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A review
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Abstract: In this review of estimation problems in restricted parameter spaces,
we focus through a series of illustrations on a number of methods that have
proven to be successful. These methods relate to the decision-theoretic aspects
of admissibility and minimaxity, as well as to the determination of dominating
estimators of inadmissible procedures obtained for instance from the criteria of
unbiasedness, maximum likelihood, or minimum risk equivariance. Finally, we
accompany the presentation of these methods with various related historical
developments.

1. Introduction

Herman Rubin has contributed in deep and original ways to statistical theory and
philosophy. He has selflessly shared his keen intuition into and extensive knowledge
of mathematics and statistics with many of the researchers represented in this
volume. The statistical community has been vastly enriched by his contributions
through his own research and through his influence, direct and indirect, on the
research and thinking of others. We are pleased to join in this celebration in honor
of Professor Rubin.

This review paper is concerned with estimation of a parameter or vector para-
meter θ, when θ is restricted to lie in some (proper) subset of the “usual” parameter
space. The approach is decision theoretic. Hence, we will not be concerned with hy-
pothesis testing problems, or with algorithmic problems of calculating maximum
likelihood estimators. Excellent and extensive sources of information on these as-
pects of restricted inference are given by Robertson, Wright and Dykstra (1988),
Akkerboom (1990), and Barlow, Bartholomew, Bremner and Brunk (1972). We will
not focus either on the important topic of interval estimation. Along with the recent
review paper by Mandelkern (2002), here is a selection of interesting work concern-
ing methods for confidence intervals, for either interval bounded, lower bounded,
or order restricted parameters: Zeytinoglu and Mintz (1984, 1988), Stark (1992),
Hwang and Peddada (1994), Drees (1999), Kamboreva and Mintz (1999), Iliopoulos
and Kourouklis (2000), and Zhang and Woodroofe (2003).

We will focus mostly on point estimation and we will particularly emphasize
finding estimators which dominate classical estimators such as the Maximum Like-
lihood or UMVU estimator in the unrestricted problem. Issues of minimaxity and
admissibility will also naturally arise and be of interest. Suppose, for example, that
the problem is a location parameter problem and that the restricted (and of course
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the original space) is non-compact. In this case it often happens that these classical
estimators are minimax in both the original problem and the restricted problem. If
the restriction is to a convex subset, projection of the classical procedure onto the
space will typically produce an improved minimax procedure, but the resulting pro-
cedure will usually not be admissible because of violation of technical smoothness
requirements. In these cases there is a natural interest in finding minimax gener-
alized Bayes estimators. The original result in this setting is that of Katz (1961)
who showed (among other things) for the normal location problem with the mean
restricted to be non-negative, that the generalized Bayes estimator with respect to
the uniform prior (under quadratic loss) is minimax and admissible and dominates
the usual (unrestricted ML or UMVU) estimator. Much of what follows has Katz’s
result as an examplar. A great deal of the material in sections 2, 3 and 5 is focussed
on extending aspects of Katz’s result.

If, in the above normal example, the restricted space is a compact interval, then
the projection of the usual estimator still dominates the unrestricted MLE but can-
not be minimax for quadratic loss because it is not Bayes. In this case Casella and
Strawderman (1981) and Zinzius (1981) showed that the unique minimax estima-
tor of the mean θ for a restriction of the form θ ∈ [−m, m] is the Bayes estimator
corresponding to a 2 point prior on {−m, m} for m sufficiently small. The material
in section 6 deals with this result, and the large related literature that has followed.

In many problems, as in the previous paragraph, Bayes or Generalized Bayes
estimators are known to form a complete class. When loss is quadratic and the
prior (and hence typically the posterior) distribution is not degenerate at a point,
the Bayes estimator cannot take values on the boundary of the parameter space.
There are many results in the literature that use this phenomenon to determine
inadmissibility of certain estimators that take values on (or near) the boundary.
Moors (1985) developed a useful technique which has been employed by a number of
authors in proving inadmissibility and finding improved estimators. We investigate
this technique and the related literature in section 4.

An interesting and important issue to which we will not devote much effort is the
amount of (relative or absolute) improvement in risk obtained by using procedures
which take the restrictions on the parameter space into account. In certain situations
the improvement is substantial. For example, if we know in a normal problem that
the variance of the sample mean is 1 and that the population mean θ is positive,
then risk, at θ = 0, of the (restricted) MLE is 0.5, so there is a 50% savings in risk
(at θ = 0). Interestingly, at θ = 0, the risk of the Bayes estimator corresponding to
the uniform prior on [0,∞) is equal to the risk of the MLE so there is no savings
in risk at θ = 0. There is, however, noticeable improvement some distance from
θ = 0. An interesting open problem is to find admissible minimax estimators in this
setting which do not have the same risk at θ = 0 as the unrestricted MLE, and,
in particular, to find an admissible minimax estimator dominating the restricted
MLE.

We will concern ourselves primarily with methods that have proven to be suc-
cessful in such problems, and somewhat less so with cataloguing the vast collection
of results that have appeared in the literature. In particular, we will concentrate
on the following methods.

In Section 2, we describe a recent result of Hartigan (2003). He shows, if X ∼
Np(θ, Ip), loss is L(θ, d) = ‖d − θ‖2, and θ ∈ C, where C is any convex set (with
non empty interior), then the Bayes estimator with respect to the uniform prior
distribution on C dominates the (unrestricted MRE, UMVU, unrestricted ML)
estimator δ0(X) = X . Hartigan’s result adds a great deal to what was already
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known and provides a clever new technique for demonstrating domination.
In Section 3, we study the Integral Expression of Risk Difference (IERD) method

introduced by Kubokawa (1994a). The method is quite general as regards to loss
function and underlying distribution. It has proven useful in unrestricted as well
as restricted parameter spaces. In particular, one of its first uses was to produce
an estimator dominating the James-Stein estimator of a multivariate normal mean
under squared error loss.

In Section 4, following a discussion on questions of admissibility concerning
estimators that take values on the boundary of a restricted parameter space, we in-
vestigate a technique of Moors (1985) which is useful in constructing improvements
to such estimators under squared error loss.

Section 5 deals with estimating parameters in the presence of additional infor-
mation. For example, suppose X1 and X2 are multivariate normal variates with
unknown means θ1 and θ2, and known covariance matrices σ2

1I and σ2
2I. We wish

to estimate θ1 with squared error loss ‖δ − θ1‖2 when we know for example that
θ1−θ2 ∈ A for some set A. We illustrate the application of a rotation technique, used
perhaps first by Blumenthal and Cohen (1968a), as well as Cohen and Sackrowitz
(1970), which, loosely described, permits to subdivide the estimation problem into
parts that can be separately handled.

Section 6 deals with minimaxity, and particularly those results related to Casella
and Strawderman (1981) and Zinzius (1981) establishing minimaxity of Bayes esti-
mators relative to 2 point priors on the boundary of a sufficiently small one dimen-
sional parameter space of the form [a, b].

2. Hartigan’s result

Let X ∼ Np(θ, Ip), θ ∈ C where C is an arbitrary convex set in �p with an open
interior. For estimating θ under squared error loss, Hartigan (2003) recently proved
the striking result that the (Generalized) Bayes estimator relative to the uniform
prior distribution on C dominates the usual (unrestricted) MRE estimator X . It
seems quite fitting to begin our review of methods useful in restricted parameter
spaces by discussing this, the newest of available techniques. Below, ∇ and ∇2 will
denote respectively the gradient and Laplacian operators.

Theorem 1 (Hartigan, 2003). For X ∼ Np(θ, Ip), θ ∈ C with C being a convex
subset of �p with a non-empty interior, the Bayes estimator δU (X) with respect to
a uniform prior on C dominates δ0(X) = X under squared error loss ‖d − θ‖2.

Proof. Writing

δU (X) = X +
∇Xm(X)

m(X)
with m(X) = (2π)−p/2

∫
C

e−
1
2 |X−ν|2 dν,

we have following Stein (1981),

R
(
θ, δU (X)) − R(θ, δ0(X)

)
= Eθ

[
‖X +

∇Xm(X)
m(X)

− θ‖2 − ‖X − θ‖2

]

= Eθ

[
‖∇Xm(X))‖2

m2(X)
+ 2(X − θ)′

∇Xm(X)
m(X)

]

= Eθ

[
‖∇Xm(X)‖2

m2(X)
+ div

(
∇Xm(X)

m(X)

)
+

(X − θ)′∇Xm(X)
m(X)

]
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= Eθ

[
‖∇Xm(X)‖2

m2(X)
+

m(X)∇2
Xm(X) − ‖∇Xm(X)‖2

m2(X)
+

(X − θ)′∇Xm(X)
m(X)

]

= Eθ

[
1

m(X)
H(X, θ)

]
,

where H(x, θ) = ∇2
x m(x) + (x − θ)′∇xm(x).

It suffices to show tht H(x, θ) ≤ 0 for all x ∈ �p and θ ∈ C. Now, observe
that ∇x(e−

1
2‖x−ν‖2

) = −∇ν(e−
1
2‖x−ν‖2)) and ∇2

x(e−
1
2‖x−ν‖2

) = ∇2
ν(e−

1
2 ‖x−ν‖2

)
so that

(2π)p/2H(x, θ) = ∇2
x

∫
C

e−
1
2 ‖x−ν‖2

dv + (x − θ)′∇x

∫
C

e−
1
2‖x−ν‖2

dv

=
∫

C

∇2
ν

(
e−

1
2‖x−ν‖2)

dν − (x − θ)′
∫

C

∇ν

(
e−

1
2 ‖x−ν‖2)

dν

=
∫

C

∇′
ν

{(
∇ν

(
e−

1
2‖x−ν‖2) − (x − θ)e−

1
2 ‖x−ν‖2)}

dν

=
∫

C

div ν

[
(θ − ν)e−

1
2‖x−ν‖2]

dν. (1)

By the Divergence theorem, this last expression gives us

(2π)p/2H(x, θ) =
∫

∂C

η(ν)′(θ − ν)e−
1
2‖x−ν‖2

dσ(ν), (2)

where η(ν) is the unit outward normal to C at ν on ∂C, and dσ(ν) is the surface
area Lebesgue measure on ∂C (for p = 1, see Example 1). Finally, since C is convex,
the angle between the directions η(ν) and θ − ν for a boundary point ν is obtuse,
and we thus have η(ν)′(θ − ν) ≤ 0, for θ ∈ C, ν ∈ ∂C, yielding the result.

Remark 1.

(a) If θ belongs to the interior C◦ of C; (as in part (a) of Example 1); notice that
η(v)′(θ − v) < 0 a.e. σ(v), which implies H(x, θ) < 0, for θ ∈ C◦ and x ∈ �p,
and consequently R(θ, δU (X)) < R(θ, δ0(X)) for θ ∈ C◦.

(b) On the other hand, if C is a pointed cone at θ0; (as in part (b) of Exam-
ple 1); then η(ν)′(θ0 − ν) = 0 for all ν ∈ ∂C which implies R(θ0, δU (X)) =
R(θ0, δ0(X)).

As we describe below, Theorem 1 has previously been established for various
specific parameter spaces C. However, Hartigan’s result offers not only a unified
and elegant proof, but also gives many non-trivial extensions with respect to the
parameter space C. We pursue with the instructive illustration of a univariate
restricted normal mean.

Example 1.

(a) For X ∼ N(θ, 1) with θ ∈ C = [a, b], we have by (1),

(2π)
1
2 H(x, θ) =

∫ b

a

d

dν
(θ − ν)e−

1
2 (x−ν)2 dν

=
[
(θ − ν) e−

1
2 (x−v)2

]b

a

= (θ − b) e−
1
2 (x−b)2 − (θ − a) e−

1
2 (x−a)2

< 0, for all θ ∈ [a, b].
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This tells us that R(θ, δU (X)) < R(θ, δ0(X)) for all θ ∈ C = [a, b].

(b) For X ∼ N(θ, 1) with θ ∈ C = [a,∞) (or C = (−∞, a]), it is easy to see that
the development in part (a) remains valid with the exception that H(x, a) = 0
for all x ∈ �, which tells us that R(θ, δU (X)) ≤ R(θ, δ0(X)) for θ ∈ C with
equality iff θ = a.

The dominance result for the bounded normal mean in Example 1(a) was es-
tablished by MacGibbon, Gatsonis and Strawderman (1987), in a different fash-
ion, by means of Stein’s unbiased estimate of the difference in risks, and sign
change arguments following Karlin (1957). The dominance result for the lower
bounded normal mean in Example 1(b) was established by Katz (1961), where
he also showed that δU (X) is a minimax and admissible estimator of θ.1 No-
tice that these results by themselves lead to extensions of the parameter spaces
C where δU (X) dominates δ0(X), for instance to hyperrectangles of the form
C = {θ ∈ �p : θi ∈ [ai, bi]; i = 1, . . . , p}, and to intersection of half-spaces since
such problems can be expressed as “products” of one-dimensional problems.

Balls and cones in �p are two particularly interesting classes of convex sets for
which Hartigan’s result gives new and useful information. It is known that for balls
of sufficiently small radius, (see e.g., Marchand and Perron, 2001, and Section 4.3
below), the uniform prior leads to dominating procedures (of the mle), but Harti-
gan’s result implies that the uniform Bayes procedures always dominate δ0(X) = X .
Also, for certain types of cones such as intersections of half spaces, Katz’s result
implies domination over X as previously mentioned. However, Hartigan’s result ap-
plies to all cones, and, again, increases greatly the catalog of problems where the
uniform Bayes procedure dominates X under squared error loss.

Now, Hartigan’s result, as described above, although very general with respect
to the choice of the convex parameter space C, is nevertheless limited to: (i) normal
models, (ii) squared error loss, (iii) the uniform prior as leading to a dominating
Bayes estimator; and extensions in these three directions are certainly of interest.
Extensions to general univariate location families and general location invariant
losses are discussed in Section 3.2. Finally, it is worth pointing out that in the
context of Theorem 1, the maximum likelihood estimator δmle(X), which is the
projection of X onto C, also dominates δ0(X) = X . Hence, dominating estimators
of δ0(X) can be generated by convex linear combinations of δU (X) and δmle(X).
Thus the inadmissibility itself is obvious but the technique and the generality are
very original and new.

3. Kubokawa’s method

Kubokawa (1994a) introduced a powerful method, based on an integral expression
of risk difference (IERD), to give a unified treatment of point and interval esti-
mation of the powers of a scale parameter, including the particular case of the
estimation of a normal variance. He also applied his method for deriving a class
of estimators improving on the James-Stein estimator of a multivariate mean. As
reviewed by Kubokawa (1998,1999), many other applications followed such as in:
estimation of variance components, estimation of non-centrality parameters, lin-
ear calibration, estimation of the ratio of scale parameters, estimation of location
and scale parameters under order restrictions, and estimation of restricted location

1Although the result is correct, the proof given by Katz has an error (see for instance van
Eeden, 1995).
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and scale parameters. As well, a particular strength resides in the flexibility of the
method in handling various loss functions.

3.1. Example

Here is an illustration of Kubokawa’s IERD method for an observable X generated
from a location family density fθ(x) = f0(x− θ), with known f0, where Eθ[X ] = θ,
and Eθ[X2] < ∞. For estimating θ, with squared error loss (d − θ)2, under the
constraint θ ≥ a (hereafter, we will take a = 0 without loss of generality), we show
that the Generalized Bayes estimator δU (X) with respect to the uniform prior
π(θ) = 1(0,∞)(θ) dominates the MRE estimator δ0(X) = X . As a preliminary to
the following dominance result, observe that δU (X) = X + hU (X), where

hU (y) =

∫ ∞
0

(θ − y)f0(y − θ) dθ∫ ∞
0

f0(y − θ) dθ
=

−
∫ y

−∞ uf0(u) du∫ y

−∞ f0(u) du
= −E0[X |X ≤ y];

and that hU is clearly continuous, nonincreasing, with hU (y) ≥ − limy→∞ E0[X |X ≤
y] = −E0[X ] = 0.

Theorem 2. For the restricted parameter space θ ∈ Θ = [0,∞), and under squared
error loss:

(a) Estimators δh(X) = δ0(X) + h(X) with absolutely continuous, non-negative,
nonincreasing h, dominate δ0(X) = X whenever h(x) ≤ hU (x) (and δh 	= δ0);

(b) The Generalized Bayes estimator δU (X) dominates the MRE estimator δ0(X).

Proof. First, part (b) follows from part (a) and the above mentioned properties
of hU . Observing that the properties of h and hU imply lim

y→∞
h(y) = 0, and following

Kubokawa (1994a), we have

(x − θ)2 − (x + h(x) − θ)2 = (x + h(y) − θ)2 |∞y=x.

=
∫ ∞

x

∂

∂y
(x + h(y) − θ)2 dy

= 2
∫ ∞

x

h′(y)(x + h(y) − θ) dy,

so that

∆h(θ) = Eθ[(X − θ)2 − (X + h(X) − θ)2]

= 2
∫ ∞

−∞

{∫ ∞

x

h′(y)(x + h(y) − θ) dy

}
f0(x − θ) dx

= 2
∫ ∞

−∞
h′(y)

{∫ y

−∞
(x + h(y) − θ)f0(x − θ) dx

}
dy.

Now, since h′(y) ≤ 0 (h′ exists a.e.), it suffices in order to prove that ∆h(θ) ≥
0; θ ≥ 0; to show that

Gh(y, θ) =
∫ y

−∞
(x + h(y) − θ)f0(x − θ) dx ≤ 0
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for all y, and θ ≥ 0. But, this is equivalent to∫ y

−∞(x + h(y) − θ)f0(x − θ) dx∫ y

−∞ f0(x − θ) dx
≤ 0

⇔
∫ y−θ

−∞ (u + h(y))f0(u) du∫ y−θ

−∞ f0(u) du
≤ 0

⇔ h(y) ≤ −E0[X |X ≤ y − θ]; for all y, and θ ≥ 0;
⇔ h(y) ≤ inf

θ≥0
{−E0[X |X ≤ y − θ]} ; for all y;

⇔ h(y) ≤ −E0[X |X ≤ y] = hU (y); for all y;

given that E0[X |X ≤ z] is nondecreasing in z. This establishes part (a), and com-
pletes the proof of the theorem.

Remark 2. In Theorem 2, it is worth pointing out, and it follows immediately that
Gh(y, θ) ≤ 0, for all y, with equality iff h = hU and θ = 0, which indicates that, for
the dominating estimators of Theorem 2, R(θ, δh(X)) ≤ R(θ, δ0(X)) with equality
iff h = hU and θ = 0. As a consequence, δU (X) fails to dominate any of these
other dominating estimators δh(X), and this includes the case of the truncation of
δ0(X) onto [0,∞), δ+(X) = max(0, δ0(X)) (also see Section 4.4 for a discussion on
a normal model δ+(X)).

3.2. Some related results to Theorem 2

For general location family densities f0(x− θ), and invariant loss L(θ, d) = ρ(d− θ)
with strictly convex ρ, Farrell (1964) established: (i) part (b) of Theorem 2, and
(ii) the minimaxity of δU (X), and (iii) the admissibility of δU (X) for squared error
loss ρ. Using Kubokawa’s method, Marchand and Strawderman (2003,a) establish
extensions of Theorem 2 (and of Farrell’s result (i)) to strictly bowl-shaped losses
ρ. They also show, for quite general (f0, ρ), that the constant risk of the MRE
estimator δ0(X) matches the minimax risk. This implies that dominating estimators
of δ0(X), such as those in extensions of Theorem 2, which include δU (X) and δ+(X),
are necessarily minimax for the restricted parameter space Θ = [0,∞). Marchand
and Strawderman (2003,a,b) give similar developments for scale families, and for
cases where the restriction on θ is to an interval [a, b]. Related work for various
models and losses includes Jozani, Nematollahi and Shafie (2002), van Eeden (2000,
1995), Parsian and Sanjari (1997), Gajek and Kaluszka (1995), Berry (1993), and
Gupta and Rohatgi (1980), and many of the references contained in these papers.

Finally, as previously mentioned, Kubokawa’s method has been applied to a wide
range of problems, but, in particular for problems with ordered scale or location
parameters (also see Remark 4), results and proofs similar to Theorem 2 have been
established by Kubokawa and Saleh (1994), Kubokawa (1994b), and Ilioupoulos
(2000).

4. Estimators that take values on the boundary of the parameter space

Theoretical difficulties that arise in situations when estimating procedures take
values on, or close to the boundary of constrained parameter spaces are well docu-
mented. For instance, Sacks (1963), and Brown (1971), show for estimating under
squared error loss a lower bounded normal mean θ with known variance, that the
maximum likelihood estimator is an inadmissible estimator of θ. More recently,
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difficulties such as those encountered with interval estimates have been addressed
in Mandelkern (2002). In this section, we briefly expand on questions of admissi-
bility and on searches for improved procedures, but we mostly focus on a method
put forth by Moors (1985) which is useful in providing explicit improvements of
estimators that take values on, or close to the boundary of a restricted parameter
space.

4.1. Questions of admissibility

Here is a simple example which illustrates why, in many cases, estimators that take
values on the boundary of the parameter space are inadmissible under squared error
loss. Take X ∼ Np(θ, Ip) where θ is restricted to a ball Θ(m) = {θ ∈ �p : ‖θ‖ ≤ m}.
Complete class results indicate that admissible estimators are necessarily Bayes for
some prior π (supported on Θ(m), or a subset of Θ(m)). Now observe that prior
and posterior pairs (π, π|x) must be supported on the same set, and that a Bayes
estimator takes values δπ(x) = E(θ|x) on the interior of the convex Θ(m), as
long as π|x, and hence π, is not degenerate at some boundary point θ0 of Θ(m).
The conclusion is that non-degenerate estimators δ(X) which take values on the
boundary of Θ(m) (i.e., µ{x : δ(x) ∈ ∂(Θ(m)} > 0, with µ as Lebesgue measure);
which includes for instance the MLE; are inadmissible under squared error loss. In
a series of papers, Charras and van Eeden (1991a, 1991b, 1992, 1994) formalize the
above argument for more general models, and also provide various results concerning
the admissibility and Bayesianity under squared error loss of boundary estimators
in convex parameter spaces. Useful sources of general complete class results, that
apply for bounded parameter spaces, are the books of Berger (1985), and Brown
(1986).

Remark 3. As an example where the prior and posterior do not always have the
same support, and where the above argument does not apply, take X ∼ Bi(n, θ)
with θ ∈ [0, m]. Moreover, consider the MLE which takes values on the boundary
of [0, m]. It is well known that the MLE is admissible (under squared error loss) for
m = 1. Interestingly, again for squared error loss, Charras and van Eeden (1991a)
establish the admissibility of the MLE for cases where m ≤ 2/n, while Funo (1991)
establishes its inadmissibility for cases where m < 1 and m > 2/n. Interestingly
and in contrast to squared error loss, Bayes estimators under absolute-value loss
may well take values on the boundary of the parameter space. For instance, Iwasa
and Moritani (1997) show, for a normal mean bounded an interval [a, b] (known
standard deviation), that the MLE is a proper Bayes (and admissible) estimator
under absolute-value loss.

The method of Moors, described in detail in Moors (1985), and further illus-
trated by Moors (1981) and Moors and van Houwelingen (1987), permits the con-
struction of improved estimators under squared error loss of invariant estimators
that take values on, or too close to the boundary of closed and convex parameter
spaces. We next pursue with an illustration of this method.

4.2. The method of Moors

Illustrating Moors’ method, suppose an observable X is generated from a location
family density f(x − θ) with known positive and symmetric f . For estimating θ ∈
Θ = [−m, m] with squared error loss, consider invariant estimators (with respect
to sign changes) which are of the form

δg(X) = g(|X |) X

|X | .
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The objective is to specify dominating estimators of δg(X), for cases where
δg(X) takes values on or near the boundary {−m, m} (i.e., |m − g(x)| is “small”
for some x).

Decompose the risk of δg(X) by conditioning on |X | (i.e., the maximal invariant)
to obtain (below, the notation E

|X|
θ represents the expectation with respect to |X |)

R(θ, δg(X)) = E
|X|
θ

{
Eθ

[(
g(|X |) X

|X | − θ

)2
∣∣∣∣∣ |X |

]}

= E
|X|
θ

{
θ2 + g2(|X |) − 2Eθ

[
θX

|X |g(|X |)
∣∣∣∣ |X |

]}

= E
|X|
θ

{
θ2 + g2(|X |) − 2g(|X |)A|X|(θ)

}
,

where

A|X|(θ) = θEθ

[
X

|X |

∣∣∣∣ |X |
]

= θ

{
f(|X | − θ) − f(|X | + θ)
f(|X | − θ) + f(|X | + θ)

}
,

(as in (6) below) by symmetry of f . Now, rewrite the risk as

R(θ, δg(X)) = E
|X|
θ

[
θ2 − A2

|X|(θ)
]

+ E
|X|
θ

[(
g(|X |) − A|X|(θ)

)2
]
, (3)

to isolate with the second term the role of g, and to reflect the fact that the perfor-
mance of the estimator δg(X), for θ ∈ [−m, m], is measured by the average distance(
g(|X |) − A|X|(θ)

)2 under f(x − θ). Continue by defining the A|x| as the convex
hull of the set {A|x|(θ) : −m ≤ θ ≤ m}. Coupled with the prior representation (3)
of R(θ, δg(X)), we can now state the following result.

Theorem 3. Suppose δg(X) is an estimator such that µ{x : g(|x|) /∈
A|x|} > 0, then the estimator δg0(X) with g0(|x|) being the projection of g(|x|)
onto A|x| dominates δg(X), with squared error loss under f , for θ ∈ Θ = [−m, m].

Example 2. (Normal Case) Consider a normal model f with variance 1. We obtain
A|x|(θ) = θ tanh(θ|x|), and A|x| = [0, m tanh(m|x|)], since A|x|(θ) is increasing
in |θ|. Consider an estimator δg(X) such that µ{x : g(|x|) > m tanh(m|x|)} >
0. Theorem 3 tells us that δg0(X), with g0(|X |) = min(m tanh(m|X |), g(|X |)),
dominates δg(X).

Here are some additional observations related to the previous example (but also
applicable to the general case of this section).

(i) The set A|x| = [0, m tanh(m|x|)] can be interpreted as yielding a complete
class of invariant estimators with the upper envelope corresponding to the
Bayes estimator δBU (X) associated with the uniform prior on {−m, m}.

(ii) In Example 2, the dominating estimator δg0(X) of Theorem 3 will be given
by the Bayes estimator δBU (X) if and only if m tanh(m|x|) ≤ g(|x|), for all
x. In particular, if δg(X) = δmle(X), with g(|X |) = min(|X |, m), it is easy to
verify that δg0(X) = δBU (X) iff m ≤ 1.

(iii) It is easy to see that improved estimators δg′(X) of δg(X) can be constructed
by projecting g(|x|) a little bit further onto the interior of A|x|, namely by

selecting g′ such that
1
2

[g′(|x|) + g(|x|)] ≤ g0(|x|) whenever g(|x|) > g0(|x|).
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4.3. Some related work

Interestingly, the dominance result in (iii) of the normal model MLE was previously
established, in a diferent manner, by Casella and Strawderman (1981) (see also
Section 6). As well, other dominating estimators here were provided numerically by
Kempthorne (1988).

For the multivariate version of Example 2: X ∼ Np(θ, Ip); (p ≥ 1); with
‖θ‖ ≤ m, Marchand and Perron (2001) give dominating estimators of δmle(X) un-
der squared error loss ‖d−θ‖2. Namely, using a similar risk decomposition as above,
including argument (ii), they show that δBU (X) (Bayes with respect to a boundary
uniform prior) dominates δmle(X) whenever m ≤ √

p. By pursuing with additional
risk decompositions, they obtain various other dominance results. In particular, it
is shown that, for sufficiently small radius m, δmle(X) is dominated by all Bayesian
estimators associated with orthogonally invariant priors (which includes the uni-
form Bayes estimator δU ). Finally, Marchand and Perron (2003) give extensions
and robustness results involving δBU to spherically symmetric models, and Perron
(2003) gives a similar treatment for the model X ∼ Bi(n, θ) with |θ − 1

2 | ≤ m.

4.4. Additional topics and the case of a positive normal mean

Other methods have proven useful in assessing the performance of boundary esti-
mators in constrained parameter spaces, as well as providing improvements. As an
example, for the model Xi ∼ Bin(ni, θi); i = 1, . . . , k; with θ1 ≤ θ2 ≤ . . . ≤ θk,
Sackrowitz and Strawderman (1974) investigated the admissibility (for various loss
functions) of the MLE of (θ1, . . . , θk), while Sackrowitz (1982) provided improve-
ments (under sum of squared error losses) to the MLE in the cases above where it
is inadmissible. Further examples consist of a series of papers by Shao and Straw-
derman (1994,1996a,1996b) where, in various models, improvements under squared
error loss to truncated estimators are obtained. Further related historical develop-
ments are given in the review paper of van Eeden (1996).

We conclude this section by expanding upon the case of a positive (or lower-
bounded) normal mean θ, for X ∼ N(θ, 1), θ ≥ 0. While a plausible and natural
estimator is given by the MLE max(0, X), its efficiency requires examination per-
haps because it discards part of the sufficient statistic X (i.e., the MLE gives a
constant estimate on the region X ≤ 0). Moreover, as previously mentioned, the
MLE has long been known to be inadmissible (e.g., Sacks, 1963) under squared
error loss. Despite the age of this finding, it was not until the paper of Shao and
Strawderman (1996a) that explicit improvements were obtained (under squared
error loss), and there still remains the open question of finding admissible improve-
ments. As well, Katz’s (1961) uniform Generalized Bayes estimator remains (to our
knowledge) the only known minimax and admissible estimator of θ (under squared
error loss).

5. Estimating parameters with additional information

In this section, we present a class of interesting estimation problems which can
be transformed to capitalize on standard solutions for estimation problems in con-
strained parameter spaces. The key technical aspect of subdividing the estimation
problem into distinct pieces that can be handled separately is perhaps due to the
early work of Blumenthal, Cohen and Sackrowitz. As well, these types of problems
have been addressed in some recent work of Constance van Eeden and Jim Zidek.

Suppose Xj; j = 1, 2; are independently distributed as Np(θj , σ
2
j Ip), with p ≥ 1

and known σ2
1 , σ2

2 . Consider estimating θ1 under squared error loss L(θ1, d) =
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‖d − θ1‖2 with the prior information θ1 − θ2 ∈ A; A being a proper subset of �p.
For instance, with order restrictions of the form θ1,i ≥ θ2,i, i = 1, . . . p, we would
have A = (�+)p. Heuristics suggest that the independently distributed X2 can be
used in conjunction with the information θ1 − θ2 ∈ A to construct estimators that
improve upon the unrestricted MLE (and UMVU estimator) δ0(X1, X2) = X1. For
instance, suppose σ2

2
σ2
1

≈ 0, and that A is convex. Then, arguably, estimators of
θ1 should shrink towards A + x2 = {θ1 : θ1 − x2 ∈ A}. The recognition of this
possibility (for p = 1 and A = (0,∞)) goes back at least as far as Blumenthal and
Cohen (1968a), or Cohen and Sackrowitz (1970); and is further discussed in some
detail by van Eeden and Zidek (2003).

Following the rotation technique used by Blumenthal and Cohen (1968a), Cohen
and Sackrowitz (1970), van Eeden and Zidek (2001,2003) among others, we illustrate
in this section how one can exploit the information θ1 − θ2 ∈ A; for instance to
improve on the unrestricted MLE δ0(X1, X2) = X1. It will be convenient to define
C1 as the following subclass of estimators of θ1:

Definition 1.

C1 =
{

δφ : δφ(X1, X2) = Y2 + φ(Y1),

with Y1 =
X1 − X2

1 + τ
, Y2 =

τX1 + X2

1 + τ
, and τ = σ2

2/σ2
1

}
.

Note that the above defined Y1 and Y2 are independently normally distributed
(with E[Y1] = µ1 = θ1−θ2

1+τ , E[Y2] = µ2 = τθ1+θ2
1+τ , Cov (Y1) = σ2

1
1+τ Ip, and Cov (Y2) =

τσ2
1

1+τ Ip). Given this independence, the risk function of δφ (for θ = (θ1, θ2)) becomes

R
(
θ, δφ(X1, X2)

)
= Eθ

[
‖Y2 + φ(Y1) − θ1‖2

]
= Eθ

[∥∥∥∥
(

Y2 −
τθ1 + θ2

1 + τ

)
+

(
φ(Y1) −

θ1 − θ2

1 + τ

)∥∥∥∥
2
]

= Eθ

[
‖Y2 − µ2‖2

]
+ Eθ

[
‖φ(Y1) − µ1‖2

]
.

Therefore, the performance of δφ(X1, X2) as an estimator of θ1 is measured
solely by the performance of φ(Y1) as an estimator of µ1 under the model Y1 ∼
Np(µ1,

σ2
1

1+τ Ip), with the restriction µ1 ∈ C = {y : (1 + τ)y ∈ A}. In particular, one
gets the following dominance result.

Proposition 1. For estimating θ1 under squared error loss, with θ1 − θ2 ∈ A, the
estimator δφ1(X1, X2) will dominate δφ0(X1, X2) if and only if

Eµ1

[
‖φ1(Y1) − µ1‖2

]
≤ Eµ1

[
‖φ0(Y1) − µ1‖2

]
,

for µ1 ∈ C (with strict inequality for some µ1).

We pursue with some applications of Proposition 1, which we accompany with
various comments and historical references.

(A) Case where δφ0(X1, X2) = X1 (i.e., the unrestricted mle of θ1), and where A
is convex with a non empty interior.

This estimator arises as a member of C1 for φ0(Y1) = Y1. Hartigan’s result
(Theorem 1) applies to φ0(Y1) (since A convex implies C convex), and tells
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us that the Bayes estimator φUC (Y1) of µ1 with respect to a uniform prior on
C dominates φ0(Y1) (under squared-error loss). Hence, Proposition 1 applies
with φ1 = φUC , producing the following dominating estimator of δ0(X1, X2):

δφUC
(X1, X2) = Y2 + φUC (Y1). (4)

For p = 1 and A = [−m, m], the dominance of δφ0 by the estimator given in
(4) was established by van Eeden and Zidek (2001), while for p = 1 and A =
[0,∞) (or A = (−∞, 0]), this dominance result was established by Kubokawa
and Saleh (1994). In both cases, Kubokawa’s IERD method, as presented in
Section 3, was utilized to produce a class of dominating estimators which
includes δφUC

(X1, X2). As was the case in Section 2, these previously known
dominance results yield extensions to sets A which are hyperrectangles or
intersection of half-spaces, but Hartigan’s result yields a much more general
result.

Remark 4. Here are some additional notes on previous results related to the case
p = 1 and A = [0,∞). Kubokawa and Saleh (1994) also provide various extensions
to other distributions with monotone likelihood ratio and to strict bowl-shaped
losses, while van Eeden and Zidek (2003) introduce an estimator obtained from a
weighted likelihood perspective and discuss its performance in comparison to several
others including δφUC

(X1, X2). The admissibility and minimaxity of δφUC
(X1, X2)

(under squared error loss) were established by Cohen and Sackrowitz (1970). Fur-
ther research concerning this problem, and the related problem of estimating jointly
θ1 and θ2, has appeared in Blumenthal and Cohen (1968b), Brewster and Zidek
(1974), and Kumar and Sharma (1988) among many others. There is equally a sub-
stantial body of work concerning estimating a parameter θ1 (e.g., location, scale,
discrete family) under various kinds of order restrictions involving k parameters
θ1, . . . , θk (other than work referred to elsewhere in this paper, see for instance van
Eeden and Zidek, 2001, 2003 for additional annotated references).

Another dominating estimator of δφ0(X1, X2) = X1, which may be seen as a
consequence of Proposition 1, is given by δφ1(X1, X2) = Y2 + φmle(Y1), where
φmle(Y1) is the mle of µ1, µ1 ∈ C. This is so because, as remarked upon in Sec-
tion 2, φ1(Y1) = φmle(Y1) dominates under squared error loss, as an estimator of
µ1; µ1 ∈ C; φ0(Y1) = Y1. Observe further that the maximum likelihood estimator
δmle(X1, X2) of θ1 for the parameter space Θ = {(θ1, θ2) : θ1 − θ2 ∈ A, τθ1 + θ2 ∈
�p} is indeed given by: δmle(X1, X2) = ˆ(µ2)mle + ˆ(µ1)mle = Y2 + φmle(Y1), given
the independence and normality of Y1 and Y2, and the fact that Y2 is the MLE of
µ2 (µ2 ∈ �p).

Our next two applications of Proposition 1 deal with the estimator δmle(X1, X2).

(B) Case where A is a ball and δφ0(X1, X2) = δmle(X1, X2).

For the case where θ1 − θ2 ∈ A, with A being a p-dimensional ball of radius
m centered at 0, the estimator δmle(X1, X2) arises as a member of C1 for
φ0(Y1) = φmle(Y1) = (‖Y1‖∧ m

1+τ ) Y1
‖Y1‖ . By virtue of Proposition 1, it follows

that dominating estimators φ∗(Y1) of φmle(Y1) (for the ball with ‖µ1‖ ≤
m/(1 + τ)), such as those given by Marchand and Perron (2001) (see Section
4.3 above), yield dominating estimators δφ∗(X1, X2) = τX1+X2

1+τ + φ∗(X1−X2
1+τ )

of δmle(X1, X2).
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(C) Case where A = [0,∞), and δφ0(X1, X2) = δmle(X1, X2). This is similar
to (B), and dominating estimators can be constructed by using Shao and
Strawderman’s (1996) dominating estimators of the MLE of a positive normal
mean (see van Eeden and Zidek, 2001, Theorem 4.3)

Observe that results in (B) (for p = 1) and (C) lead to further applications of
Proposition 1 for sets A which are hyperrectangles or intersection of half-spaces. We
conclude by pointing out that the approach used in this section may well lead to new
directions in future research. For instance, the methods used above could be used
to specify dominating estimators for the case p ≥ 3, (of δφ0(X1, X2) = Y2 +φ0(Y1))
of the form φ2(Y2) + φ1(Y1) where, not only is φ1(Y1) a dominating estimator of
φ0(Y1) for µ1 ∈ C, but for p ≥ 3, φ2(Y2) is a Stein-type estimator of µ2 which
dominates Y2.

6. Minimax estimation

This section presents an overview of minimax estimation in compact parameter
spaces, with a focus on the case of an interval constraint of the type θ ∈ [a, b] and
analytical results giving conditions for which the minimax estimator is a Bayesian
estimator with respect to a boundary prior on {a, b}. Historical elements are first
described in Section 6.1, a somewhat novel expository example is presented in
Section 6.2., and we further describe complementary results in Section 6.3.

6.1. Two point least favourable priors

With the criteria of minimaxity playing a vital role in the development of statis-
tical theory and practice; as reviewed in Brown (1994) or Strawderman (2000) for
instance; the results of Casella and Strawderman (1981), as well as those of Zinzius
(1981) most certainly inspired a lot of further work. These results presented ana-
lytically obtained minimax estimators, under squared error loss, of a normal model
mean θ, with known variance, when θ is known to be restricted to a small enough
interval. More precisely, Casella and Strawderman showed, for X ∼ N(θ, 1) with
θ ∈ Θ = [−m, m]; (there is no loss of generality in assuming the variance to be
1, and the interval to be symmetric about 0); that the uniform boundary Bayes
estimator δBU (x) = m tanh(mx) is unique minimax iff m ≤ m0 ≈ 1.0567. Fur-
thermore, they also investigated three-point priors supported on {−m, 0, m}, and
obtained sufficient conditions for such a prior to be least favourable. It is worth
mentioning that these results give immediately minimax multivariate extensions to
rectangular constraints where Xi ∼ N(θi, 1); i = 1, . . . , p; with |θi| ≤ mi ≤ m0,
under losses

∑p
i=1 ωi(di − θi)2, (with arbitrary positive weights ωi), since the least

favourable prior for estimating (θ1, . . . , θp) is obtained, in such a case, as the prod-
uct of the least favourable priors for estimating θ1, . . . , θp individually. Now, the
above minimaxity results were obtained by using the following well-known crite-
ria for minimaxity (e.g., Berger, 1985, Section 5.3, or Lehmann and Casella, 1998,
Section 5.1).

Lemma 1. If δπ is a Bayes estimator with respect to a prior distribution π, and
Sπ = {θ ∈ Θ : supθ{R(θ, δπ)} = R(θ, δπ)}, then δπ is minimax whenever Pπ(θ ∈
Sπ) = 1.

Casella and Strawderman’s work capitalized on Karlin’s (1957) sign change ar-
guments for implementing Lemma 1 while, in contrast, the sufficient conditions
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obtained by Zinzius concerning the minimaxity of δBU (X) were established us-
ing the “convexity technique” as stated as part (b) of the following Corollary to
Lemma 1. Part (a), introduced here as an alternative condition, will be used later
in this section.

Corollary 1. If δπ is a Bayes estimator with respect to a two-point prior on {a, b}
such that R(a, δπ) = R(b, δπ), then δπ is minimax for the parameter space Θ = [a, b]
whenever, as a function of θ ∈ [a, b],

(a) ∂
∂θR(θ, δπ) has at most one sign change from − to +; or

(b) R(θ, δπ) is convex.

Although the convexity technique applied to the bounded normal mean problem
gives only a lower bound for m0; (Bader and Bischoff (2003) report that the best
known bound using convexity is

√
2

2 , as given by Bischoff and Fieger (1992)); it
has proven very useful for investigating least favourable boundary supported priors
for other models and loss functions. In particular, DasGupta (1985) used subhar-
monicity to establish, for small enough compact and convex parameter spaces un-
der squared error loss, the inevitability of a boundary supported least favourable
prior for a general class of univariate and multivariate models. As well, the work
of Bader and Bischoff (2003), Boratyńska (2001), van Eeden and Zidek (1999),
and Eichenauer-Hermann and Fieger (1992), among others, establish this same
inevitability with some generality with respect to the loss and/or the model. Cu-
riously, as shown by Eichenauer-Hermann and Ickstadt (1992), and Bischoff and
Fieger (1993), there need not exist a boundary least favourable prior for convex,
but not strictly convex, losses. Indeed, their results both include the important case
of a normal mean restricted to an interval and estimated with absolute-value loss,
where no two-point least favourable prior exists.

6.2. Two-point least favourable priors in symmetric location families

We present here a new development for location family densities (with respect to
Lebesgue measure on �1) of the form

fθ(x) = e−h(x−θ), with convex and symmetric h. (5)

These assumptions on h imply that such densities fθ are unimodal, symmetric
about θ, and possess monotone increasing likelihood ratio in X . For estimating
θ with squared error loss under the restriction θ ∈ [−m, m], our objective here
is to present a simple illustration of the inevitability of a boundary supported
least favourable prior for small enough m, i.e., m ≤ m0(h). Namely, we give for
densities in (5) with concave h′(x) for x ≥ 0 (this implies convex h′(x) for x ≤ 0) a
simple lower bound for m0(h). We pursue with two preliminary lemmas; the latter
one giving simple and general conditions for which a wide subclass of symmetric
estimators (i.e., equivariant under sign changes) δ(X) of θ have increasing risk
R(θ, δ(X)) in |θ| under squared error loss.

Lemma 2. If g is a bounded and almost everywhere differentiable function, then
under (5):

d

dθ
Eθ [ g(X)] = Eθ [ g′(X)].

Proof. First, interchange derivative and integral to obtain d
dθEθ[ g(X) ] =

Eθ [g(X) h′(X − θ)]. Then, integrating by parts yields the result.
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Lemma 3. For models in (5), and estimators δ(X) with the properties: (a) δ(x) =
−δ(−x); (b) δ′(x) ≥ 0; and (c) δ′(x) decreasing in |x|; for all x ∈ �; either one of
the following conditions is sufficient for R(θ, δ(X)) to be increasing in |θ|; |θ| ≤ m:

(i) Eθ[δ(X)] ≤ θ(1 − Eθ[δ′(X)]), for 0 ≤ θ ≤ m;

(ii) Eθ[δ(X)] ≤ θ(1 − δ′(0)), for 0 ≤ θ ≤ m;

(iii) δ′(0) ≤ 1
2 .

Proof. It will suffice to work with the condition ∂
∂θR(θ, δ(X)) ≥ 0, 0 ≤ θ ≤ m,

since R(θ, δ(X)) is an even function of θ, given property (a) and the symmetry
of h. Differentiating directly the risk and using Lemma 2, we obtain

1
2

∂

∂θ
R

(
θ, δ(X)

)
= θ − Eθ[δ(X)] − θEθ

[
δ′(X)

]
+ Eθ

[
δ(X)δ′(X)

]
.

With properties (a) and (b), the function δ(x)δ′(x) changes signs once (at x = 0)
from − to +, and, thus, sign change properties under h imply that Eθ[δ(X)δ′(X) ]
changes signs at most once from − to + as a function of θ. Since E0[δ(X)δ′(X)] = 0
by symmetry of δ(x)δ′(x) and h, we must have Eθ[δ(X)δ′(X)] ≥ 0 for θ ≥ 0. It
then follows that

1
2

∂

∂θ
R

(
θ, δ(X)

)
≥ θ − Eθ

[
δ(X)

]
− θEθ

[
δ′(X)

]
;

and this yields directly sufficient condition (i). Now, property (c) tells us that
δ′(x) ≤ δ′(0), and this indicates that condition (ii) implies (i), hence its sufficiency.
Finally, condition (iii) along with Lemma 2 and the properties of δ(X) implies (ii)
since ∂

∂θEθ[δ(X) + θ(δ′(0)− 1)] = Eθ[δ′(X) + (δ′(0)− 1)] ≤ Eθ[2δ′(0)− 1] ≤ 0, and
Eθ[δ(X) + θ(δ′(0) − 1)]|θ=0 = 0.

We pursue by applying Lemma 3 to the case of the boundary uniform Bayes
estimator δBU (X) to obtain, by virtue of Corollary 1, part (a), a minimaxity result
for δBU (X).

Corollary 2. For models in (5), δBU (X) is a unique minimax estimator of θ (under
squared error loss) for the parameter space [−m, m] when either one of the following
situations arises:

(A) Condition (i) of Lemma 3 holds;

(B) h′(x) is concave for x ≥ 0, and condition (ii) of Lemma 3 holds;

(C) h′(x) is concave for x ≥ 0, and m ≤ m∗(h) where m∗(h) is the solution in m
of the equation mh′(m) = 1

2 .

Proof. We apply Corollary 1, part (a), and Lemma 3. To do so, we need to in-
vestigate properties (b) and (c) of Lemma 3 for the estimator δBU (X) (prop-
erty (a) is necessarily satisfied since the uniform boundary prior is symmetric).
Under model (5), the Bayes estimator δBU (X) and its derivative (with respect
to X) may be expressed as:

δBU (x) =
me−h(x−m) − me−h(x+m)

e−h(x−m) + e−h(x+m)
= m tanh

(
h(x + m) − h(x − m)

2

)
; (6)
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and

δ′BU (x) =
{
m2 − δBU (x)2

}{
h′(x + m) − h′(x − m)

2m

}
. (7)

Observe that |δBU (x)| ≤ m, and h′(x + m) ≥ h′(x − m) by the convexity of h, so
that δ′BU (x) ≥ 0 given (7). This establishes property (b) of Lemma 3, and part (A).
Now, m2−δ2

BU (x) is decreasing in |x|, and so is h′(x+m)−h′(x−m) given, namely,
the concavity of h′(x) for x ≥ 0. This tells us that δBU (X) verifies property (c)
of Lemma 3, and (B) follows. Hence, condition (iii) of Lemma 3 applies becoming
equivalent to mh′(m) ≤ 1

2 , as δ′(0) = mh′(m) by (7). Finally, the result follows by
the fact that mh′(m) is a continuous and increasing of function of m, m > 0.

Remark 5. As the outcome of the above argument, combining both sign change
arguments and convexity considerations, containing other elements which may be
independent interest, part (C) of Corollary 2 gives a simple sufficient condition
for the minimaxity of δBU , and is applicable to a wide class of models in (5).
Namely, for Exponential Power families where, in (5), h(y) = α|y|β with α > 0
and 1 ≤ β ≤ 2, part (C) of Corollary 2 applies, and tells us that δBU (X) (which
may be derived from (6)) is unique minimax whenever m ≤ m∗(h) = ( 1

2αβ )1/β . In
particular for double-exponential cases, (i.e., β = 1), we obtain m∗(h) = 1

2α ; and
for the standard normal case, (i.e., (α, β) = (1

2 , 2), we obtain m∗(h) =
√

2
2 . Observe

that the normal case m∗(h) matches the one given by Bischoff and Fieger (1992);
and that, as expected with the various lower bounds used for the derivative of the
risk, it falls somewhat below Casella and Strawderman’s necessary and sufficient
cutoff point of m0 ≈ 1.05674.

6.3. Some additional results and comments

The problem considered in Section 6.2, was studied also by Eichenauer-Hermann
and Ickstadt (1992), who obtained similar results using a convexity argument for
the models in (5) with Lp, p > 1 loss. Additional work concerning least favourable
boundary priors for various models can be found in: Moors (1985), Berry (1989),
Eichenauer (1986), Chen and Eichenauer (1988), Eichenauer-Hermann and Fieger
(1989), Bischoff (1992), Bischoff and Fieger (1992), Berry (1993), Johnstone and
MacGibbon (1992), Bischoff, Fieger and Wurlfert (1995), Bischoff, Fieger, and
Ochtrop (1995), Marchand and MacGibbon (2000), and Wan, Zou and Lee (2000).

Facilitated by results guaranteeing the existence of a least favourable prior sup-
ported on a finite number of points (e.g., Ghosh, 1964), the dual problem of search-
ing numerically for a least favourable prior π, as presented in Lemma 1, is very
much the standard approach for minimax estimation problems in compact parame-
ter spaces. Algorithms to capitalize on this have been presented by Nelson (1965),
and Kempthorne (1987), and have been implemented by Marchand and MacGibbon
(2000), for a restricted binomial probability parameter, MacGibbon, Gourdin, Jau-
mard, and Kempthorne (2000) for a restricted Poisson parameter, among others.
Other algorithms have been investigated by Gourdin, Jaumard, and MacGibbon
(1994).

Analytical and numerical results concerning the related criteria of Gamma-
Minimaxity in constrained parameter spaces have been addressed by Vidakovic
and DasGupta (1996), Vidavovic (1993), Lehn and Rummel (1987), Eichenauer
and Lehn (1989), Bischoff (1992), Bischoff and Fieger (1992), Bischoff, Fieger and
Wurlfert (1995), and Wan et al. (2000).
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For spherical bounds of the form ‖θ‖ ≤ m, Berry (1990) generalized Casella
and Strawderman’s minimaxity of δBU result for multivariate normal models X ∼
Np(θ, Ip). He showed with sign change arguments that δBU is unique minimax for
m ≤ m0(p), giving defining equations for m0(p). Recently, Marchand and Perron
(2002) showed that m0(p) ≥ √

p, and that m0(p)/
√

p ≈ 1.15096 for large p. For
larger m, least favourable distributions are mixtures of a finite number of uniform
distributions on spheres (see Robert, 2001, page 73, and the given references),
but the number, position and mixture weights of these spheres require numerical
evaluation.

Early and significant contributions to the study of minimax estimation of a nor-
mal mean restricted to an interval or a ball of radius m, were given by Bickel (1981)
and Levit (1980). These contributions consisted of approximations to the minimax
risk and least favourable prior for large m under squared error loss. In particular,
Bickel showed that, as m → ∞, the least favourable distributions rescaled to [−1, 1]
converge weakly to a distribution with density cos2(πx/2), and that the minimax
risks behave like 1− π2

8m2 + o(m−2). Extensions and further interpretations of these
results were given by Melkman and Ritov (1987), Gajek and Kaluszka (1994), and
Delampady and others (2001). There is also a substantial literature on the com-
parative efficiency of mimimax procedures and affine linear minimax estimators for
various models, restricted parameter spaces, and loss functions. A small sample of
such work includes Pinsker (1980), Ibragimov and Hasminskii (1984), Donoho, Liu
and MacGibbon (1990), and Johnstone and MacGibbon (1992,1993).
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[70] Marchand, É. and Perron, F. (2001). Improving on the MLE of a bounded
normal mean. Annals of Statistics, 29, 1078–1093. MR1869241
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