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Abstract Consider the random vector (X, Y ), where X is completely observed and
Y is subject to random right censoring. It is well known that the completely non-
parametric kernel estimator of the conditional distribution F(·|x) of Y given X = x
suffers from inconsistency problems in the right tail (Beran 1981, Technical Report,
University of California, Berkeley), and hence any location function m(x) that involves
the right tail of F(·|x) (like the conditional mean) cannot be estimated consistently in
a completely nonparametric way. In this paper, we propose an alternative estimator of
m(x), that, under certain conditions, does not share the above inconsistency problems.
The estimator is constructed under the model Y = m(X) + σ(X)ε, where σ(·) is an
unknown scale function and ε (with location zero and scale one) is independent of X .
We obtain the asymptotic properties of the proposed estimator of m(x), we compare
it with the completely nonparametric estimator via simulations and apply it to a study
of quasars in astronomy.
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440 C. Heuchenne, I. Van Keilegom

1 Introduction

Consider a random vector (X, Y ), where X is a one-dimensional covariate and Y
represents the response. We suppose that Y is subject to random right censoring, i.e.,
instead of observing Y we only observe (Z ,�), where Z = min(Y, C), � = I (Y ≤
C) and C represents the censoring time, which is supposed to be independent of Y
conditionally on X . Let (Yi , Ci , Xi , Zi ,�i )(i = 1, . . . , n) be n independent copies
of (Y, C, X, Z ,�).

It is well known that any location function m(x) that involves the right tail of the
conditional distribution F(·|x) = P(Y ≤ ·|X = x) of Y given X = x (like the con-
ditional mean E(Y |X = x) = ∫

y d F(y|x)) often cannot be estimated in a consistent
way in a completely nonparametric model, due to the presence of right censoring.
In fact, the completely nonparametric (kernel) estimator of F(·|x) is not consistent
in the right tail (see Beran 1981) if the conditional distribution of Y has a strictly
larger support than the conditional distribution of C. In this paper, we present a way
to overcome this problem by imposing the following weak model assumption : we
assume that the relation between X and Y is given by

Y = m(X) + σ(X)ε, (1)

where m(X) and σ(X) are some unknown but smooth location and scale functions and
the error term ε is independent of X, has location zero and scale one. So, we assume
that the conditional distribution of Y given X depends on X only via m(X) and σ(X).
Under this weak model assumption, we will show that the inconsistency problems can
be much reduced. Model (1) has been studied extensively in the literature on censored
data; see e.g., Fan and Gijbels (1994), Van Keilegom and Akritas (1999), Einmahl and
Van Keilegom (2007), Neumeyer et al. (2006), and Chen et al. (2005).

The method we propose applies to any L-functional of the type (see e.g., Serfling
1980, p. 265):

m(x) = a0

∫ 1

0
F−1(s|x)J (s) ds +

k∑

j=1

a j F−1(s j |x), (2)

where F−1(s|x) = inf{y : F(y|x) ≥ s} is the quantile function of Y given x , J (s) is
a given weight function satisfying

∫ 1
0 J (s)ds = 1, k ≥ 0, a0, . . . , ak are real numbers

such that
∑k

j=0 a j = 1, and 0 ≤ s1, . . . , sk ≤ 1. This definition of m(x) includes a
very broad class of common location functions. For example, when J ≡ 1, a0 = 1
and k = 0, m(x) equals the conditional mean and when a0 = 0, k = 1, a1 = 1 and
s1 = 1/2, we obtain the conditional median.

The method proposed in this paper consists in first estimating the conditional dis-
tribution F(y|x) under model (1), and then to plug-in the obtained estimator in (2). To
estimate F(y|x), note that under model (1), ε0 = (Y −m0(X))/σ 0(X) is independent
of X for any location function m0(X) and scale function σ 0(X) (for a formal definition
of location and scale functions, see Sect. 2). Hence,
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Estimation in nonparametric location-scale regression models with censored data 441

F(y|x) = P

(

ε0 ≤ y − m0(x)

σ 0(x)

∣
∣
∣
∣ X = x

)

= F0
ε

(
y − m0(x)

σ 0(x)

)

, (3)

where F0
ε is the distribution of ε0 (for some chosen location and scale functions

m0(·) and σ 0(·)). The idea is now to identify m0 and σ 0 in such a way that they
can be estimated consistently, i.e., choose location and scale functions that do not
make use of the right tail of the distribution of Y given X (like truncated mean and
variance). We then estimate F(y|x) by replacing m0(·), σ 0(·) and F0

ε (·) by appro-
priate estimators. It is easy to see that, provided there is a region of the covariate
space where censoring is light, the so-obtained estimator of F(·|x) behaves well in
the right tail (see Van Keilegom and Akritas 1999). Hence, the estimator of m(x)

based on the latter estimator of F(·|x) will outperform the completely nonparametric
estimator. This fact is explained in more detail and in a more formal way at the end of
Sect. 2.

The estimation of the conditional quantile or mean function with censored data
has been studied extensively in the literature. Dabrowska (1987, 1992), Van Keilegom
and Veraverbeke (1998), Chen et al. (2005), among others, studied the nonparametric
estimation of the conditional quantile function, whereas Powell (1986), Buchinski and
Hahn (1998) and Portnoy (2003) estimated this function under the assumption of a
parametric model. For the estimation of the conditional mean function, Doksum and
Yandell (1982), Dabrowska (1987), Fan and Gijbels (1994), Kim and Truong (1998)
and Cai and Hong (2003) used a nonparametric approach, whereas a large number
of other papers, including e.g., Buckley and James (1979), Akritas (1994, 1996),
Heuchenne and Van Keilegom (2007) assumed a polynomial model for the regression
function.

This paper is organized as follows. In the next section, we introduce some notations
and describe the estimation procedure in detail. In Sect. 3, we state the asymptotic
properties of the estimator obtained in Sect. 2. Section 4 contains a simulation study,
in which the new estimator is compared with the corresponding completely nonpara-
metric estimator, while in Sect. 5 a data set on spectral energy distributions of quasars
is analyzed by means of the two methods. Finally, the Appendix contains the proofs
of the main results of Sect. 3.

2 Notations and description of the method

We assume throughout that regression model (1) holds. Define F(y|x) = P(Y ≤ y|x),
G(y|x) = P(C ≤ y|x), H(y|x) = P(Z ≤ y|x), Hδ(y|x) = P(Z ≤ y,� = δ|x),
and FX (x) = P(X ≤ x). The probability density functions of the distributions defined
above will be denoted with lower case letters, and RX denotes the support of the
variable X .

Let m0(·) be any location function and σ 0(·) be any scale function, meaning that
m0(x) = T (F(·|x)) and σ 0(x) = S(F(·|x)) for some functionals T and S that satisfy
T (FaY+b(·|x)) = aT (FY (·|x)) + b and S(FaY+b(·|x)) = aS(FY (·|x)), for all a ≥ 0
and b ∈ IR as in Huber (1981, p. 59 and 202) (here FaY+b(·|x) denotes the conditional
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442 C. Heuchenne, I. Van Keilegom

distribution of aY + b given X = x). Then, it can be easily seen that if model (1)
holds, the model Y = m0(X) + σ 0(X)ε0 with ε0 independent of X , is also valid.

The estimator of m(·) described below applies this idea to the following choices
for m0(·) and σ 0(·):

m0(x) =
∫ 1

0
F−1(s|x)L(s) ds, σ 02(x) =

∫ 1

0
F−1(s|x)2L(s) ds − m02(x), (4)

where L(s) is a given score function satisfying
∫ 1

0 L(s) ds = 1 and L(s) ≥ 0 for all
0 ≤ s ≤ 1. The key idea will be to choose L in such a way that m0(x) and σ 0(x) can
be estimated in a consistent way (a data-driven choice of L is given in Remark 4) and
then to use these estimators of m0(x) and σ 0(x) in the construction of an estimator of
m(x).

Before explaining the method in detail, let us introduce some more notations. Let
Fε(y) = P(ε ≤ y) and Sε(y) = 1 − Fε(y) denote the distribution and survival
function of ε = (Y − m(X))/σ (X), where m and σ are the location and scale func-
tions of interest. Likewise, define F0

ε and S0
ε for the distribution and survival func-

tion of ε0 = (Y − m0(X))/σ 0(X), where m0 and σ 0 are defined in (4). Next, for
E0 = (Z − m0(X))/σ 0(X), we denote H0

ε (y) = P(E0 ≤ y), H0
εδ(y) = P(E0 ≤

y,� = δ), H0
ε (y|x) = P(E0 ≤ y|x), H0

εδ(y|x) = P(E0 ≤ y,� = δ|x) (δ = 0, 1)
and for C0 = (C − m0(X))/σ 0(X), we denote G0

ε(y) = P(C0 ≤ y).
As explained in the introduction, we first estimate F(·|x) under model (1) using

equation (3). The functions m0 and σ 0 in (3) depend themselves also on F(·|x), which
we estimate by means of the completely nonparametric kernel estimator of Beran
(1981) (in the case of no ties):

F̃(y|x) = 1 −
∏

Zi ≤y,�i =1

{

1 − Wi (x, an)
∑n

j=1 I (Z j ≥ Zi )W j (x, an)

}

, (5)

where

Wi (x, an) = Ka(x − Xi )∑n
j=1 Ka(x − X j )

(i = 1, . . . , n) are Nadaraya–Watson weights, Ka(·) = a−1
n K (·/an), K is a density

function (kernel) and {an} a bandwidth sequence. Note that this estimator reduces to
the Kaplan and Meier (1958) estimator when all weights Wi (x, an) equal n−1. This
yields

m̂0(x) =
∫ 1

0
F̃−1(s|x)L(s) ds, σ̂ 02(x) =

∫ 1

0
F̃−1(s|x)2 L(s) ds − m̂02(x) (6)

as estimators for m0(x) and σ 02(x). In practice (see Remark 4 and Sect. 4), the support
of the score function L will be chosen in such a way that it estimates a large part of
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Estimation in nonparametric location-scale regression models with censored data 443

the consistent region of F̃(·|x), for any x . Next, estimate the residual distribution F0
ε

(suppose no ties):

F̂0
ε (y) = 1 −

∏

Ê0
(i)≤y,�(i)=1

(

1 − 1

n − i + 1

)

, (7)

where Ê0
i = (Zi − m̂0(Xi ))/σ̂

0(Xi ), Ê0
(i) is the i th order statistic of Ê0

1 , . . . , Ê0
n and

�(i) is the corresponding censoring indicator. This estimator has been studied in detail
by Van Keilegom and Akritas (1999). This leads to the following estimator of F(y|x):

F̂(y|x) = F̂0
ε

(
y − m̂0(x)

σ̂ 0(x)

)

. (8)

Finally, we define

m̂T (x) = a0

∫ T̂x

−∞
y J (F̂(y|x)) dF̂(y|x) +

k∑

j=1

a j [F̂−1(s j |x) ∧ T̂x ], (9)

where T̂x = T σ̂ 0(x) + m̂0(x), T < τH0
ε

and τF= inf{y : F(y) = 1} for any distri-
bution F . Like in Van Keilegom and Akritas (1999), T differs from τH0

ε
for technical

reasons and should be chosen in practice as close as possible to τH0
ε

(see also Remark 4).

As it is clear from (9), m̂T (x) is actually estimating

mT (x) = a0

∫ Tx

−∞
y J (F(y|x)) dF(y|x) +

k∑

j=1

a j [F−1(s j |x) ∧ Tx ], (10)

where Tx = T σ 0(x) + m0(x), which can be made arbitrarily close to m(x), provided
τF0

ε
≤ τG0

ε
.

For sake of comparison, the completely nonparametric estimator of m(x) is given by

m̃T (x) = a0

∫ T̃x

−∞
y J (F̃(y|x)) dF̃(y|x) +

k∑

j=1

a j [F̃−1(s j |x) ∧ T̃x ], (11)

where T̃x < τH(·|x) such that infx∈RX (1 − H(T̃x |x)) > 0. Note that we truncate at T̃x ,
because of the possible inconsistency of F̃(y|x) for y > T̃x (see e.g., Van Keilegom
and Veraverbeke 1997).

Note that in the definition of m̂T (x) we have to truncate at the point T̂x due to
the presence of right censoring. However, Tx is always greater than or equal to the
truncation point T̃x used in the definition of m̃T (x). Indeed,
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τG0
ε

= inf

{

e :
∫

RX

G0
ε(e|x)dFX (x) = 1

}

= sup
x∈RX

inf{e : G0
ε(e|x) = 1} = sup

x∈RX

inf

{
t − m0(x)

σ 0(x)
: G(t |x) = 1

}

= sup
x∈RX

τG(·|x) − m0(x)

σ 0(x)
.

Since τF0
ε

= (τF(·|x) −m0(x))/σ 0(x) for any x ∈ RX , τH0
ε

= τF0
ε
∧ τG0

ε
and τH(·|x) =

τF(·|x) ∧ τG(·|x), it is clear that m0(x) + σ 0(x)τH0
ε

≥ τH(·|x) for any value of x . More-
over, the difference between the two truncation points can be substantial, especially
when the censoring proportion is not uniform over x . In fact, if τF(·|x) ≤ τG(·|x) for
a small subset of RX , it is obvious that τF0

ε
≤ τG0

ε
. Practically, that means that when

there exists a region in the interval RX of ‘light’ censoring, then the estimator F̂0
ε of

the error distribution remains consistent upto far in the right tail (and hence Tx will be
large), whereas T̃x completely depends on the censoring proportion at the point x . In
heavy censored regions T̃x can therefore be quite small. This is the main motivation
for using m̂T (x) instead of the completely nonparametric estimator m̃T (x).

The following functions enter the asymptotic representation of m̂T (x) − mT (x),
which we establish in Sect. 3. For a (sub)distribution function L(y|x) we will use
the notations l(y|x) = L ′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and sim-

ilar notations will be used for higher order derivatives. Also, let T̂i = TXi −m̂0(Xi )

σ̂ 0(Xi )
,

E0T
i = E0

i ∧ T and Ê0T
i = Ê0

i ∧ T̂i , i = 1, . . . , n.

ξ(z, δ, y|x) = (1 − F(y|x))

⎧
⎨

⎩
−

y∧z∫

−∞

dH1(s|x)

(1 − H(s|x))2 + I (z ≤ y, δ = 1)

1 − H(z|x)

⎫
⎬

⎭
,

η(z, δ|x) =
+∞∫

−∞
ξ(z, δ, v|x)L(F(v|x)) dv σ 0(x)−1,

ζ(z, δ|x) =
+∞∫

−∞
ξ(z, δ, v|x)L(F(v|x))

v − m0(x)

σ 0(x)
dv σ 0(x)−1,

B(z, δ|x) = − f −1
X (x)σ 0(x)

⎧
⎨

⎩

⎡

⎣a0

∫ F0
ε (T )

0
J (s)ds +

k∑

j=1

a j

⎤

⎦ η(z, δ|x)

+
⎡

⎣a0

∫ F0
ε (T )

0
(F0

ε )−1(s)J (s)ds+
k∑

j=1

a j ((F0
ε )−1(s j ) ∧ T )

⎤

⎦ ζ(z, δ|x)

⎫
⎬

⎭
.

The assumptions needed for the results of Sect. 3 are listed below.
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(A1) (i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 → ∞ for some δ < 1/2.

(ii) RX is a compact interval.
(iii) K has compact support,

∫
uK (u)du = 0 and K is twice continuously

differentiable.
(A2) (i) There exist 0 ≤ sa ≤ sb ≤ 1 such that sb ≤ inf x F(T̃x |x), sa ≤ inf{s ∈

[0, 1]; L(s) 	= 0}, sb ≥ sup{s ∈ [0, 1]; L(s) 	= 0} and inf x∈RX

infsa≤s≤sb f (F−1(s|x)|x) > 0.

(ii) L is twice continuously differentiable,
∫ 1

0 L(s)ds = 1 and L(s) ≥ 0 for
all 0 ≤ s ≤ 1.

(A3) (i) FX is three times continuously differentiable and infx∈RX fX (x) > 0.

(ii) m0 and σ 0 are three times continuously differentiable and infx∈RX σ 0(x)

> 0.

(iii) E[ε02] < ∞ and E |E0| < ∞.

(A4) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x
and their first and second derivatives (with respect to x) are bounded, uniformly
in x ∈ RX , z < T̃x and δ.

(A5) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) : L ′(y|x) is continuous
in (x, y) and supx,y |y2L ′(y|x)| < ∞, and the same holds for all other partial
derivatives of L(y|x) with respect to x and y up to order three.

(A6) (i) Let sα < F0
ε (T ) and sβ be such that 0 < sα < s j < sβ < 1 for all j =

1, . . . , k and let Q = [sα, sβ∧F0
ε (T )]. Then, infs∈Q f 0

ε ((F0
ε )−1(s)) > 0.

(ii) J is three times continuously differentiable,
∫ 1

0 J (s)ds = 1, J (s) ≥ 0
for all 0 ≤ s ≤ 1.

(A7) (i) For the density fX |Z ,�(x |z, δ) of X given (Z ,�), supx,z | fX |Z ,�

(x |z, δ)| < ∞, supx,z | ḟ X |Z ,�(x |z, δ)| < ∞, supx,z | f̈ X |Z ,�(x |z, δ)| <

∞(δ = 0, 1).

Note that some of the above assumptions (assumptions on derivatives, positiv-
ity of infima) are needed for technical reasons, but are not inherent to the proposed
method. Other assumptions are unavoidable, e.g., the use of kernel smoothing requires
continuity, and implies assumptions on the bandwidth and the kernel (see (A1) (i),
(A1) (iii), (A3) (ii)). Note that the assumption na4

n → 0 is required by Theorem 3.1
of Van Keilegom and Akritas (1999). Since this paper deals with estimators of the
Kaplan–Meier type, consistency results cannot be obtained by considering the whole
support of distributions of right censored variables (see assumptions (A2)(i) and (A6)
(i)). As a consequence, assumption (A2) (i) enables to reduce those supports using
truncation points T̃x , x ∈ RX , and to identify m0(x) and σ 0(x) in such a way that they
can be consistently estimated at any value of x (if infx F(T̃x |x) is known).

3 Asymptotic results

In this section, we show the consistency of m̂T (x) uniformly over x . We also develop
an asymptotic representation for m̂T (x) − mT (x), which is useful for obtaining after-
wards the asymptotic normality.
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Theorem 1 Assume (A1), (A2), (A3) (i), m0 and σ 0 are twice continuously
differentiable and infx∈RX σ 0(x) > 0, (A3) (iii), (A4), (A5), (A6) (i), J is con-

tinuously differentiable,
∫ 1

0 J (s)ds = 1 and J (s) ≥ 0 for all 0 ≤ s ≤ 1. Then,

sup
x∈RX

|m̂T (x) − mT (x)| = OP ((nan)−1/2(log a−1
n )1/2).

Theorem 2 Assume (A1)–(A7) and supe |e3( f 0
ε )′′(e)| < ∞. Then, for any x ∈ RX ,

m̂T (x) − mT (x) = n−1
n∑

i=1

Ka(x − Xi )B(Zi ,�i |x) + Rn(x),

where sup{|Rn(x)|; x ∈ RX } = oP ((nan)−1/2).

Theorem 3 Under the assumptions of Theorem 2,

(nan)1/2(m̂T (x) − mT (x))
d→ N (0, s2(x)),

where

s2(x) =
∫

K 2(u)du
∑

δ=0,1

∫
B2(z, δ|x) fX (x) dHδ(z|x).

Remark 1 In order to select an appropriate bandwidth sequence an , the bootstrap pro-
cedure proposed by Li and Datta (2001) can be used. First, generate X∗

1, . . . , X∗
n i.i.d.

from the empirical distribution of X1, . . . , Xn . Next, for each i = 1, . . . , n, select
at random a Y ∗

i from the distribution F̃(·|X∗
i ), and a C∗

i from G̃(·|X∗
i ) (which is the

Beran (1981) estimator of G(·|X∗
i ) obtained by replacing �i by 1 − �i in the expres-

sion of F̃(·|X∗
i )). For the generation of these bootstrap data we use a pilot bandwidth

gn asymptotically larger than the original an . Next, let Z∗
i = min(Y ∗

i , C∗
i ) and �∗

i =
I (Y ∗

i ≤ C∗
i ). For each resample {(X j∗

i , Z j∗
i ,�

j∗
i ) : i = 1, . . . , n}, j = 1, . . . , B for

some large B, let m̂∗ jT
an (x) be the estimator of mT (x) obtained by using bandwidth

an . From this, the integrated mean squared error
∫

E[m̂T (x) − mT (x)]2 dx can be
approximated by

IMSE∗(an) = B−1
B∑

j=1

∫
[m̂∗ jT

an (x) − m̂T
gn

(x)]2 dx .

We now select the value of an that minimizes IMSE∗(an). The same bootstrap proce-
dure can also be used to approximate the distribution of m̂T (x), instead of using the
above asymptotic distribution, which might be hard to estimate in practice.

Remark 2 A similar idea as the one developed above to estimate m(x), can be used to
better estimate any scale function σ(x). Indeed, the principle of using Eq. 3 in order
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to better estimate the right tail of the distribution F(y|x) can also be applied in the
construction of an estimator of σ(x). Define

σ̂ T 2(x) = aσ
0

∫ F̂(T̂x |x)

0
(F̂−1(s|x) − m̂T

0 (x))2 Jσ (s)ds

+
kσ
∑

j=1

aσ
j

{∫ F̂(T̂x |x)

0
ρ j (F̂−1(s|x) − m̂T

j (x))ds

}2

,

where m̂T
0 , . . . , m̂T

kσ are general estimators of location functions of the type

m̂T
p (x) = am

p0

∫ F̂(T̂x |x)

0
F̂−1(s|x)J m

p (s) ds +
km

p∑

j=1

am
pj [F̂−1(sm

pj |x) ∧ T̂x ],

p = 0, . . . , kσ , Jσ (s) and J m
p (s) are given weight functions satisfying

∫ 1
0 Jσ (s)ds =

1 and
∫ 1

0 J m
p (s)ds = 1, p = 0, . . . , kσ , kσ ≥ 0, km

p ≥ 0, aσ
0 , . . . , aσ

kσ are positive
real numbers (aσ

0 can be zero if kσ > 0), am
p0, . . . , am

pkm
p

are real numbers such that
∑km

p
j=0 am

pj = 1, p = 0, . . . , kσ , ρ j (u) = sσ
j u I (u ≥ 0) + (sσ

j − 1)uI (u < 0), j =
1, . . . , kσ , and 0 < sσ

1 , . . . , sσ
kσ , sm

p1, . . . , sm
pkm

p
< 1, p = 0, . . . , kσ . The asymptotic

results for σ̂ T 2(x) can be obtained along the same lines as for the estimator m̂T (x).

Remark 3 Note that when model (1) is homoscedastic (i.e., σ ≡ c for some c > 0) and
we estimate σ 0 by a global estimator σ̂ 0, the representation in Theorem 2 simplifies.
In fact, the function ζ(z, δ|x) in the definition of B(z, δ|x) disappears in that case,
since this function is coming from the local estimator σ̂ 0(x) (see proposition 4.9 in
Van Keilegom and Akritas 1999).

Remark 4 The estimator m̂T (x) is easy to implement in practice, and the parameters
on which it depends (namely the truncation point T , the bandwidth an and the score
function L) can be chosen in a data driven way. In Remark 1 we explained already
how to choose the bandwidth an by means of a bootstrap procedure. The trunca-
tion point T can be taken equal to the largest residual Ê0

(n). Finally, for the weight

function L in the definition of m0 and σ 0 we recommend the following function:
L(s) = I (0 ≤ s ≤ b)/b, where b = min1≤i≤n F̃(+∞|Xi ). In this way, we avoid the
values of s for which F̃−1(s|Xi ) is inconsistent, and on the other hand we exploit to
a maximum the consistent region.

4 Simulations

In this section, we compare the finite sample behavior of the completely nonparametric
location estimator m̃T (x) with the location estimator m̂T (x) proposed in this paper by
means of Monte Carlo simulations. We are interested in the behavior of the integrated
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mean squared error of the estimators, defined by IMSE = ∫
E[m̂T (x) − m(x)]2 dx

for m̂T (x) and similarly for m̃T (x). The simulations are carried out for samples of
size n = 100 and the results are obtained by using 250 simulations.

In the first setting, we generate i.i.d. data from the normal homoscedastic regression
model

Y = β0 + β1 X + β2 X2 + β3 X3 + σε, (12)

for various choices of β0, β1, β2, β3 and σ , where X has a uniform distribution on the
interval [0, 3], and the error term ε is a normal random variable with zero mean and
variance 1. The censoring variable C satisfies C = α0 + α1 X + α2 X2 + α3 X3 + σε∗,
for certain choices of α0, α1, α2, and α3, where ε∗ has a normal distribution with zero
mean and variance 1. We further assume that ε and ε∗ are independent of X , that ε is
independent of ε∗, and that σ is known. It is easy to see that, under this model,

P(� = 0|X = x)=1 − 


(
α0 − β0 + (α1 − β1)x+(α2 − β2)x2+(α3−β3)x3

√
2σ

)

.

For the weights that appear in the Beran estimator F̃(y|x), we choose a biquadratic
kernel function K (x) = (15/16)(1 − x2)2 I (|x | ≤ 1).

For the bandwidth sequence an , we select for each estimator the minimizer of an
approximated IMSE among a grid of 20 possible values of an between 0 and 3. This
IMSE is computed as follows. For each an and each simulation, we compute an inte-
grated squared error (ISE) using the true parameters of the model (12) and we obtain
the approximated IMSE for each an by averaging those ISE over the 250 simulations.
A bootstrap technique for computing the smoothing parameter is proposed in Sect. 3,
but for simulations it is too computationally intensive. For small values of an , it some-
times happens that the window [x − an, x + an] at a point x does not contain any
Xi (i = 1, . . . , n) for which the corresponding Yi is uncensored (and in that case
estimation of F(·|x) is impossible). We enlarge the window in that case such that it
contains at least one uncensored data point in its interior. It also happens sometimes
that the bandwidth an at a point x is larger than the distance from x to both the left
and right endpoint of the interval. In such cases, the bandwidth is redefined as the
maximum of these two distances. Finally, we work with L(s) = I (s ≤ b)/b, where
b = min1≤i≤n F̃(+∞|Xi ), as recommended in Remark 4.

We compare the two methods for four different locations : the conditional mean,
a conditional truncated mean (the trimmed mean corresponding to J (s) = (1/0.9)

I (0.05 < s ≤ 0.95)), the conditional median and conditional third quartile. For the
estimators F̃(y|x) in (11) and F̂0

ε (y), the last data point or the last residual is often
censored. In this case, this point is redefined as uncensored.

Tables 1, 2 and 3 summarize the simulation results for different values of α0, α1, α2,
α3, β0, β1, β2, β3 and σ . For fixed values of β0, β1, β2, β3 and σ , the values of
α0, α1, α2 and α3 are chosen in such a way that some variation in the censoring
probability curves is obtained (different proportions of censoring, different degrees of
smoothness of the censoring probability curve,…). The proportion of censoring (in %
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Table 1 Results for m̃T (x) (first line) and m̂T (x) (second line) for model (12) with large optimal bandwidth
an

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ 2 Mean Trim. mean Median 3rd quartile

0 0.4 0 0 37.1 0.326 0.331 0.349 0.404

−0.4 1 −0.05 0 0.5 0.320 0.322 0.336 0.365

0 0.4 0 0 38.2 0.357 0.361 0.381 0.429

0.3 0.4 0 0 0.5 0.355 0.356 0.369 0.395

0 0.4 0 0 58.8 0.390 0.396 0.454 0.569

0.24 0 0 0.02 0.5 0.390 0.388 0.408 0.507

0 0.4 0 0 71.1 0.394 0.414 0.507 0.718

−0.3 0 0 0.05 0.5 0.384 0.390 0.445 0.586

Table 2 Results for m̃T (x) (first line) and m̂T (x) (second line) for model (12) with moderately large
optimal bandwidth an

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ 2 Mean Trim. mean Median 3rd quartile

0 1 0 0 35.5 1.759 1.765 1.802 2.148

2 0 −0.2 0.09 0.5 1.749 1.747 1.762 1.772

0 1 0 0 38.2 1.333 1.347 1.392 1.604

0.3 1 0 0 0.5 1.299 1.303 1.319 1.354

0 1 0 0 58.0 1.631 1.681 1.862 1.926

0.5 0.13 0.2 0 0.5 1.517 1.525 1.547 1.676

0 1 0 0 72.0 1.760 1.832 2.091 2.015

0 0.4 0.1 0 0.5 1.618 1.626 1.698 1.824

Table 3 Results for m̃T (x) (first line) and m̂T (x) (second line) for model (12) with small optimal
bandwidth an

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ 2 Mean Trim. mean Median 3rd quartile

4 −7.5 6 −1.3 31.7 1.139 1.159 1.260 1.570

3.5 −7.45 7 −1.6 0.5 1.081 1.085 1.100 1.165

4 −7.5 6 −1.3 38.2 1.047 1.066 1.161 1.513

4.3 −7.5 6 −1.3 0.5 1.030 1.034 1.043 1.111

4 −7.5 6 −1.3 51.3 1.251 1.314 1.508 1.559

3.2 −7.6 7 −1.6 0.5 1.142 1.158 1.188 1.315

4 −7.5 6 −1.3 56.4 1.336 1.392 1.553 2.043

3 −7.6 7 −1.6 1 1.296 1.321 1.391 1.620
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and denoted by CP in the tables) is computed as the average of P(� = 0|x) for an
equispaced grid of values of x .

The tables show that, in general, m̂T (x) has smaller IMSE than m̃T (x) for each
of the four considered location functions. The higher the quantile, or the smaller the
support of J , the worse the estimation. The new method resists however better. The
simulations can be explained as follows. The most important problem of the Beran
estimator is its consistency in the right tail : this is mainly due to the fact that it is a
local estimator. In regions with a large proportion of censored data, the Beran estima-
tor therefore behaves badly. The other estimator also has this problem but at a lower
degree : it uses a global estimator of the distribution of the residuals. The inconsistency
problems arise thus in the right tail of a global distribution. On the other hand, the
new approach is based on the estimation of m0(·) and σ 0(·). The score function L in
these functions is determined by min1≤i≤n F̃(+∞|Xi ). When censoring is heavy, this
value can be small. In that case, the estimators m̂0(·) and σ̂ 0(·) will be quite variable
and unstable.

The results of Tables 1, 2 and 3 show that the relative performance of the two
methods depends on the shape of the regression function and the amount of censoring.
In fact, when the regression function is relatively flat, the optimal bandwidth will be
quite large. Hence, there will be little difference between the local and global esti-
mators. Table 1 summarizes the results for this kind of regression functions. When
the regression function becomes more and more wiggly, the merits of the proposed
method become clearer (see Tables 2 and 3). In Tables 2 and 3, the models are more
wiggly, leading to smaller bandwidth parameters and hence the advantages of the new
estimator in comparison with the completely nonparametric estimator become more
and more transparent.

The final setting we consider is a normal heteroscedastic regression model

Y = β0 + β1 X + β2 X2 + β3 X3 + (γ X + 0.1)ε, (13)

where X has a uniform distribution on [0, 1] or on [0, 3], and ε has a normal distri-
bution with zero mean and variance equal to one. The censoring variable is given by
C = α0 + α1 X + α2 X2 + α3 X3 + γ ε∗, where ε∗ has a normal distribution with zero
mean and variance equal to one. We further assume that ε and ε∗ are independent of
X , and that ε is independent of ε∗. The variance of Y given X is now supposed to be
unknown. The results are in Table 4. Not surprisingly, one can show that when the
degree of heteroscedasticity is small, the gain in precision of m̂T (x) with respect to
m̃T (x) is relatively small, since m̂T (x) looses some precision due to the estimation of
the scale function σ 0(x). However, the estimator m̂T (x) still outperforms m̃T (x) for
all models and all location functions considered.

5 Data analysis

We illustrate the proposed method on a data set which comes from a study of quasars
in astronomy. To date, many studies have focused on the dependence on luminosity
and redshift of quasar ultraviolet-to-X-ray spectral energy distributions (characterized
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Table 4 Results for m̃T (x) (first line) and m̂T (x) (second line) for model (13). RX is [0, 3] for the first
model and [0, 1] for the two other ones

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ 2 Mean Trim. mean Median 3rd quartile

0 0.4 0 0 58.2 0.365 0.377 0.425 0.957

−0.1 0 0 0.1 0.1 0.338 0.347 0.335 0.943

0 1 6 −4 48.9 0.621 0.631 0.638 0.950

0.5 1 −5 9 1 0.570 0.566 0.557 0.866

0 1 6 −4 56.8 1.040 1.066 1.152 2.546

0.5 0.8 −6 8.5 5 1.032 1.032 1.069 2.161

by means of the spectral index αox = 0.384 log(L2 keV/L2500 Å), where luv =
log L2500 Å and lx = log L2 keV denote the rest-frame 2500 Å and 2 keV luminosity
densities) (see Vignali et al. 2003). This allows to obtain information and to validate
the proposed mechanism driving quasar broad-band emission (accretion disk onto a
super-massive black hole). Due to technical constraints of the used instruments, only
upper bounds on 69 of the 137 values of lx are observed, leading thus to left censor-
ing. Right-censored data points are next obtained by replacing the left-censored lx,i

by Zi = (max j : j=1,...,137(lx, j ) − lx,i ), i = 1, . . . , 137.

We show in Figs. 1 and 2 the results of regression of lx on luv for the new estimator
m̂T (x) and the completely nonparametric estimator m̃T (x). The bandwidth is selected
from a grid of 18 bandwidths, according to the method described in Remark 1. The
selected bandwidth parameter is approximately the same for each method (around
0.75). For the conditional mean, trimmed mean (defined in Sect. 4) and median, the
relation we observe between the two variables for both methods suggests to fit a
linear model to these data (as made in Heuchenne and Van Keilegom (2007)). For
the first quartile, this relation is not so obvious for m̃T (x), while the new estima-
tor again suggests to choose a linear model. Note that, contrary to the simulation
section, we focus here on the first and not the third quartile. This is because for
left censored data, the first quartile is harder to estimate, and hence it interests us
more.

Appendix : Proofs of main results

We start with three lemmas, that are needed in the proofs of Theorems 1 and 2. Note
that uniform consistency results and asymptotic representations for the local estima-
tors m̂0(x) and σ̂ 0(x) are given by Propositions 4.5, 4.8 and 4.9 of Van Keilegom
and Akritas (1999). As a consequence, the proofs below mainly develop properties
for global quantities (namely location properties for the residuals treated in the three
lemmas below, and a result about the quantiles of their distribution treated in the proof
of Theorem 1).
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Fig. 1 Regression curve estimation for the quasar data. The estimators m̃T (x) and m̂T (x) are indicated by
∗ and ◦ respectively. Uncensored data points are represented by ×, and (left) censored observations by 
.
a Conditional mean; b Conditional truncated mean (5% of truncation at both sides)
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Fig. 2 Regression curve estimation for the quasar data. The estimators m̃T (x) and m̂T (x) are indicated by
∗ and ◦ respectively. Uncensored data points are represented by ×, and (left) censored observations by 
.
a Conditional median; b Conditional first quantile
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Lemma 1 Assume (A1)–(A5), (A6)(ii), (A7) and supe |e3( f 0
ε )′′(e)| < ∞. Then,

n−1
n∑

i=1

⎧
⎪⎨

⎪⎩
Ê0

i J (F̂0
ε (Ê0

i ))I (Ê0
i ≤ T̂i )I (�i =1) +

∫ T̂i

Ê0T
i

eJ (F̂0
ε (e)) dF̂0

ε (e)

1 − F̂0
ε (Ê0T

i )
I (�i =0)

⎫
⎪⎬

⎪⎭

−
∫ T

−∞
eJ (F0

ε (e)) dF0
ε (e) = oP ((nan)−1/2).

Proof The proof is divided into two parts. In a first step, we introduce some properties
of the quantities in the statement of the lemma. This leads to double sums, that we
treat in a second step. Consider

n−1
n∑

i=1

{Ê0
i J (F̂0

ε (Ê0
i ))I (Ê0

i ≤ T̂i ) − E0
i J (F0

ε (E0
i ))I (E0

i ≤ T )}I (�i = 1)

+ n−1
n∑

i=1

⎧
⎪⎨

⎪⎩

∫ T̂i

Ê0T
i

eJ (F̂0
ε (e)) d F̂0

ε (e)

1 − F̂0
ε (Ê0T

i )
−

∫ T
E0T

i
eJ (F0

ε (e)) dF0
ε (e)

1 − F0
ε (E0T

i )

⎫
⎪⎬

⎪⎭

× I (�i = 0) = A1 + A2. (14)

Using Corollary 3.2 and Proposition 4.5 in Van Keilegom and Akritas (1999) (here-
after abbreviated by VKA), the differentiability of J and the fact that E |ε0| < ∞, we
have

A1 = n−1
n∑

i=1

I (Zi ≤ TXi )I (�i = 1){(Ê0
i − E0

i )J (F0
ε (Ê0

i ))

+ E0
i [J (F0

ε (Ê0
i )) − J (F0

ε (E0
i ))]} + OP (n−1/2).

Next, using Proposition 4.5 in VKA, and the fact that supy |y2 f 0′
ε (y)| < ∞ and

supy |y f 0
ε (y)| < ∞,

F0
ε (Ê0

i ) − F0
ε (E0

i ) = (Ê0
i − E0

i ) f 0
ε (E0

i ) + oP ((nan)−1/2)

= − m̂0(Xi ) − m0(Xi )

σ 0(Xi )
f 0
ε (E0

i )

− σ̂ 0(Xi ) − σ 0(Xi )

σ 0(Xi )
E0

i f 0
ε (E0

i ) + oP ((nan)−1/2). (15)
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From this, the fact that J is twice continuously differentiable and that E |ε0| < ∞, A1
can be rewritten as

A1 = n−1
n∑

i=1

I (Zi ≤ TXi )I (�i = 1)(Ê0
i − E0

i )[J (F0
ε (E0

i ))

+ J ′(F0
ε (E0

i ))E0
i f 0

ε (E0
i )] + oP ((nan)−1/2)

= (n2an)−1
n∑

i=1

I (Zi ≤ TXi )I (�i = 1) f −1
X (Xi )[J (F0

ε (E0
i ))

+ J ′(F0
ε (E0

i ))E0
i f 0

ε (E0
i )]

×
⎧
⎨

⎩

n∑

j=1

K

(
Xi − X j

an

)

[η(Z j ,� j |Xi ) + ζ(Z j ,� j |Xi )E0
i ]

⎫
⎬

⎭
, (16)

where the last equality follows from Propositions 4.8 and 4.9 in VKA. Next, we treat
the term A2. Using Corollary 3.2 in VKA, Lemma A1 in Heuchenne and Van Keilegom
(2007) and the uniform consistency of m̂0 and σ̂ 0 in (15) (see Proposition 4.5 in VKA),
we have

A2 = n−1
n∑

i=1

I (�i = 0)

{
F̂0

ε (Ê0T
i ) − F0

ε (E0T
i )

(1 − F̂0
ε (Ê0T

i ))(1 − F0
ε (E0T

i ))

∫ T̂i

Ê0T
i

eJ (F0
ε (e)) dF̂0

ε (e)

+ 1

1 − F0
ε (E0T

i )

[∫ T̂i

Ê0T
i

eJ (F0
ε (e)) dF̂0

ε (e) −
∫ T

E0T
i

eJ (F0
ε (e)) dF0

ε (e)

]}

+ oP ((nan)−1/2)

= n−1
n∑

i=1

I (�i = 0){A21i + A22i + A23i } + oP ((nan)−1/2). (17)

For A21i , we write

∫ T̂i

Ê0T
i

eJ (F0
ε (e))d F̂0

ε (e) =
∫ T

E0T
i

eJ (F0
ε (e))dF0

ε (e) +
∫ T̂i

T
eJ (F0

ε (e))dF̂0
ε (e)

+
∫ E0T

i

Ê0T
i

eJ (F0
ε (e))dF̂0

ε (e)

+
∫ T

E0T
i

eJ (F0
ε (e))d(F̂0

ε (e) − F0
ε (e))

= B1i + B2i + B3i + B4i .
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Easy calculations show that the three last terms of this expression are |E0T
i |

OP ((nan)−1/2(log a−1
n )1/2) uniformly in i , such that

n−1
n∑

i=1

I (�i = 0)A21i = n−1
n∑

i=1

I (�i = 0)
F0

ε (Ê0T
i ) − F0

ε (E0T
i )

(1 − F0
ε (E0T

i ))2

×
∫ T

E0T
i

eJ (F0
ε (e)) dF0

ε (e) + oP ((nan)−1/2), (18)

using the fact that E |E0T | < ∞. Next,

n−1
n∑

i=1

I (�i = 0){A22i + A23i } = n−1
n∑

i=1

I (�i = 0)
(B2i + B3i + B4i )

1 − F0
ε (E0T

i )
.

B4i is |E0T
i |oP ((nan)−1/2) uniformly in i . For B3i , we write

∫ E0T
i

Ê0T
i

eJ (F0
ε (e))dF0

ε (e) +
∫ E0T

i

Ê0T
i

eJ (F0
ε (e))d(F̂0

ε (e) − F0
ε (e))

= −
{∫ Ê0T

i

0
eJ (F0

ε (e))dF0
ε (e) −

∫ E0T
i

0
eJ (F0

ε (e))dF0
ε (e)

}

+ |E0T
i |oP ((nan)−1/2)

= −E0T
i J (F0

ε (E0T
i )) f 0

ε (E0T
i )[Ê0T

i − E0T
i ] + |E0T

i |oP ((nan)−1/2).

The last equality is obtained using Proposition 4.5 in VKA, the fact that J is continu-
ously differentiable, that supe |e f 0

ε (e)| < ∞ and that supe |e2 f 0′
ε (e)| < ∞. A similar

expression is found for B2i . This together with (18), (17), (16) and (14) leads to

A1 + A2 = (n2an)−1
∑

i 	= j

B0(Xi , Zi ,�i , Z j ,� j )K

(
Xi − X j

an

)

+ oP ((nan)−1/2),

(19)

where

B0(Xi , Zi ,�i , Z j ,� j ) = f −1
X (Xi )

[

I (�i = 1, Zi ≤ TXi )M ′(E0
i )γi j (E0

i )

+ I (�i = 0)

⎧
⎨

⎩

∫ T
E0T

i
M(e)dF0

ε (e)

(1 − F0
ε (E0T

i ))2
− M(E0T

i )

1 − F0
ε (E0T

i )

⎫
⎬

⎭

× f 0
ε (E0T

i )γi j (E0T
i )

+ I (�i = 0)
M(T )

1 − F0
ε (E0T

i )
f 0
ε (T )γi j (T )

]

,
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M(e) = eJ (F0
ε (e)) and γi j (e) = η(Z j ,� j |Xi ) + eζ(Z j ,� j |Xi ).

Next, let Vk = (Xk, Zk,�k), A(Vi , Vj ) = B0(Xi , Zi ,�i , Z j ,� j )K (
Xi −X j

an
) and

A∗(Vi , Vj ) = A(Vi , Vj )−E[A(Vi , Vj )|Vi ]−E[A(Vi , Vj )|Vj ]+E[A(Vi , Vj )]. Then,
the main term on the right hand side of (19) can be written as

(n2an)−1
∑

i 	= j

{
A∗(Vi , Vj ) + E[A(Vi , Vj )|Vi ] + E[A(Vi , Vj )|Vj ] − E[A(Vi , Vj )]

}

= C1 + C2 + C3 + C4.

First, consider

(n2an)−1
∑

i 	= j

E[A(Vi , Vj )|Vi ]

= n − 1

n2an

n∑

i=1

∫ ∑

δ=0,1

∫
B0(Xi , Zi ,�i , z, δ)K

(
Xi − x

an

)

hδ(z|x) fX (x)dzdx

= n − 1

n2

n∑

i=1

⎧
⎨

⎩

∫ ∑

δ=0,1

∫
B0(Xi , Zi ,�i , z, δ)K (u)[hδ(z|Xi ) − uanḣδ(z|Xi )

+ O(a2
n)][ fX (Xi ) − anu f ′

X (Xi ) + O(a2
n)] dz du

}

= n − 1

n2

n∑

i=1

fX (Xi )

∫ ∑

δ=0,1

B0(Xi , Zi ,�i , z, δ)hδ(z|Xi ) dz + O(a2
n) = O(a2

n),

since E[η(Z ,�|X)|X ] = E[ζ(Z ,�|X)|X ] = 0. Hence, we also have that
E[A(Vi , Vj )] = O(a2

n). In a similar way, we have for E[A(Vi , Vj )|Vj ], using three
Taylor developments of order two, that

(n2an)−1
∑

i 	= j

E[A(Vi , Vj )|Vj ]

= n−1
n∑

j=1

fX (X j )

∫ ∑

δ=0,1

B0(X j , z, δ, Z j ,� j ) d Hδ(z|X j ) + O(a2
n)

= OP (n−1/2).

For C1, note that E[C1] = 0 and hence, by Chebyshev’ s inequality,

P(|C1| > K (nan)−1 E[A∗(V1, V2)
2]1/2)

≤ K −2(nan)2 E[A∗(V1, V2)
2]−1 E[C2

1 ]
= K −2n−2 E[A∗(V1, V2)

2]−1
∑

j 	=i

∑

m 	=l

E[A∗(Vi , Vj )A∗(Vl , Vm)]. (20)

Since E[A∗(Vi , Vj )] = 0, the terms for which i, j 	= l, m are zero. The terms for
which either i or j equals l or m and the other differs from l and m, are also zero,
because, for example when i = l and j 	= m,
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E[A∗(Vi , Vj )E[A∗(Vi , Vm)|Vi , Vj ]] = 0.

Thus, only the 2n(n − 1) terms for which (i, j) equals (l, m) or (m, l) stay such that,
(20) is bounded by 2K −2, which can be made arbitrarily small for K large enough.
It now follows that C1 = OP ((nan)−1) and hence (14) is oP ((nan)−1/2). The result
now follows since it is easily seen that (using E[ε02] < ∞)

n−1
n∑

i=1

⎧
⎨

⎩
E0

i J (F0
ε (E0

i ))I (E0
i ≤T )I (�i =1) +

∫ T
E0T

i
eJ (F0

ε (e))dF0
ε (e)

1 − F0
ε (E0T

i )
I (�i = 0)

⎫
⎬

⎭

−
∫ T

−∞
eJ (F0

ε (e))d F0
ε (e)| = OP (n−1/2).

��
Remark 5 A weaker version of Lemma 1 can be obtained under less restrictive con-
ditions. In fact, it can be easily seen that if (A1), (A2), (A3) (i) hold, if m0 and σ 0 are
twice continuously differentiable and infx∈RX σ 0(x) > 0, if (A3) (iii), (A4), (A5) hold
and J is continuously differentiable,

∫ 1
0 J (s)ds = 1 and J (s) ≥ 0 for all 0 ≤ s ≤ 1,

then the expression at the left hand side in Lemma 1 is OP ((nan)−1/2(log a−1
n )1/2).

Lemma 2 Assume (A1), (A2), (A3) (i), m0 and σ 0 are twice continuously differen-
tiable and inf x∈RX σ 0(x) > 0, (A3) (iii), (A4), (A5), J is continuously differentiable,
∫ 1

0 J (s)ds = 1 and J (s) ≥ 0 for all 0 ≤ s ≤ 1. Then,

∫ T

−∞
eJ (F̂0

ε (e))dF̂0
ε (e) −

∫ T

−∞
eJ (F0

ε (e))dF0
ε (e) = OP ((nan)−1/2(log a−1

n )1/2).

Proof By Lemma 1, it suffices to prove that

n−1
n∑

i=1

{
Ê0

i J (F̂0
ε (Ê0

i ))I (Ê0
i ≤ T ) − Ê0

i J (F̂0
ε (Ê0

i ))I (Ê0
i ≤ T̂i )

}
I (�i = 1)

+ n−1
n∑

i=1

⎧
⎪⎨

⎪⎩

∫ T
Ê0

i ∧T eJ (F̂0
ε (e))dF̂0

ε (e)

1 − F̂0
ε (Ê0

i ∧ T )
−

∫ T̂i

Ê0T
i

eJ (F̂0
ε (e))dF̂0

ε (e)

1 − F̂0
ε (Ê0T

i )

⎫
⎪⎬

⎪⎭
I (�i = 0)

= OP ((nan)−1/2(log a−1
n )1/2). (21)

The left hand side of (21) can be written as

n−1
n∑

i=1

{
Ê0

i J (F̂0
ε (Ê0

i ))[I (Ê0
i ≤ T ) − I (Ê0

i ≤ T̂i )]
}

I (�i = 1)

+ n−1
n∑

i=1

⎧
⎨

⎩

∫ T
Ê0

i ∧T eJ (F̂0
ε (e))dF̂0

ε (e)

1 − F̂0
ε (Ê0

i ∧ T )
I (Ê0

i ≤ T, Ê0
i > T̂i )
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−
∫ T̂i

Ê0T
i

eJ (F̂0
ε (e))dF̂0

ε (e)

1 − F̂0
ε (Ê0T

i )
I (Ê0

i > T, Ê0
i ≤ T̂i )

+
∫ T

T̂i
eJ (F̂0

ε (e))dF̂0
ε (e)

1 − F̂0
ε (Ê0T

i )
I (Ê0

i ≤ T, Ê0
i ≤ T̂i )

⎫
⎬

⎭
I (�i = 0). (22)

Using classical arguments, the three last terms in the above expression are
OP ((nan)−1/2(log a−1

n )1/2) and the first one can be rewritten as

n−1
n∑

i=1

E0
i J (F0

ε (E0
i ))[I (Ê0

i ≤ T ) − I (Ê0
i ≤ T̂i )]I (�i = 1)

+ OP ((nan)−1/2(log a−1
n )1/2),

since E |E0| < ∞. Using arguments similar to those used in Lemma A.1 in VKA, we
find that

n−1
n∑

i=1

{
E0

i J (F0
ε (E0

i ))�i [I (Ê0
i ≤ T ) − I (E0

i ≤ T )]

− E[E0 J (F0
ε (E0))�I (Ê0 ≤ T )|Xn]

+ E[E0 J (F0
ε (E0))�I (E0 ≤ T )]

}
= oP (n−1/2), (23)

where E[·|Xn] is the mean conditional on the data (X j , Z j ,� j ), j = 1, . . . , n.

Finally, since

E[E0 J (F0
ε (E0))�I (Ê0 ≤ T )|Xn] − E[E0 J (F0

ε (E0))�I (E0 ≤ T )]

=
∫

RX

∫ T σ̂0(x)+m̂0(x)−m0(x)

σ0(x)

T
eJ (F0

ε (e))h0
ε1(e|x) fX (x) de dx

= OP ((nan)−1/2(log a−1
n )1/2), (24)

it follows that the first term of (22) is also OP ((nan)−1/2(log a−1
n )1/2).

The next lemma is a refinement of Lemma 2, obtained under somewhat stronger
conditions. ��
Lemma 3 Assume (A1)–(A5), (A6)(ii), (A7) and supe |e3( f 0

ε )′′(e)| < ∞. Then,

∫ T

−∞
eJ (F̂0

ε (e))d F̂0
ε (e) −

∫ T

−∞
eJ (F0

ε (e))dF0
ε (e) = oP ((nan)−1/2).

Proof Similarly as in the proof of Lemma 2, we will prove the lemma by showing
that the four terms of (22) are of the stated order. First, we treat the first term of (22).
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It can be written as

n−1
n∑

i=1

I (�i = 1)
{

E0
i J (F0

ε (E0
i ))[I (Ê0

i ≤ T ) − I (Ê0
i ≤ T̂i )]

+ E0
i [J (F̂0

ε (Ê0
i )) − J (F0

ε (E0
i ))][I (T̂i < Ê0

i ≤ T ) − I (T < Ê0
i ≤ T̂i )]

+ (Ê0
i − E0

i )J (F̂0
ε (Ê0

i ))[I (T̂i < Ê0
i ≤ T ) − I (T < Ê0

i ≤ T̂i )]
}

. (25)

Note that |Ê0
i − E0

i |I (T̂i < Ê0
i ≤ T ) = OP ((nan)−1/2(log a−1

n )1/2) uniformly in i

by Proposition 4.5 in VKA. When Ê0
i ≤ T it holds that E0

i ≤ T σ̂ 0(Xi )/σ
0(Xi ) +

[m̂0(Xi ) − m0(Xi )]/σ 0(Xi ) ≤ T + V , where V = [infx σ 0(x)]−1[supx |m̂0(x) −
m0(x)| + supx |σ̂ 0(x) − σ 0(x)|] = OP ((nan)−1/2(log a−1

n )1/2) and hence the third
term of (25) is bounded by

OP ((nan)−1/2(log a−1
n )1/2) n−1

n∑

i=1

{I (T < E0
i ≤ T + V ) + I (T − V < E0

i ≤ T )}

= OP ((nan)−1/2(log a−1
n )1/2) {[H̃0

ε (T +V ) − H̃0
ε (T )]

+[H̃0
ε (T ) − H̃0

ε (T −V )]},

where H̃0
ε (·) is the empirical distribution of E0

i , i = 1, . . . , n. Using the fact that
H̃0

ε (y) − H0
ε (y) = OP (n−1/2) uniformly in y, the above term is oP (n−1/2). The

second term of (25) and the second and third terms of (22) are treated similarly. In the
same way, the last term of (22) becomes

n−1
n∑

i=1

I (�i = 0)

∫ T
T̂i

eJ (F̂0
ε (e))dF̂0

ε (e)

1 − F̂0
ε (Ê0T

i )
I (E0

i ≤ T ) + oP ((nan)−1/2). (26)

Next, using classical arguments, (26) is written

n−1
n∑

i=1

I (�i = 0)

∫ T
T̂i

eJ (F0
ε (e))dF0

ε (e)

1 − F0
ε (E0T

i )
I (E0

i ≤ T ) + OP (n−1/2)

= −(n2an)−1
n∑

i=1

n∑

j=1

I (E0
i ≤ T )B01(Xi , Zi ,�i , Z j ,� j )K

(
Xi − X j

an

)

+ OP (n−1/2),

where

B01(Xi , Zi ,�i , Z j ,� j ) = I (�i = 0) f −1
X (Xi )

T J (F0
ε (T )) f 0

ε (T )

1 − F0
ε (E0T

i )

× [η(Z j ,� j |Xi ) + T ζ(Z j ,� j |Xi )].
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Treating the function B01 in a similar way as the function B0 in Lemma 1, we find that
the above expression equals

−n−1
n∑

i=1

fX (Xi )

∫ TXi

−∞
B01(Xi , z, 0, Zi ,�i ) dH0(z|Xi ) + O(a2

n) = OP (n−1/2),

since it is a sum of i.i.d. random variables with zero mean.
Finally, together with (23) and (24), the first term of (25) becomes using a Taylor

development and Propositions 4.8 and 4.9 in VKA,

∫

RX

T J (F0
ε (T ))h0

ε1(T |x)

{

T
σ̂ 0(x) − σ 0(x)

σ 0(x)
+ m̂0(x) − m0(x)

σ 0(x)

}

× fX (x)dx + oP (n−1/2)

= (nan)−1
n∑

j=1

∫

RX

W (Z j ,� j |x)K

(
x − X j

an

)

dx + oP (n−1/2), (27)

where W (Z j ,� j |x) = −T J (F0
ε (T ))h0

ε1(T |x){T ζ(Z j ,� j |x)+η(Z j ,� j |x)}.Using
three Taylor developments of order two for ζ(Z j ,� j |x), η(Z j ,� j |x) and he1(T |x)

around X j , we obtain using condition (A4), that (27) equals

n−1
n∑

j=1

W (Z j ,� j |X j ) + oP (n−1/2), (28)

which is a sum of i.i.d. random variables with zero mean and hence it is OP (n−1/2).
This finishes the proof.

We are now ready to prove the main results of the paper. ��

Proof of Theorem 1 Write for any x ∈ RX ,

m̂T (x) − mT (x)

= a0m̂0(x)

{∫ T

−∞
J (F̂0

ε (e))d F̂0
ε (e) −

∫ T

−∞
J (F0

ε (e))dF0
ε (e)

}

+ {m̂0(x) − m0(x)}
⎧
⎨

⎩
a0

∫ T

−∞
J (F0

ε (e))d F0
ε (e) +

k∑

j=1

a j

⎫
⎬

⎭

+ a0σ̂
0(x)

{∫ T

−∞
eJ (F̂0

ε (e))d F̂0
ε (e) −

∫ T

−∞
eJ (F0

ε (e))dF0
ε (e)

}

+ {σ̂ 0(x) − σ 0(x)}
⎧
⎨

⎩
a0

∫ T

−∞
eJ (F0

ε (e))dF0
ε (e) +

k∑

j=1

a j ((F0
ε )−1(s j ) ∧ T )

⎫
⎬

⎭
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+ σ̂ 0(x)

⎡

⎣
k∑

j=1

a j

{
(F̂0

ε )−1(s j ) ∧ T − (F0
ε )−1(s j )

}
I (s j ≤ F̂0

ε (T ), s j ≤ F0
ε (T ))

+
k∑

j=1

a j

{
T − (F0

ε )−1(s j )
}

I (F̂0
ε (T ) < s j ≤ F0

ε (T ))

+
k∑

j=1

a j

{
(F̂0

ε )−1(s j ) ∧ T − T
}

I (F0
ε (T ) < s j ≤ F̂0

ε (T ))

⎤

⎦

=
7∑

�=1

A�(x).

Since E |ε0| < ∞, supx |A2(x)| and supx |A4(x)| are OP ((nan)−1/2(log a−1
n )1/2)

using Proposition 4.5 in VKA. From Corollary 3.2 in VKA and Theorem 1 in Doss
and Gill (1992) we obtain that sups∈Q |(F̂0

ε )−1(s) − (F0
ε )−1(s)| = OP (n−1/2) and

hence supx |A5(x)| = OP (n−1/2). For supx |A3(x)|, we use Lemma 2. In a similar
way, it can be shown that supx |A1(x)| is of negligible order. Finally, A6(x) and A7(x)

are uniformly negligible using Corollary 3.2 in VKA. ��

Proof of Theorem 2 We use the same decomposition of m̂T (x)−mT (x) as in the proof
of Theorem 1. Using Propositions 4.8, 4.9 in VKA and the fact that E |ε0| < ∞, we
obtain that

A2(x) = −
⎡

⎣a0

∫ F0
ε (T )

0
J (s)ds +

k∑

j=1

a j

⎤

⎦ (nan)−1 f −1
X (x)σ 0(x)

×
n∑

i=1

K

(
x − Xi

an

)

η(Zi ,�i |x) + Rn(x),

and

A4(x) = −(nan)−1 f −1
X (x)σ 0(x)

{

a0

∫ F0
ε (T )

0
(F0

ε )−1(s)J (s)ds

+
k∑

j=1

a j ((F0
ε )−1(s j ) ∧ T )

⎫
⎬

⎭

n∑

i=1

K

(
x − Xi

an

)

ζ(Zi ,�i |x) + Rn(x),

where Rn(x) = OP ((nan)−3/4(log n)3/4). For A3(x) (and similarly for A1(x)) we
use Lemma 3. The remaining terms A5(x), A6(x) and A7(x) are oP ((nan)−1/2), as
shown in the proof of Theorem 1. Therefore,

m̂T (x) − mT (x) = (nan)−1
n∑

i=1

K

(
x − Xi

an

)

B(Zi ,�i |x) + oP ((nan)−1/2).

��
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Proof of Theorem 3 The result follows immediately from Theorem 2 and the central
limit theorem for triangular arrays (see e.g., Serfling 1980). ��
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