0 � E Y00
@g�xt; y0�
@y0

 !

 g�xt; y0�

" #

where Y0 is the matrix �y01; . . . ; y0N� (i.e. y0 � vec(Y0)).

Proof See Appendix A. j

An estimator of the asymptotic variance±covariance matrix of ŷ, presented in (6) above, is
computed as follows. S0 is estimated using the usual formula:

Ŝ � 1

T
�Yÿ G�ŷ�Ŷ�0�Yÿ G�ŷ�Ŷ�

where

Y � �y1; . . . ; yN� Ŷ � �ŷ1; . . . ; ŷN�

Then, ŷ solves

�IN 
 G�ŷ�0��yÿ �IN 
 G�ŷ��ŷ� � 0 �7�

ESTIMATION IN DEMAND SYSTEMS 213

Copyright # 1999 John Wiley & Sons, Ltd. J. Appl. Econ. 14: 209±232 (1999)



Let

H�ŷ� � @��IN 
 G�ŷ��ŷ�
@y0

be the Jacobian of y 7!�IN 
 G�y��y evaluated at point y � ŷ. A ®rst-order Taylor series
expansion of equation (7) yields

�IN 
 G�y0�0�H�y0��ŷÿ y0� � �IN 
 G�y0�0�u� oP�1�

where u � �u11; . . . ; u1T; u21; . . . ; u2T; . . . ; uN1; . . . ; uNT�0. The term TK0 can thus be estimated by

K̂ � G�ŷ�0G�ŷ�

To obtain an estimator of the term TJ0 , simply compute

Ĵ � �IN 
 G�ŷ�0�H�ŷ�

An estimator of the asymptotic variance±covariance matrix of ŷ is therefore

V̂asŷ � Ĵ
ÿ1�Ŝ
 K̂��Ĵ0�ÿ1

Note that if S0 is non-singular, then

V̂asŷ � �H�ŷ�0�Ŝÿ1 
 G�ŷ�K̂ÿ1G�ŷ�0�H�ŷ��ÿ1

It is then possible to show that ŷ is asymptotically equivalent to a non-linear three-stage
estimator (NL3S).

Corollary 1 The ILLE ŷ is asymptotically equivalent to the Non-Linear Three Stage Least
Square (NL3S) estimator ~y that is obtained for an identical choice of G(y0) as instruments for
each equation; that is,

~y � argmin
y
�yÿ �IN 
 G�y��y�0 Sÿ10 
 PG�y0�

� �
�yÿ �IN 
 G�y��y� �8�

where y � �y01; . . . ; y0N�0 and PG�y0� is the matrix of the projection on the space spanned by the
columns of G(y0).

Proof See Appendix A. j

The choice of Sÿ10 
 PG�y0� as a metric for the NL3S class of estimators will not be optimal. The
variance of

����
T
p

times the non-linear least squares estimator obtained by minimizing

�yÿ �IN 
 G�y��y�0 Sÿ10 
 IT

� �
�yÿ �IN 
 G�y��y�
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w.r.t. y, is

plim T H�y0�0 Sÿ10 
 IT

� �
H�y0�

h iÿ1
whereas that of the ILLE is

plim T H�y0�0 Sÿ10 
 PG�y0�
� �

H�y0�
h iÿ1

� plim T Ĥ�y0�0 Sÿ10 
 IT

� �
Ĥ�y0�

h iÿ1
where

Ĥ�y0� � �IN 
 PG�y0��H�y0�

The extent to which the two variances di�er is therefore directly function of the di�erence
between the norm of H(y0) in the metric Sÿ10 
 IT and the norm of its projection Ĥ�y0� in the same
metric. If both H(y0) and IN 
 G�y0� described the same vector space, then these two variances
would be identical. But this would be possible only if G(y0) were not a function of y0.4

5. ENDOGENOUS REGRESSORS

5.1. An Augmented Regression Approach

Suppose that Assumption 2 is not satis®ed because a subset xÄt of
~M4M explanatory variables

cannot be assumed exogenous. Instead, suppose that there exists (zt) a sequence of random
vectors of H instrumental variables, including those explanatory variables which are indeed
exogenous, such that

E�ut j zt� � 0 E�utu0t j zt� � S0 �9�

Initially suppose that the model is linear: g�xt; y0� � xt. Following the Holly and Sargan (1982)
development of the Hausman (1978) test, we may use an augmented regression framework to test
and correct for endogeneity. First regress xÄt on zt , compute residuals vÃt , and then regress yit on
both xt and vÃt . The OLS estimator of the parameters of xt in this augmented regression is
identical to the Two-Stage Least Squares (2SLS) estimator. Moreover, testing for the signi®cance
of the coe�cient of vÃt is a test of the exogeneity of xt .

This procedure has proved extremely useful in empirical application and here we adapt it for
use when the model is of the form (1). The assumption of orthogonality between residuals uit and
instruments zt used in the linear model is no longer su�cient. Instead, we assume that the errors
uit in (1) have the orthogonal decomposition

uit � r0
0

i vt � "it
4An e�cient estimator can nevertheless be obtained in a second step by a one-step Newton±Raphson iteration, that is, by
regressing

yÿ �IN 
 G�ŷ��ŷ� H�ŷ�ŷ
on the columns of H�ŷ�.
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where vt is given by

~xt � C0zt � vt

We denote r0 � �r001 ; . . . ; r0
0
~M
�0, "t � �"1t; . . . ; "Nt�0, and we replace Assumptions (2) and (3) by the

following:

Assumption 4 The sets f"t; vt; ztg, t � 1; . . . ;T, are independent sets of identically distributed
random vectors.

Assumption 5 For all t 2 f1; . . . ;Tg,

E�"t j zt; vt� � 0 E�vt j zt� � 0 �10�

Assumption 6 For all t 2 f1; . . . ;Tg,

E�"t"0t j zt; vt� � D0 E�vtv0t j zt� � O0 �11�

Finally, estimation is based on the following set of identifying conditions:

Assumption 7 There is one and only one solution to the N(K �MÄ ) identifying restrictions:

E
g�xt; y�

vt

� �
�yit ÿ g�xt; y�0yi ÿ r0ivt�

� �
� 0 i � 1; . . . ;N �12�

which are y0 and r0 the true value of the parameters.

If vt was directly observable then the estimation problem would be exactly similar to the one we

have analysed in the preceding section. However, C0 in vt � ~xt ÿ C0zt is a nuisance parameter

which must be ®rst consistently estimated. Let

Ĉ �
XT
t�1

~xtz
0
t

 ! XT
t�1

ztz
0
t

 !ÿ1

� C0 �
XT
t�1

vtz
0
t

 ! XT
t�1

ztz
0
t

 !ÿ1

the OLS estimator of C0 , and let v̂t � ~xt ÿ Ĉzt.

The ILLE procedure considers the estimators ŷ and r̂ obtained from the iterated least squares

regression of yit on g(xt , y) and v̂t:

XT
t�1

g�xt; ŷ�
v̂t

� �
�yit ÿ g�xt; ŷ�0ŷi ÿ r̂0iv̂t� � 0
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Note that

yit ÿ g�xt; ŷ�0ŷi ÿ r̂0iv̂t � yit ÿ g�xt; ŷ�0ŷi ÿ r̂0ivt � r̂0i�vt ÿ v̂t� �13�

and

XT
t�1

g�xt; ŷ�
v̂t

� �
r̂0i�vt ÿ v̂t� �

XT
t�1

g�xt; ŷ�z0t
0 ~M�H

� � XT
t�1

ztz
0
t

 !ÿ1XT
t�1

ztv
0
tr̂i

where 0 ~M�H is the MÄ by H matrix of zeroes.5 It is then straightforward to adapt the sequence of
hypotheses and the proofs of the results of the preceding section to show under which regularity
conditions this two-stage ILLE yields consistent and asymptotically normal estimates.

We have that

0 � 1����
T
p

XT
t�1

g�xt; ŷ�
v̂t

 !
�yit ÿ g�xt; ŷ�0ŷi ÿ r̂0iv̂t�

� 1����
T
p

XT
t�1

g�xt; ŷ�
v̂t

 !
�yit ÿ g�xt; ŷ�0ŷi ÿ r̂0ivt�

� 1����
T
p

XT
t�1

g�xt; ŷ�z0t
0 ~M�H

 ! XT
t�1

ztz
0
t

 !ÿ1XT
t�1

ztv
0
tr̂i

� 1����
T
p

XT
t�1

g�xt; y0�
vt

 !
"it �

1

T

XT
t�1

g�xt; y0z0t
0 ~M�H

 !
1

T

XT
t�1

ztz
0
t

 !ÿ1
1����
T
p

XT
t�1

ztv
0
tr

0
i

ÿ 1

T

XT
t�1

g�xt; y0�
vt

 !
g�xt; y0�

vt

 !0" # ����
T
p ŷi ÿ y0i

r̂i ÿ r0i

 !

ÿ 1

T

XT
t�1

g�xt; y0�
vt

 !
y0
0

i

@g�xt; y0�
@y0

" # ����
T
p
�ŷÿ y0� � oP�1�

This equality is true for all i � 1; . . . ;N. Moreover,

1����
T
p

XT
t�1

"t 
 g�xt; y0�
vt

� �
� 1����

T
p

XT
t�1

R
0
0vt 
D0L0zt �14�

5 Since

XT
t�1

g�xt; ŷ�
v̂t

 !
r̂0i�vt ÿ v̂t� �

XT
t�1

g�xt; ŷ�
v̂t

 !
r̂0i�Ĉÿ C0�zt

�
XT
t�1

g�xt; ŷ�
v̂t

 !
z
0
t�Ĉÿ C0�0r̂i

�
XT
t�1

g�xt; ŷ�z0t
0 ~M�H

 ! XT
t�1

ztz
0
t

 !ÿ1XT
t�1

ztv
0
tr̂i
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has asymptotically a normal distribution with zero mean and variance

D0 
 K0 � R
0
0O0R0 
D0L0D

0
0

where R0 � �r1; . . . ; rN�, and with

K0 � E
g�xt; y0�

vt

 !
g�xt; y0�

vt

 !0" #

D0 �
E�g�xt; y0�z0t�

0M�H

 !

L0 � �E�ztz0t��ÿ1

Note that D0L0 is estimated by regressing with OLS the elements of g�zt; y0� on the instruments

zt , and that estimates for D0 and O0 are obtained by standard mean-sum-of-squared residual

formulas.

It follows that

����
T
p

vec ŶÿY0

R̂ÿ R0

� �
9N�0; Jÿ10 �D0 
 K0 � R

0
0O0R0 
D0L0D

0
0��J00�ÿ1�

with

J0 � IN 
 K0 �Q0

where Y0 is the matrix �y01; . . . ; y0N� (i.e. y0 � vec(Y0)) and where Q0 is the N by N block-matrix

whose i by j block is

E
g�xt; y0�

vt

� �
y0
0

i

@g�xt; y0�
@y0j

; 0�K� ~M�� ~M

" #

where 0�K� ~M�� ~M is the K �MÄ by MÄ matrix of zeroes.

Notice that the variance formula is identical to that obtained using Theorem 2, except for the

term R00O0R0 
D0L0D
0
0 which is due to the additional term

XT
t�1

g�xt; ŷ�
v̂t

� �
r̂0i�vt ÿ v̂t�

in equation (13) arising from the approximation of vt by vÃt .
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5.2. Testing for Overidentifying Restrictions

Exactly as in the linear case, one can test for overidentifying restrictions by regressing the system
residuals on instruments. Let the system residuals be given by

"̂i � yi ÿ G�ŷ�ŷi ÿ V̂r̂i

where VÃ is the matrix �v̂0t�.
Let ĝi be the coe�cient of the OLS regression of "̂i on the columns of ZÄ , where ~Z � � ~z0t� is a T

by HÄ matrix of instruments which are not already counted in the list of explanatory variables xt :

ĝ � �IN 
 � ~Z0 ~Z�ÿ1 ~Z
0��yÿ �IN 
 G�ŷ��ŷÿ �IN 
 V̂�r̂� �15�

where ŷ � �ŷ01; . . . ; ŷ0N�0 and r̂ � �r̂01; . . . ; r̂0N�0 and V � �v0t�. By construction, the columns of VÃ are
orthogonal to the columns of ZÄ , hence

ĝ � �IN 
 � ~Z0 ~Z�ÿ1 ~Z
0��yÿ �IN 
 G�ŷ��ŷ�

Under the identifying Assumptions 4, 5 and 7, ĝ converges to 0 a.s. Moreover, a ®rst-order
expansion of the left-hand side of equation (15) shows that

ĝ � �IN 
 � ~Z0 ~Z�ÿ1 ~Z
0��"""""� �IN 
 V�rÿ H�y0��ŷÿ y0�� � oP�

����
T
p
�

where """"" � �"""""01; . . . ; """""0N�0 with """""i � �"it�.
Using the expansion of

����
T
p �ŷÿ y0� yields (see equation (14))

����
T
p
�ŷÿ y0� � �Jÿ10 �y

1����
T
p

XT
t�1

"t 
 g�xt; y0�
vt

� �
� 1����
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where �Jÿ10 �y is the rectangular matrix formed by using the NK rows of Jÿ10 which correspond to
parameter y. Hence, denoting V � �v0t�:
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Let

~L0 � �E� ~zt ~z0t��ÿ1
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The following asymptotic distribution of ĝ can then be deduced from the previous expansion:����
T
p
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0 ~M� ~H

 !

6. APPLICATION

6.1. The Data

The data used in this study are drawn from the detailed expenditure diaries of the UK Family
Expenditure Survey (FES) for the period 1974±1993. Prices are measured quarterly. We selected
a reasonably homogeneous sample consisting of married couples with two children. This
selection is chosen so as to abstract from demographic di�erences and to focus on the price and
income terms. We study the purchases of 22 non-durables and services comprising: wine, spirits,
beer, six food categories, household fuel, clothing, household services, personal goods and
services, leisure services, fares, tobacco, motoring and petrol. To avoid the problem of zero
expenditures in the tobacco and petrol categories we only select car-owning households that have
at least one adult who smokes. The de®nitions of all goods and their mean shares are presented in
the ®rst column of Table BI in Appendix B.

The demand model we estimate is the QUAIDS model introduced by Banks, Blundell and
Lewbel (1997). We turn ®rst to a brief description of that model.
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6.2. The QUAIDS Model

The Quadratic Almost Ideal Demand System (QUAIDS) provides a useful framework for
demand analysis. It processes many of the attractive features of the Almost Ideal Model and the
Translog Model while allowing for more non-linear Engel curve behaviour. It is also
conditionally linear in price aggregators.

As before, we write wit as the expenditure share on commodity i for observation t with total
budget xt and the log price N-vector pt . The QUAIDS model expenditure shares have the form

wit � ai � g0ipt � bi�ln xt ÿ a� pt; y�� � li
�ln xt ÿ a� pt; y��2

b� pt; y�
� uit �16�

with the following non-linear price aggregators:

a� pt; y� � a0pt � 1
2 p
0
tGpt

b� pt; y� � exp b0pt

where a � �a1; . . . ; aN� and

G �
g01
..
.

g0N

0B@
1CA

The standard Linear Almost Ideal Demand System (LAIDS), described in Section 6.1, simply
sets li � 0 across all commodities. The denominator b� pt; y� in the quadratic term of the share
equation (16) is required to maintain the integrability of the quadratic expenditure share system
(see Banks, Blundell and Lewbel, 1997).

Given the likely correlation between uit and the log total budget variable ln xt , we follow the
approach for estimation with endogenous regressors developed in Section 5. We augment the
QUAIDS speci®cation (16) by writing

uit � rivt � "it for goods i � 1; . . . ;N

and assuming E�"it j xt; pt� � 0. To construct vt for use in the augmented system we ®rst estimate a
reduced-form equation for ln x. This is presented in Table BII of Appendix B. In addition to a
linear trend, seasonal dummies and relative prices, income and income squared are used as
additional instruments. They are clearly signi®cant.

6.3. Estimation Results

For both QUAIDS and LAIDS models convergence of the ILLE was achieved at a high level of
tolerance within six iterations. Table I presents the estimated income coe�cients for the
QUAIDS model.6 The corresponding LAIDS coe�cient estimates are in Table BIII of
Appendix B. The importance of the quadratic expenditure terms for many commodities is

6 Full estimates are available on request from the authors as is the complete Gauss language subroutine of the ILLE for
the QUAIDS model.
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clearly established and suggests that the LAIDS model is misspeci®ed. This is also re¯ected in the

estimated elasticities presented below. For some commodities, mainly food items, shares linear in
log expenditure is not strongly rejected. For these commodities the Working-Leser model
underlying the LAIDS speci®cation does seem to provide a su�cient description of Engel curve

behaviour con®rming the ®ndings in the Banks, Blundell and Lewbel (1997) study which simply
considered the aggregate of food items. For other goods, such as entertainment, the quadratic
term is very important. The attraction of our proposed estimator is that it allows a system wide

assessment of the properties of demand at a very ®ne level of disaggregation.

The exogeneity of log expenditure is also clearly rejected through the jtj-values for the

signi®cance of the vÃ residual. The reduced form from which vÃ is derived is presented in Table BII
of Appendix B. The adjustment for endogeneity is therefore included in all results and all
standard errors are adjusted for the non-linear price terms as well as the addition of the residual

vÃit . The overidenti®cation tests do not indicate any serious di�culties with the instrument set and
the correction for endogeneity of ln x is included throughout the following results. The incorrect
omission of the (ln x)2 term induces rejection of the overidenti®cation test for many goods in the

case of the LAIDS model as can be seen from Table BIII. All standard errors are adjusted for the
non-linear price terms as well as the addition of the residual vÃit .

Homogeneity in prices and total expenditure is imposed throughout. There is no evidence of
the rejection of homogeneity for any of the 22-commodity share equations as the ®nal column of
Table I shows. However, symmetry was less easily acceptable with a w2 statistic of 353 and degrees

of freedom 210. The results in Table I do not assume symmetry, but the elasticity results
presented in Table II do maintain symmetry.

Table I. Estimated income e�ects, QUAIDS

Commodity ln x (ln x)2 Exog. vÃjtj Ov. id. w22 Hom. jtj
Beer ÿ 0.0434 (0.013) ÿ 0.0066 (0.002) 0.618 0.659 0.013
Wine ÿ 0.0046 (0.011) ÿ 0.0029 (0.002) 3.890 4.452 0.065
Spirits ÿ 0.0060 (0.009) ÿ 0.0034 (0.001) 0.921 4.901 0.043
Bread ÿ 0.0117 (0.006) 0.0018 (0.001) 0.625 4.926 0.098
Meat ÿ 0.0559 (0.013) ÿ 0.0047 (0.002) 2.201 0.525 0.010
Dairy 0.0016 (0.009) 0.0060 (0.001) 0.603 1.492 0.186
Vegetables ÿ 0.0143 (0.014) 0.0009 (0.002) 0.618 0.225 0.010
Other food ÿ 0.0206 (0.011) 0.0007 (0.002) 1.616 1.009 0.208
Food out ÿ 0.0506 (0.013) ÿ 0.0128 (0.002) 4.693 2.365 0.136
Electricity 0.0108 (0.012) 0.0071 (0.002) 1.576 3.407 0.059
Gas ÿ 0.0187 (0.013) ÿ 0.0014 (0.002) 2.359 0.198 0.031
Adult clothing ÿ 0.0226 (0.021) ÿ 0.0087 (0.003) 2.246 1.001 0.057
Children's clothing ÿ 0.0844 (0.016) ÿ 0.0167 (0.003) 3.585 1.588 0.038
Household services 0.1518 (0.013) 0.0189 (0.002) 5.422 4.482 0.194
Personal goods 0.0260 (0.011) 0.0007 (0.002) 1.273 4.406 0.428
Leisure goods ÿ 0.0330 (0.012) ÿ 0.0066 (0.002) 0.096 0.610 0.198
Entertainment 0.2779 (0.018) 0.0321 (0.003) 7.558 3.838 0.059
Leisure services ÿ 0.0064 (0.016) 0.0008 (0.002) 0.390 0.985 0.016
Fares 0.0019 (0.012) ÿ 0.0026 (0.002) 5.423 1.884 0.022
Motoring 0.0092 (0.017) 0.0030 (0.003) 5.504 3.929
Petrol ÿ 0.0840 (0.045) ÿ 0.0104 (0.007) 2.525 0.749 0.010
Tobacco ÿ 0.0229 (0.015) 0.0047 (0.002) 5.289 0.403 0.054

Note: Estimated standard errors in parentheses.
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Table II. Estimated budget and own-price uncompensated elasticities. Quartiles, QUAIDS

Commodity Z50 Z25 Z75 "50 "25 "75

Beer 0.992 (0.078) 1.056 (0.096) 0.889 (0.080) ÿ2.181 (1.300) ÿ2.353 (1.459) ÿ2.320 (1.433)
Wine 2.398 (0.267) 2.643 (0.272) 2.179 (0.278) ÿ0.741 (0.737) ÿ0.717 (0.824) ÿ0.750 (0.707)
Spirits 1.804 (0.136) 1.788 (0.117) 2.230 (0.251) ÿ2.081 (0.963) ÿ1.999 (0.901) ÿ2.821 (1.707)
Bread 0.412 (0.039) 0.455 (0.034) 0.418 (0.041) ÿ0.317 (0.609) ÿ0.379 (0.556) ÿ0.297 (0.630)
Meat 0.701 (0.036) 0.725 (0.039) 0.638 (0.040) ÿ0.316 (0.385) ÿ0.328 (0.387) ÿ0.246 (0.434)
Dairy 0.405 (0.029) 0.430 (0.029) 0.297 (0.042) 0.050 (0.192) ÿ0.039 (0.178) 0.343 (0.268)
Vegetables 0.568 (0.035) 0.600 (0.036) 0.624 (0.032) ÿ0.308 (0.107) ÿ0.367 (0.091) ÿ0.382 (0.095)
Other food 0.565 (0.034) 0.607 (0.033) 0.572 (0.036) ÿ0.606 (0.224) ÿ0.643 (0.196) ÿ0.605 (0.223)
Food out 1.627 (0.102) 1.629 (0.075) 1.365 (0.058) ÿ0.364 (1.125) ÿ0.443 (0.985) ÿ0.535 (0.803)
Electricity 0.234 (0.043) 0.113 (0.054) 0.226 (0.050) ÿ0.803 (0.243) ÿ0.790 (0.266) ÿ0.775 (0.275)
Gas 0.640 (0.069) 0.584 (0.097) 0.744 (0.048) ÿ0.168 (0.289) 0.004 (0.336) ÿ0.442 (0.187)
Adult clothing 1.894 (0.155) 1.867 (0.118) 1.878 (0.185) ÿ1.191 (1.179) ÿ1.183 (1.058) ÿ1.189 (1.323)
Children's clothing 1.392 (0.093) 1.398 (0.063) 1.261 (0.093) ÿ1.213 (1.455) ÿ1.188 (1.226) ÿ1.188 (1.438)
Household services 1.732 (0.280) 1.491 (0.121) 1.612 (0.188) ÿ2.634 (0.985) ÿ2.344 (0.672) ÿ2.038 (0.573)
Personal goods 1.400 (0.068) 1.434 (0.075) 1.448 (0.071) ÿ2.751 (1.691) ÿ2.913 (1.880) ÿ2.925 (1.896)
Leisure goods 1.146 (0.049) 1.187 (0.054) 1.137 (0.065) ÿ1.806 (1.979) ÿ1.862 (1.048) ÿ2.093 (1.357)
Entertainment 5.797 (0.661) 7.840 (0.740) 4.011 (0.277) ÿ3.423 (0.500) ÿ4.025 (0.519) ÿ2.296 (0.886)
Leisure services 0.301 (0.107) 0.387 (0.106) 0.370 (0.076) ÿ1.210 (0.534) ÿ1.178 (0.454) ÿ1.194 (0.488)
Fares 2.410 (0.285) 2.772 (0.362) 2.173 (0.202) ÿ1.598 (1.239) ÿ1.719 (1.553) ÿ1.528 (1.153)
Motoring 0.802 (0.088) 0.758 (0.107) 0.848 (0.078) ÿ1.331 (1.265) ÿ1.371 (1.414) ÿ1.296 (1.136)
Petrol 0.805 (0.080) 0.804 (0.119) 0.696 (0.087) ÿ0.361 (0.211) ÿ0.182 (0.276) ÿ0.253 (0.265)
Tobacco 0.244 (0.047) 0.185 (0.054) 0.201 (0.064) ÿ0.469 (0.270) ÿ0.444 (0.282) ÿ0.412 (0.293)
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Table III. Estimated budget and own-price uncompensated elasticities. Quartiles, LAIDS

Commodity Z50 Z25 Z75 "50 "25 "75

Beer 0.856 (0.073) 0.836 (0.084) 0.826 (0.091) ÿ2.207 (1.363) ÿ2.373 (1.519) ÿ2.462 (1.617)
Wine 2.313 (0.242) 2.399 (0.252) 2.258 (0.183) ÿ0.771 (0.784) ÿ0.754 (0.846) ÿ0.778 (0.766)
Spirits 1.682 (0.126) 1.618 (0.105) 2.278 (0.246) ÿ2.158 (0.989) ÿ2.050 (0.915) ÿ3.155 (1.934)
Bread 0.430 (0.032) 0.480 (0.029) 0.411 (0.036) ÿ0.317 (0.602) ÿ0.374 (0.554) ÿ0.292 (0.626)
Meat 0.658 (0.034) 0.666 (0.034) 0.611 (0.042) ÿ0.298 (0.388) ÿ0.313 (0.392) ÿ0.203 (0.450)
Dairy 0.463 (0.026) 0.504 (0.025) 0.322 (0.039) 0.001 (0.188) ÿ0.072 (0.177) 0.259 (0.257)
Vegetables 0.574 (0.033) 0.609 (0.030) 0.617 (0.032) ÿ0.315 (0.106) ÿ0.368 (0.091) ÿ0.381 (0.094)
Other food 0.562 (0.032) 0.606 (0.029) 0.558 (0.035) ÿ0.616 (0.222) ÿ0.652 (0.196) ÿ0.611 (0.224)
Food out 1.500 (0.076) 1.432 (0.061) 1.367 (0.047) ÿ0.301 (1.204) ÿ0.399 (1.019) ÿ0.491 (0.878)
Electricity 0.345 (0.039) 0.279 (0.044) 0.285 (0.050) ÿ0.822 (0.235) ÿ0.807 (0.260) ÿ0.805 (0.259)
Gas 0.618 (0.067) 0.532 (0.085) 0.742 (0.049) ÿ0.152 (0.288) 0.034 (0.340) ÿ0.424 (0.189)
Adult clothing 1.800 (0.133) 1.683 (0.106) 1.923 (0.128) ÿ1.186 (1.270) ÿ1.162 (1.083) ÿ1.205 (1.463)
Children's clothing 1.249 (0.069) 1.199 (0.054) 1.259 (0.067) ÿ1.168 (1.580) ÿ1.138 (1.266) ÿ1.174 (1.646)
Household services 1.884 (0.113) 1.808 (0.096) 1.541 (0.053) ÿ2.242 (0.700) ÿ2.138 (0.590) ÿ1.772 (0.415)
Personal goods 1.392 (0.064) 1.425 (0.068) 1.420 (0.062) ÿ2.854 (1.690) ÿ3.006 (1.860) ÿ2.984 (1.844)
Leisure goods 1.087 (0.045) 1.092 (0.047) 1.124 (0.063) ÿ1.846 (1.001) ÿ1.898 (1.066) ÿ2.207 (1.451)
Entertainment 4.610 (0.549) 6.742 (1.236) 2.807 (0.151) ÿ2.750 (0.467) ÿ3.715 (0.359) ÿ1.893 (0.714)
Leisure services 0.325 (0.089) 0.416 (0.075) 0.364 (0.087) ÿ1.201 (0.526) ÿ1.173 (0.451) ÿ1.188 (0.486)
Fares 2.270 (0.277) 2.515 (0.334) 2.185 (0.199) ÿ1.671 (1.277) ÿ1.796 (1.593) ÿ1.623 (1.249)
Motoring 0.814 (0.080) 0.789 (0.093) 0.831 (0.076) ÿ1.396 (1.230) ÿ1.452 (1.397) ÿ1.358 (1.120)
Petrol 0.866 (0.111) 0.831 (0.141) 0.843 (0.135) ÿ0.274 (0.117) ÿ0.085 (0.176) ÿ0.149 (0.147)
Tobacco 0.287 (0.042) 0.242 (0.046) 0.205 (0.056) ÿ0.480 (0.265) ÿ0.449 (0.280) ÿ0.419 (0.290)
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In Table II we present the homogeneity and symmetry-constrained estimates of the quartile

points of the distribution of uncompensated own price elasticities "% and income elasticities Z%.
Overall these appear to be reasonable.7 Own-price elasticities are negative. Indeed, the

eigenvalues of the Slutsky substitution matrix are negative or very small over the whole

distribution of households. Table II shows some important variability in the distribution of

elasticities. The food items are largely price inelastic and, with the distinct exception of food

purchased outside the home, are all clear necessities. At the other extreme, entertainment is

highly income and price elastic. Clothing items and household goods and services lie somewhere

between.

For comparison, Table III presents the elasticity estimates for the LAIDS model. Here there

are some noticeable di�erences with the QUAIDS estimates especially for the income elasticities

Z. In general, there is less dispersion of elasticities for the LAIDS model. As an example, consider

the entertainments group for which the quadratic income term was clearly important.

7. SUMMARY AND CONCLUSIONS

There is an increasing requirement for the empirical analysis of consumer behaviour at the

household level and at a ®nely disaggregated level of commodity groupings. To provide a realistic

guide to consumer behaviour the relationship between expenditures, prices and total outlay is

going to be non-linear. For empirical purposes, exact estimation of non-linear equation systems

for large data sets with more than a small number of equations has typically been limited because

of the intrinsic non-linearity of many models. However, we have noted that almost all popular

non-linear models of consumer behaviour have the property of being conditionally linear. That

is, they are linear in parameters conditional on complicated functions of prices, income and the

preference parameters themselves.

In this paper we have proposed an Iterated Linear Least squares Estimator (ILLE) for such

conditionally linear systems which fully identi®es the parameters of the non-linear consumer

demand models analysed. This ILLE is shown to be a computationally attractive consistent

estimator. Its asymptotic distribution is derived and extended to the case of endogenous

regressors.

The estimator is applied to the analysis of a 22 disaggregated demand system based on

household data drawn from 20 years of British Family Expenditure Survey data. A Quadratic

Almost Ideal Demand System (QUAIDS) is estimated. Homogeneity and symmetry restrictions

are imposed and total expenditure is allowed to be endogenous. Estimation allowed the log total

expenditure term, that enters as a quadratic in the QUAIDS model, to be endogenous. There is

strong evidence in favour of including the quadratic terms. This is re¯ected in a comparison of the

distribution of income and price elasticities between the QUAIDS model and the more standard

LAIDS speci®cation.

7Although we consider a ®ne disaggregation of commodities over a demographically homogeneous selection of
households, there remains some possible misspeci®cation since we do not account for the age of children (see Blundell,
1980) and we do allow for possible non-separabilities between goods and leisure (see Blundell and Walker, 1982;
Browning and Meghir, 1991).
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APPENDIX A: PROOFS OF THEOREMS

Proof to Theorem 1

We make the following regularity assumptions:

1. The parameter set P is a convex open set.
2. For all t, g�xt; y� is continuous with respect to y.
3. @g�xt; y�=@y0 exists and is a continuous function of y.
4. The matrix

1

T

XT
t�1

g�xt; y�g�xt; y�0

almost certainly converges to E�g�xt; y�g�xt; y�0� uniformly in y.
5. The matrix E�g�xt; y�g�xt; y�0� is non-singular.
6. The matrix

1

T

XT
t�1

@

@y0
fg�xt; y��yit ÿ g�xt; y�0yi�g

almost certainly converges to

E
@

@y0
fg�xt; y��yit ÿ g�xt; y�0yi�g

� �
uniformly in y.

7. For all y, the matrix whose ith row is

E
@

@y0
fg�xt; y��yit ÿ g�xt; y�0yi�g

� �
is non-singular.

The estimator ŷ � �ŷ01; . . . ; ŷ0N�0 is the solution to the system:

ŷi � �G�ŷ�0G�ŷ��ÿ1G�ŷ�0yi i � 1; . . . ;N

or, equivalently,

�G�ŷ�0G�ŷ��ÿ1G�ŷ�0�yi ÿ G�ŷ�ŷi� � 0 i � 1; . . . ;N

Since

G�ŷ�0G�ŷ� � 1

T

XT
t�1

g�xt; ŷ�g�xt; ŷ�0

converge, by assumption, to a non-singular matrix uniformly in ŷ, then for large enough T, the
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estimator ŷ is also such that

G�ŷ�0�yi ÿ G�ŷ�ŷi� � 0 i � 1; . . . ;N

or, equivalently,

1

T

XT
t�1

g�xt; ŷ��yit ÿ g�xt; ŷ�0ŷi� � 0 i � 1; . . . ;N

Since all partial derivatives are continuous and since the parameter set is an open convex set,
the theorem of intermediate values then implies that

0 � 1

T

XT
t�1

g�xt; ŷ��yit ÿ g�xt; ŷ�0ŷi�

� 1

T

XT
t�1

g�xt; y0��yit ÿ g�xt; y0�0y0i �

� 1

T

XT
t�1

@

@y0
fg�xt; y���yit ÿ g�xt; y��0y�i �g�ŷÿ y0� i � 1; . . . ;N

where y� is some intermediate value between ŷ and y0. Clearly, the strong law of large numbers,
together with

E�ut j xt� � 0

implies that

1

T

XT
t�1

g�xt; y0��yit ÿ g�xt; y0�0y0i � ! 0 a:s:

And since the matrix BT��xt; xt�; y�� whose ith row is

1

T

XT
t�1

@

@y0
fg�xt; y���yit ÿ g�xt; y��0y�i �g �A1�

converge a.s. to a non-singular matrix uniformly in y�, it thus follows that there is a value T�,
such that for all T > T�, BT�xt; y�� is a.s. non-singular whatever the value of y�. Hence ŷ � y0

converges to 0 for almost all sets fxt; utg. j

Proof of Theorem 2

Under the conditions of Theorem 1 and the following additional assumption:

8. The following function of variables and parameters:

Bi��yit; xt�; y� �
y
@y0
fg�xt; y��yit ÿ g�xt; y�0yi�g �A2�

is continuous in y uniformly in �yit; xt�.
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Consider again the asymptotic expansion used in Theorem 1:

0 � 1

T

XT
t�1

g�xt; y0�uit

� 1

T

XT
t�1

@

@y0
fg�xt; y���yit ÿ g�xt; y��0y�i �g�ŷÿ y0� i � 1; . . . ;N

Let Bi��yit; xt�; y�� be the matrix

@

@y0
fg�xt; y���yit ÿ g�xt; y��0y�i �g

Then

���� 1TXT
t�1

Bi��yit; xt�; y�� ÿ
1

T

XT
t�1

Bi��yit; xt�; y0�
����

5
1

T

XT
t�1
jBi��yit; xt�; y�� ÿ Bi��yit; xt�; y0�j

4 sup
yit;xt

jBi��yit; xt�; y�� ÿ Bi��yit; xt�; y0�j

When T tends to in®nity, y� tends to y0 a.s., since y� is between ŷ and y0. Hence, the uniform
continuity of Bi��yit; xt�; y�� with respect to y� implies that the r.h.s. of the inequality tends to
zero.

Moreover,

1

T

XT
t�1

@

@y0
fg�xt; y0��yit ÿ g�xt; y0�0y0i �g

� 1

T

XT
t�1

@g�xt; y0�
@y0

�yit ÿ g�xt; y0�0y0i �

ÿ 1

T

XT
t�1

g�xt; y0�y0
0
i

@g�xt; y0�
@y0

ÿ 1

T

XT
t�1

g�xt; y0��e0i 
 g�xt; y0�0�

where ei is the ith column of the identity matrix IN . The strong law of large numbers and the fact
that E�ut j xt� � 0 then implies that

1

T

XT
t�1

@g�xt; y0�
@y0

�yit ÿ g�xt; y0�0y0i � ! 0 a:s:
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and

1

T

XT
t�1

g�xt; y0�y0
0
i

@g�xt; y0�
@y0

! E g�xt; y0�y0
0

i

@g�xt; y0�
@y0

" #

and

1

T

XT
t�1

g�xt; y0��e0i 
 g�xt; y0�0� ! E�g�xt; y0��e0i 
 g�xt; y0�0��

Moreover, the central-limit theorem implies that

1���
T
p
PT

t�1 g�xt; y0�u1t
..
.

1���
T
p
PT

t�1 g�xt; y0�uNt

0BBB@
1CCCA � 1����

T
p

XT
t�1

ut 
 g�xt; y0�

9 N�0;S0 
 E�g�xt; y0�g�xt; y0�0��

Thus

1����
T
p

XT
t�1

g�xt; y0� 
 ut9N�0;S0 
 K0�;

where

K0 � E�g�xt; y0�g�xt; y0�0�

It has been thus shown that����
T
p
�ŷÿ y0�9N�0; Jÿ10 �S0 
 K0��J00�ÿ1�

where

J0 � IN 
 E�g�xt; y0�g�xt; y0�0� � E Y00 @g�xt; y0�
@y0


 g�xt; y0�
" #( )

� IN 
 K0 � E Y00
@g�xt; y0�
@y0

 !

 g�xt; y0�

" #

where Y0 is the matrix �y01; . . . ; y0N�. j
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Proof of Corollary 1

Let us denote as y the solution of the ®rst-order conditions of problem (8):

H�~y�0 Sÿ10 
 PG�y0�
� �

�yÿ �IN 
 G�~y��~y� � 0

A ®rst-order asymptotic expansion yields

����
T
p
�~yÿ y0�9N 0; H�y0�0 Sÿ10 
 PG�y0�

� �
H�y0�

h iÿ1� �

and ~y and ŷ have hence the same asymptotic distribution. j

APPENDIX B: DATA AND ADDITIONAL RESULTS

Table BI. Data descriptionÐ the 22 commodities

Commodity group De®nition �wi SD (w)

Beer Beer, on and o� licence sales 0.0303 0.0409
Wine Wine, on and o� licence sales 0.0094 0.0202
Spirits Spirits, on and o� licence sales 0.0153 0.0310
Bread Bread, ¯our, rice and cereals 0.0407 0.0215
Meat All meat and ®sh 0.0774 0.0480
Dairy All dairy products 0.0586 0.0311
Vegetables Fresh, tinned and dried vegetables and

fruit
0.0521 0.0260

Other food Tea, co�ee, drinks, sugar, jams and
sweets

0.0591 0.0310

Food consumed outside the home Restaurants and canteen meals 0.0645 0.0502
Electricity Account and slot meter payments 0.0429 0.0299
Gas Account and slot meter payments 0.0320 0.0301
Adult clothing Adult clothing and footwear 0.0356 0.0615
Children's clothing and footwear Children's clothing and footwear 0.0629 0.0637
Household services Post, phone, domestic services and fees 0.0578 0.0585
Personal goods and services Personal and chemist's goods and

services
0.0482 0.0490

Leisure goods Records, CDs, toys, books and
gardening

0.0527 0.0514

Entertainment Entertainment 0.0385 0.0676
Leisure services TV licences and rentals 0.0177 0.0167
Fares Rail, bus and other fares 0.0147 0.0324
Motoring Maintenance, tax and insurance 0.0570 0.0714
Petrol Petrol and oil 0.0678 0.0577
Tobacco Cigarettes, pipe tobacco and cigars 0.0649 0.0498
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Table BIII. Estimated income e�ects, LAIDS

Commodity ln x Exog. jtj Ov. id. w22

Beer ÿ0.0049 (0.003) 1.327 0.015
Wine 0.0124 (0.001) 3.473 6.987
Spirits 0.0137 (0.002) 0.207 7.909
Bread ÿ0.0231 (0.001) 0.790 4.955
Meat ÿ0.0280 (0.003) 2.571 1.017
Dairy ÿ0.0347 (0.002) 0.347 1.825
Vegetables ÿ0.0203 (0.002) 0.534 0.257
Other food ÿ0.0258 (0.002) 1.867 1.262
Food out 0.0248 (0.003) 3.717 7.592
Electricity ÿ0.0316 (0.002) 0.949 9.148
Gas ÿ0.0103 (0.002) 2.410 0.563
Adult clothing 0.0286 (0.004) 2.828 1.895
Child clothing 0.0150 (0.004) 4.501 5.564
Household services 0.0384 (0.004) 6.268 2.636
Personal goods 0.0209 (0.003) 1.067 4.173
Leisure goods 0.0062 (0.003) 0.424 1.931
Entertainment 0.0853 (0.004) 8.788 36.361
Leisure services ÿ0.0114 (0.001) 0.319 1.681
Fares 0.0166 (0.002) 4.878 3.386
Motoring ÿ0.0100 (0.004) 5.680 3.949
Petrol ÿ0.0099 (0.008) 0.702 0.386
Tobacco ÿ0.0520 (0.003) 5.265 0.970

Note: Standard errors in parentheses.

Table BII. The estimated reduced form for ln x

Variable Coe�. (s.e.)

Trend ÿ0.0145 (0.0216)
S1 ÿ0.1395 (0.0243)
S2 ÿ0.0866 (0.0209)
S3 ÿ0.0725 (0.0169)
Income ÿ0.5475 (0.0461)
Income2 0.0988 (0.0048)
lnprices Yes
R2 0.725
F (pval) 466.3 (0.000)
T 4951
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