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SUMMARY. We consider semiparametric transition measurement error mod-

els for longitudinal data, where one of the covariates is measured with error in

transition models, and no distributional assumption is made for the underlying

unobserved covariate. An estimating equation approach based on the pseudo

conditional score method is proposed. We show the resulting estimators of the

regression coefficients are consistent and asymptotically normal. We also dis-

cuss the issue of efficiency loss. Simulation studies are conducted to examine

the finite-sample performance of our estimators. The longitudinal AIDS Costs

and Services Utilization Survey data are analyzed for illustration.

KEY WORDS: Asymptotic efficiency; Conditional score method; Functional

modeling; Measurement error; Longitudinal data; Transition models.
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1. Introduction

Longitudinal data are common in health science research, where repeated mea-

sures are obtained for each subject over time. One class of longitudinal models

is the transitional model, where the conditional mean of an outcome at the

current time point is modeled as a function of the past outcomes and covariates

(Diggle et al., 2002, Chapter 10). This class of models is particularly useful

when one is interested in predicting the future response given the past his-

tory, or when past history contains important adjustor variables. The within-

subject correlation is automatically accounted for by conditioning on the past

responses, and the model can be easily fit within the generalized linear model

framework. Transition models and their wide practical applications have been

well demonstrated (e.g., Young et al. 1999, Have and Morabia 2002, Heagerty

2002, Roy and Lin 2005).

Measurement error in covariate is a common problem in longitudinal data,

due to equipment limitation, longitudinal variation, or recall bias. In one study

from the AIDS Costs and Services Utilization Survey (ACSUS) (Berk, Maf-

feo and Schur 1993), which consisted of subjects from 10 randomly selected

U.S. cities with the highest AIDS rates, a series of quarterly interviews were

conducted for each participant enrolled between 1991 and 1992. A question of

interest was to study how CD4 count predicted the risk of future hospitaliza-

tion given a subject’s past history of hospitalizations. Thus, a natural model

for analyzing this data set is to fit a prediction model with the outcome being

whether a participant had a hospital admission (yes/no) in the past quarter.

However, CD4 count is known to be subject to considerable measurement er-

ror due to its substantial variability, e.g., its coefficient of variation within the

same subject was found to be 50% (Tsiatis et al. 1995). Another source of
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measurement error in CD4 count in this study was due to the fact that CD4

count was not measured at the time of each interview but abstracted from

each respondent’s most recent medical record.

The methods for handling measurement error for independent outcomes are

comprehensively reviewed in Fuller (1987) and Carroll, et al. (2006). For longi-

tudinal data, Wang, et al. (1998) among others considered measurement error

in mixed effects models. Schmid, Segal and Rosner (1994) and Schmid (1996)

studied measurement error in first-order autoregressive models for continuous

longitudinal outcomes. There is a vast amount of work in the econometrics

literature on panel data with errors in variables. For example, Griliches and

Hausman (1986) and Biorn and Klette (1998) proposed estimating the effect

of the error-prone covariates using the generalized moment method but their

method required that longitudinal outcomes be linearly related to covariates

and the residue terms be non-autocorrelated. In the literature of structural

equations models, longitudinal covariates subject to measurement errors are

treated as latent variables and are modelled longitudinally and explicitly (c.f.

Duncan, Duncan and Strycker, 2006). The maximum likelihood estimation

is used for inference. Additionally, using the same idea of latent modelling,

Pan, Lin and Zeng (2006) considered estimation in generalized transitional

measurement error models for general outcomes. However, these approaches

require that the normality assumption and the correlation structure of the un-

observed covariate be correctly specified. The normality assumption is often

too strong in reality, and the correlation structure of the unobserved covariate

may be difficult to be specified correctly. One can show that when a first-

order autoregressive structure for the unobserved covariate is misspecified as

an independent structure, the effect of this covariate in transition model is at-
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tenuated and the effect of the past outcome is the same as the one ignoring the

measurement error (Pan, 2002). Therefore, it is necessary to develop a method

which leaves the distribution of the unobserved covariate fully unspecified. On

the other hand, since the repeated measures of the unobserved covariate are

usually correlated and have at least three waves, the attempt to estimate their

joint distribution nonparametrically, for example, using the kernel method in

Carroll and Wand (1991), breaks down due to the curse of dimensionality.

This paper aims to develop a semiparametric method for transition mea-

surement error models without specifying the distribution of the unobserved

covariate. Our approach is to construct an estimating equation based on the

pseudo conditional score method, originally proposed for independent data by

Stefanski and Carroll (1987). However, its generalization to transition models

is not trivial in presence of repeatedly measured unobserved covariates. In

the second part of this paper, we further discuss the efficiency issue in the

proposed method.

The rest of the paper is structured as follows. In §2, we present the general

form of the semiparametric transition measurement error model for longitudi-

nal data. In §3, we derive the pseudo conditional score estimating equation and

study the theoretical properties of the resulting estimator. In §4, we illustrate

the method using simulation studies and apply the proposed method to ana-

lyze the ACSUS data. The issue of efficiency loss is also studied. Discussions

are given in §5.
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2. Semiparametric Transition Measurement Er-

ror Model

Suppose each of the n subjects has m repeated measures over time. Let Yij

be the outcome at time j (j = 1, · · · ,m) of subject i (i = 1, · · · , n). Let Wij

be a scalar observed error-prone covariate, which measures the unobserved

covariate Xij with error. Let Zij be a vector of covariates that are accu-

rately measured. A transition model assumes the conditional distribution of

Yij given the history of the outcome and the history of the covariates satisfies

the (q, r)-order Markov property (Ch 10, Diggle et al., 2002) and belongs to

the exponential family.

Specifically, for j > s, where s = (r−1)∨q = max(r−1, q), the conditional

distribution of Yij is

f(Yij|Hij) = exp {(Yijηij − b(ηij))/aφ + c(Hij, φ)} , (1)

where Hij = {Yi,j−1, · · · , Yi,j−q, Xij, ..., Xi,j−r+1,Zij, ...,Zi,j−r+1}, f(·) denotes

a density function, a is a prespecified weight, φ is a scale parameter, and

b(·) and c(·) are specific functions associated with the exponential family. We

assume a canonical generalized linear model (McCullagh and Nelder, 1989) for

µij = E(Yij|Hij) = b′(ηij) as

h(µij) = ηij = β0 +

q∑

k=1

αkYi,j−k +
r∑

l=1

{βxlXi,j−l+1 + βT
zlZi,j−l+1}, (2)

where h(·) is the canonical link function satisfying h−1(·) = b′(·), β0, αk (k =

1, ..., q), βl = (βxl,β
T
zl)

T (l = 1, ..., r) are regression coefficients. In addition,

we treat Yi1, ..., Yi,s as initial states which the subsequent inference will be

conditioned on. One note is that when Z covariates do not change with time,

we tacitly keep only one Z term in equation (2).
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We assume that Xij is subject to measurement error and the measurement

error is additive, i.e.,

Wij = Xij + Uij, (3)

where the measurement errors Uij are independent of the Xij and are inde-

pendently and identically distributed from a normal distribution with a known

variance σ2
u. The variance σ2

u usually needs to be estimated beforehand, either

from replications or from validation data (Carroll, et al, 2006). We assume

that the joint distribution of {Xi1, · · · , Xim} is fully unspecified.

We suppose that measurement error is non-differential, i.e.,

f(Yij,Wij|Hij) = f(Yij|Hij)f(Wij|Xij),

where Hij was defined in (1). This means that conditional on the true covari-

ates, the observed error-prone covariate does not contain additional informa-

tion about Yij.

3. Inference Procedures

3.1 Pseudo conditional score equation

Let θ denote (β0, α1, · · · , αq, β
T
1 , · · · ,βT

r , φ)T . In this section, we propose a

pseudo conditional score method to estimate θ. The idea is to pretend θ to

be known but treat the Xij as fixed parameters by writing Xij as xij.

In a classical conditional score approach (Stefanski and Carroll, 1987), one

would aim to derive simple sufficient summary statistics for (xi1, ..., xim) and

construct an estimating equation based on the conditional likelihood function

of the observed data given the sufficient statistics. Unfortunately, due to the

transition structure and the possibly nonlinear link function in (2), obtaining
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the summary sufficient statistics for xij based on the distribution of the ob-

served data is usually difficult. For example, the likelihood function for a first-

order transition model for dichotomous Y2 and Y3 with X1 = X2 = X3 = X

given initial state Y1 is

exp
{
Y2(β0 + α1Y1 + βx1X)− log(1 + eβ0+α1Y1+βx1X)

+Y3(β0 + α1Y2 + βx1X)− log(1 + eβ0+α1Y2+βx1X)
}

and it does not belong to any exponential family.

Instead, we note that for each j = s + 1, ..., m, the conditional density of

(Yij, Wij, ..., Wi,j−r+1) given (Yi,j−1, · · · , Yi,j−q,Zij, ...,Zi,j−r+1) and (xij, xi,j−1, ..., xi,j−r+1)

is given by

exp

[
Yij(β0 +

q∑

k=1

αkYi,j−k +
r∑

l=1

{βxlxi,j−l+1 + βT
zlZi,j−l+1})/aφ

−b(β0 +

q∑

k=1

αkYi,j−k +
r∑

l=1

{βxlxi,j−l+1 + βT
zlZi,j−l+1})/aφ

+c(Yi,j−1, · · · , Yi,j−q, xij, ..., xi,j−r+1,Zij, ...,Zi,j−r+1, φ)

−
r∑

l=1

(Wi,j−l+1 − xi,j−l+1)
2/2σ2

u − r log
√

2πσ2
u

]
.

We recognize that this conditional density still belongs to an exponential fam-

ily. The sufficient statistics for xi,j−l+1, l = 1, ..., r, are

T
(j)
i1 =

βx1

aφ
Yij+

1

σ2
u

Wij, T
(j)
i2 =

βx2

aφ
Yij+

1

σ2
u

Wi,j−1, ..., T
(j)
ir =

βxr

aφ
Yij+

1

σ2
u

Wi,j−r+1.

(4)

Therefore, the distribution of Yij given (Yi,j−1, ..., Yi,j−q, Zij, ...,Zi,j−r+1) and

(T
(j)
i1 , ..., T

(j)
ir ) only depends on θ but not (xij, ..., xi,j−r+1). For convenience,

we abbreviate this distribution as f̃(Yij|Vij(θ); θ), where Vij(θ) denotes the

statistics that Yij are conditioned on. Clearly,

Eθ0

[
∇θ log f̃(Yij|Vij(θ0); θ)

∣∣∣∣
θ=θ0

]
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= Eθ0

[
Eθ0

{
∇θ log f̃(Yij|Vij(θ0); θ)|Vij(θ0)

} ∣∣∣∣
θ=θ0

]
= 0

where θ0 is the true value of θ, Eθ denotes the expectation given the parameter

θ, and ∇θ denotes the gradient with respect to θ. We then construct the

following estimating equation

n∑
i=1

m∑
j=s+1

g (Yij|vij = Vij(θ); θ) = 0, (5)

where g(yij|vij; θ) denotes the gradient of log f̃(yij|vij; θ) with respect to θ.

Note that calculations of this gradient are done by viewing vij as fixed instead

of a function of θ.

Essentially, our idea is to construct some conditional score functions based

on the conditional density given the past history at each time then take the

summation of all these scores as estimating function. Since the above construc-

tion is no based on the full likelihood function, we call our proposed estimating

equation the pseudo conditional score equation. The Newton-Raphson itera-

tion can be used to solve the equation; however, multiple solutions may exist.

Thus, the following theorem gives the asymptotic property of a solution to (5)

in a neighborhood of θ0.

Theorem 1. Assume that with probability one, in a neighborhood of θ0,

∇θg(Yij|Vij(θ); θ) is Lipschitz continuous with respect to θ and moreover,

Eθ0

[
m∑

j=s+1

∇θg(Yij|Vij(θ); θ)

∣∣∣∣
θ=θ0

]
is non-singular.

Then there exists a solution, θ̂n, to equation (5) such that
√

n(θ̂n − θ0) con-

verges in distribution to a normal distribution with mean zero and covariance

Σ(θ0) =

{
Eθ0

[
m∑

j=s+1

∇θg(Yij|Vij(θ); θ)

∣∣∣∣
θ=θ0

]}−1

×Eθ0




{
m∑

j=s+1

g(Yij|Vij(θ0); θ0)

}{
m∑

j=s+1

g(Yij|Vij(θ0); θ0)

}T


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×
{

Eθ0

[
m∑

j=s+1

∇θg(Yij|Vij(θ); θ)T

∣∣∣∣
θ=θ0

]}−1

.

The proof follows the usual argument for estimating equations. Clearly, a

consistent estimator for Σ(θ0) is

Σ̂n = n

[
n∑

i=1

m∑
j=s+1

∇θg(Yij|Vij(θ); θ)

∣∣∣∣
θ=

bθn

]−1

×



n∑
i=1

{
m∑

j=s+1

g(Yij|Vij(θ̂n); θ̂n)

}{
m∑

j=s+1

g(Yij|Vij(θ̂n); θ̂n)

}T



×
[

n∑
i=1

m∑
j=s+1

∇θg(Yij|Vij(θ); θ)T

∣∣∣∣
θ=

bθn

]−1

.

3.2 Examples

We illustrate our method using two examples.

Example 1. We consider a linear transition model with r = 1 and q = 1:

Yij = β0 + αYi,j−1 + βxXij + βT
z Zij + εij, εij ∼ N(0, σ2

y), j = 2, ..., m. (6)

Then it is easy to calculate that the sufficient statistic for xij is T
(j)
i1 =

βxYij/σ
2
y + Wij/σ

2
u and f̃(Yij|Vij(θ); θ) is the conditional density of Yij given

T
(j)
i1 , Yi,j−1 and Zij. This density is the same as the conditional density of Yij

given Qij = βx(Yij − β0−αYi,j−1−βT
z Zij)/σ

2
y + Wij/σ

2
u, Yi,j−1 and Zij, whose

logarithm is equal to

− log
√

2πσ∗y
2 − (2σ∗y

2)−1(Yij − β0 − αYi,j−1 − βT
z Zij −Qijβ

∗
x)

2, j = 2, ..., m,

where β∗x = βx/(β
2
x/σ

2
y + 1/σ2

u) and σ∗y
2 = (β2

x/σ
2
y+1/σ2

u)
−1σ2

y/σ
2
u. Differentiat-

ing the above function with respect to all the parameters then substituting the

expression of Qij, we obtain the following pseudo conditional score equations

0 =
n∑

i=1

m∑
j=2




1
Yi,j−1

Zij


 {

Yij − β0 − αYi,j−1 − βT
z Zij − βxWij

}
,

9
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0 =
n∑

i=1

m∑
j=2

{
(Yij − β0 − αYi,j−1 − βT

z Zij)βx + Wijσ
2
y/σ

2
u

}

×(Yij − β0 − αYi,j−1 − βT
z Zij − βxWij),

0 =
n∑

i=1

m∑
j=2

{
(Yij − β0 − αYi,j−1 − βT

z Zij − βxWij)
2 − (β2

xσ
2
u + σ2

y)
}

.

Clearly, each term for i and j is the conditional score obtained for subject i

at time j given the past history. Moreover, the first equation correspond to

parameters (β0, α, βT
z ), the second equation corresponds to βx, and the last

equation is for σ2
y.

Example 2. In this example, we consider a logistic transition model with

r = q = 1, where Yij is a Bernoulli variable and satisfies

logitP (Yij|Hij) = β0 + αYi,j−1 + βxXij + βT
z Zij. (7)

We can easily calculate that the sufficient statistic for xij is T
(j)
i1 = βxYij +

Wij/σ
2
u and that the logarithm of the conditional density f̃(Yij|T (j)

i1 , Yi,j−1,Zij; θ)

is

−(T
(j)
i1 − Yijβx)

2σ2
u

2
+ Yij(β0 + βT

z Zij + αYi,j−1)

− log

[
exp

{
−(T

(j)
i1 − βx)

2σ2
u

2
+ (β0 + βT

z Zij + αYi,j−1)

}
+ exp

{
−T

(j)
i1

2
σ2

u

2

}]
.

After differentiating the above function with respect to all the parameters then

substituting the expression of T
(j)
i1 , we obtain the following pseudo conditional

score equations

0 =
n∑

i=1

m∑
j=2




1
Yi,j−1

Zij




×
[
Yij − 1

1 + exp
{
(1/2− Yij)β2

xσ
2
u − βxWij − (β0 + βT

z Zij + αYi,j−1)
}

]
,

0 =
n∑

i=1

m∑
j=2

[
YijWij − (Yijβx + Wij/σ

2
u − βx)σ

2
u

1 + exp
{
(1/2− Yij)β2

xσ
2
u −Wijβx − (β0 + βT

z Zij + αYi,j−1)
}

]
.
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3.3 Method for selecting transition orders

In practice, the transition orders (q, r) in the Y model (2) are often unknown.

As our model is a semiparametric model, a full likelihood does not exist. Hence

standard model selection methods are not directly applicable. We propose to

choose (q, r) based on the pseudo log-likelihood function

n∑
i=1

ln f̃(Yim|V(q,r)
im (θ0); θ),

where f̃(Yim|V(q,r)
im (θ0); θ) is defined right after equation (4), i.e.,

V
(q,r)
im (θ0) =

(
Yi,m−1, ..., Yi,m−q,Zim, ...,Zi,m−r+1, T

(m)
i1 (θ0), ..., T

(m)
ir (θ0)

)
.

Here θ0 denotes the parameter value under the true model and V
(q,r)
im (θ0) is

Vim(·) evaluated at the true value θ0 under the model with transition orders

(q, r).

The function f̃(Yim|V(q,r)
im (θ0); θ0) is the true density when (q, r) is equal

to the true transition orders. Therefore, we are able to transform the selection

of (q, r) in the original model (2) to the model selection in the new regression

model given by f̃(Yim|V(q,r)
im (θ0); θ). Note that using V

(q,r)
im (θ0) instead of

V
(q,r)
im (θ) in the new model ensures that the covariate values do not vary with

different (q, r). However, since V
(q,r)
im (θ0) is unknown, we propose to estimate

V
(q,r)
im (θ0) at V

(q,r)
im (θ̂F ), where θ̂F is the parameter estimator under the full

model with q = m− 1 and r = m using the conditional score approach. Since

θ̂F is consistent, V
(q,r)
im (θ̂F ) is a good approximation of V

(q,r)
im (θ0).

Finally, we treat the pseudo log-likelihood function
∑n

i=1 ln f̃(Yim|V(q,r)
im (θ̂F ); θ)

like a “likelihood,” and select (q, r) by minimizing the pseudo Akaike informa-

tion criterion (P AIC) defined as

−
n∑

i=1

2 ln f̃(Yim|V(q,r)
im (θ̂F ); θ̂) + 2Card(θ̂),

11
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or the pseudo Bayesian information criterion (P BIC) defined as

−
n∑

i=1

2 ln f̃(Yim|V(q,r)
im (θ̂F ); θ̂) + Card(θ̂) log n,

where θ̂ is the estimate maximizing the pseudo likelihood function and Card(θ̂)

denotes the number of parameters in the model.

The proposed method has been demonstrated to perform well in our nu-

merical studies. However, it is not fully theoretically justified.

4. Numerical Results

4.1 Simulation studies

Corresponding to the two examples illustrated in the previous section, two

simulation studies are conducted to examine the finite-sample performance

of the proposed pseudo conditional score approach. Specifically, in the first

simulation study, the longitudinal response Yij is generated from

Yij = −1+0.4Yi,j−1+3Xij+0.8Zi+εij, εij ∼ N(0, 1), i = 1, ..., n, j = 2, ...,m,

where Zi is a Bernoulli variable with P (Zi = 1) = 0.5 and Xij follows the first

order transition model

Xij = 0.5 + 0.8Xi,j−1 + εxij, εxij ∼ N(0, 1), i = 1, ..., n, j = 2, ...,m. (8)

Here we assume the number of repeated measures per subject m = 6. We use

Xi1 = 0.25 and Yi1 = −5/12 + 5Zi/3 as values at time one. The measurement

error distribution in (3) has a variance 0.5. In the second simulation study, we

generate binary responses from a logistic transition model with mean

exp{−1 + 0.5Yi,j−1 + Xij + 0.8Zi}
1 + exp{−1 + 0.5Yi,j−1 + Xij + 0.8Zi} , i = 1, ..., n, j = 2, ..., m,

12
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where Zi is generated from a Bernoulli distribution with P (Zi = 1) = 0.5 and

Xij follows

Xij = 0.4+0.5Zi+0.6Xi,j−1+εxij, εxij ∼ N(0, 0.5), i = 1, ..., n, j = 2, ...,m.

The measure error variance is set to be 0.5. The initial states are given as

Xi1 = 0.25 and Yi1 from the Bernoulli distribution with probability 0.5. In both

simulation studies, we solve the pseudo conditional score equations as given

in Examples 1 and 2 to obtain the estimators and their asymptotic variances

are estimated using the formula of Σ̂n. Table 1 summarizes the results from

1000 repetitions with sample sizes n = 100 or 200. The results show that in

finite samples, the pseudo conditional score estimators have virtually no bias

and the estimated standard errors agree well with the true standard errors.

We next conduct a simulation study to compare the robustness of the

semiparametric pseudo conditional score method with the parametric maxi-

mum likelihood method as given in Pan et al. (2006) when the X model is

misspecified. We use the same setting as in the first simulation study with

m = 6. We consider three distribution scenarios for the X: (a) Xij follows

the first order transition model (8) with error εxij following a normal mixture,

0.5N(−0.5, 1) + 0.5N(0.5, 1); (b) Xij follows the first order transition model

(8) with error εxij following the extreme-value distribution; (c) Xij follows a

second-order transition model Xij = 0.5+0.8Xi,j−2+N(0, 1). For all three sce-

narios, the parametric maximum likelihood estimation(MLE) method treats

Xij from a first-order transition model with normal error distribution. We

hence expect that the parametric MLE method would be biased because it

misspecifies either the transition pattern or the error distribution.

Table 2 summarizes the robustness simulation results from 1000 repetitions

with n = 100 and 200. The results show that the parametric MLE approach
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gives biased estimates of the regression coefficients, especially α. The bias

ranges from 3% to 10%. When the error distribution in the X model deviates

slightly from normality as a normal mixture, the bias is small but the coverage

probability can be poor. However, when the transition order in the X model is

misspecified, the bias is more pronounced and is close to 10%, and the coverage

probability becomes very poor. On the contrary, the pseudo conditional score

approach always yields small bias and accurate coverage.

To evaluate the method in selecting transition orders as proposed in Sec-

tion 3.3, we conduct another simulation study with dichotomous outcome.

The setting is similar to our second simulation study except that the mean

probability is

exp{−1 + Yi,j−2 + Xi,j−1 + 0.8Zi}
1 + exp{−1 + Yi,j−2 + Xi,j−1 + 0.8Zi} , i = 1, ..., n, j = 3, 4.

That is, the true transition order is q = r = 2. We apply the proposed

method to fit models for all possible combinations of transition orders (q, r)

with q = 1, 2, 3 and r = 1, 2, 3, 4. The pseudo AIC and the pseudo BIC are used

for selecting the final orders. The result from 1000 repetitions with sample sizes

200 and 400 is given in Table 3. The result shows that the proposed method

works well. Overall, the pseudo BIC outperforms the pseudo AIC, especially

when sample size is large.

4.2 Numerical study on efficiency loss

The pseudo conditional score equation approach relies on the conditional like-

lihood function, so it does not utilize the full data information. Hence it may

not give the efficient estimators. It is useful to know how much efficiency is lost

when using such an approach. Since deriving the asymptotic efficiency bound

for model (1) is generally difficult, we focus our discussion on the situation
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where Yij is a normal outcome and r = 1 and q = 1 as in (6). Furthermore, we

assume Zij and Xij are independent but allow the repeated measures of Xij

to be correlated.

From Example 1, we have known that the Qij = βx(Yij − β0 − αYi,j−1 −
βT

z Zij)/σ
2
y + Wij/σ

2
u, j = 2, ...,m are sufficient statistics for xij, j = 2, ...,m.

In fact, they are also complete and sufficient statistics. Therefore, following

Bickel et al. (1993, Chap 4, pp.130), one can explicitly calculate the semi-

parametric efficiency bound (see the appendix). Thus, the efficiency loss in

the pseudo conditional score estimator can be evaluated by comparing such

efficiency bound versus Σ as given in Theorem 1.

We utilize a concrete example to illustrate the efficiency loss. Suppose that

(Yij, Wij) follows

Yij = −1 + 0.5Yi,j−1 + Xij + 0.6Zi + N(0, 2),

Wij = Xij + N(0, 0.5),

where Zi is a Bernoulli variable with P (Zi = 1) = 0.5 and Xij is generated

from the following transition model

Xij = 0.4 + 0.5Xi,j−1 + N(0, σ2
x).

For different choices of σ2
x = 0.3 or 0.15 and different cluster sizes m = 3

or 4, we compute the asymptotic efficiency of the pseudo conditional score

estimators for βx, βz, α relative to the semiparametric efficient bound. The

results show that the efficiency loss increases with the decrease of σ2
x; it varies

from 10% to 20% in estimating βx and α as m increases from 3 to 4; however,

no efficiency is lost in estimating βz.

15
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4.3 Application to the ACSUS data

We apply our method to analyze the ACSUS data. Specifically, we restricted

our attention to 533 patients who completed the first year interview. The

participants were interviewed every 3 months for four times. The outcome

was whether they had hospital admissions (yes/no) during the three months

between two consecutive interviews. It is of scientific interest to study the

effect of CD4 counts in predicting future hospitalization given the past history

of hospitalization. As discussed in the introduction, CD4 counts were sub-

ject to considerable measurement error. Thus, a natural model for analyzing

this data set is a prediction model by accounting for measurement errors in

CD4 counts. A logistic transition model is used to fit the data with covariate

W = log(CD4/100), a transformed variable that reduces the marked skew-

ness of CD4 counts (Figure 1). We note that even after a log-transformation,

the commonly used transformation for CD4 counts, CD4 counts still do not

look normally distributed. This motivates us to leave the distribution of the

true CD4 counts fully unspecified by considering the pseudo conditional score

method. Other covariates include age (10 categories coded as 1-10), antiretro-

viral drug use, HIV-symptomatic at baseline, race, and gender. Additionally,

the past hospitalization history is also adjusted for in the analysis. The size

of the measurement error for W , σ2
u = 0.38, is set to be 1/3 of the variance of

baseline W . This value is close to the estimated measurement error variance

0.39 by Wulfsohn and Tsiatis (1997), using data from another AIDS study con-

ducted by Burroughs-Wellcome. In addition, we also fit model using σ2
u = 0.18

to obtain parameter estimates under a more conservative measurement error

setting.

To select the best transition order (q, r), we apply the pseudo BIC method
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proposed in Section 3.3. The result shows that q = 1 and r = 1 give the small-

est value under the pseudo BIC criterion. This finding agrees with the result

obtained from testing the significance of the extra terms when the highest

order transitional model is fit: specifically, we fit the largest transition model

with q = 3 and r = 4 and test for the significance of the higher than first-order

terms, and we find they are highly insignificant. Hence our final model has

the transition order q = 1 and r = 1. The parameter estimation result is given

in Table 4, where the reported estimates are the estimated log-odds ratios of

the covariates. Women have a significantly higher risk of future hospitaliza-

tion than men. The effect of CD4 counts on the risk of future hospitalization

is significant, given the previous hospitalization status. Subjects who had a

previous hospital admission history and who had lower CD4 counts would be

more likely to be hospitalized in the future.

We also fit the model by letting the measurement error σ2
u be 0.18, which

corresponds to the situation when the coefficient of variation for the baseline

W is 50%. The findings are similar but the estimated effect of W is slightly

attenuated. We also present in Table 4 the naive estimators that are obtained

by ignoring measurement error. The naive estimator of the CD4 count effect

tends to bias towards zero.

5. Discussion

We consider in this paper transition measurement error models for longitudinal

data. We propose a pseudo conditional score approach that does not require

specifying the distribution of the unobserved covariate. Both numerical cal-

culations and simulation studies show that the estimator using the pseudo

conditional score method performs well.
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The approach extends the classical conditional score approach in Stephan-

ski and Carroll (1987) in the following aspects. First, the classical conditional

score approach relies on extracting sufficient statistics for the error-prone co-

variates in the full likelihood function so is impossible for the transition mod-

els; instead, our approach works on the conditional likelihood at each time

point. Second, because the conditional scores from different timepoints are

correlated, a sandwich variance estimator must be used for inference. Third,

one specific question to the transition model is how to choose the transition

orders and we have provided an innovative way for this purpose based on the

pseudo-likelihood function. Furthermore, we note that the proposed approach

is always applicable to the situations when Xi,j−k enters expression (2) linearly

no matter how Yi,j−k or its transformed value enters expression (2). Therefore,

our approach can also be used for other transition models such as the ones pro-

posed for count data in Diggle et al. (2002). Assigning different weights to

the conditional scores from different timepoints might improve efficiency, but

we have not as yet explored this refinement.

One important issue in fitting a transition model is the selection of transi-

tion orders (q, r). If one is willing to assume a parametric model for X, (q, r)

can be selected using various model selection criteria, such as AIC and BIC.

However, under the semiparametric model considered in this paper, there does

not exist any literature on choosing q and r. In this paper, we propose to se-

lect (q, r) using the pseudo likelihood function and a small simulation study

indicates that the method works pretty well. Theoretical justification of the

proposed method needs more work.

Another important issue is to determine the size of measurement error,

σ2
u, which can be estimated using replication or validation data. In this case,
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Theorem 1 needs to be slightly modified to account for the variability due to

estimating σ2
u. Particularly, following the same proof for Theorem 1, we obtain

that the asymptotic variance equals the variance of

Eθ0

[
m∑

j=s+1

∇θgσ2
0u

(Yij|Vij(θ); θ)

∣∣∣∣
θ=θ0

]−1 m∑
j=s+1

gσ2
0u

(Yij|Vij(θ0); θ0)+

Eθ0

[
m∑

j=s+1

∇θgσ2
u
(Yij|Vij(θ); θ)

∣∣∣∣
θ=θ0

]−1
∂

∂σ2
u

∣∣∣∣
σ2

u=σ2
0u

Eθ0

[
m∑

j=s+1

gσ2
u
(Yij|Vij(θ0); θ0)

]
Sσ2

0u
,

where gσ2
u
(Yij|·) is the same as defined in Theorem 1 but indexed by σ2

u, σ2
0u

denotes the true value of σ2
u, and Sσ2

0u
is the influence from estimating σ2

0u using

the validation sample. Clearly, the second part of the above expression reveals

the influence on estimating θ0 when σ2
0u is estimated. When neither validation

data nor replications are available, one possible strategy is to conduct sensi-

tivity analysis (e.g., Li and Lin, 2000) by varying the sizes of measurement

error in a reasonable range.
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APPENDIX: Calculation of semiparametric efficiency bound in (6)

From Bickel et al. (1993), the semiparametric efficiency bound in (6) is

given by Σe = {E[l̇∗θ(Yi,Wi,Zi; θ, G)⊗2]}−1, where a⊗2 = aaT and

˙̀∗
θ(Yi,Wi,Zi; θ, G) = E[ ˙̀cθ(Yi,Wi,Zi,Xi; θ)|Yi,Wi,Zi]−E[ ˙̀cθ(Yi,Wi,Xi,Zi; θ)|Qi,Zi].

Here, Yi = (Yi2, ..., Yim)T , Wi = (Wi2, ..., Wim)T , Zi = (Zi2, ...,Zim)T , Xi =

(Xi2, ..., Xim)T , Qi = (Qi2, ..., Qim)T , ˙̀c
θ is the score function for θ with the
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complete data (Yi,Xi,Zi), and G(·) denotes the joint distribution of Xi. Par-

ticularly, direct calculations give ˙̀∗
θ(Yi,Wi,Zi; θ, G) equal to

1

σ2
y

m∑
j=2




ε̃ij − E[ε̃ij|Qij]
Zij(ε̃ij − E[ε̃ij|Qij])

Yi,j−1ε̃ij − E[Yj−1ε̃ij|Qij]− βx(Yi,j−1 − E[Yi,j−1|Qij])E[Xij|Qij]
(ε̃ij − E[ε̃ij|Qij])E[Xij|Qij]

(ε̃2
ij − E[ε̃2

ij|Qij]− 2βx(ε̃ij − E[ε̃ij|Qij])E[Xij|Qij])/(2σ
2
y)




,

where ε̃ij = Yij − β0 − αYi,j−1 − βT
z Zij.

For specific example, the above semiparametric efficiency bound can be

calculated explicitly in terms of the first two moments of E[Yi|Qi], E[Xi|Qi],

E[ε̃ij|Qi]. For example, assume

(M.1) (Yi,Wi) follows Yij = β0 +βzZij +βxXij +αYi,j−1 +εij, Wij = Xij +Uij;

(M.2). X is generated from the transition model Xij = γ0 + γxXi,j−1 + εxij;

(M.3) Zij = ... = Zi1 has mean mz and variance vz and it is independent of

Xi;

(M.4) Yi1 has mean my and variance vy and Xi1 has mean mx and variance vx;

(M.5) (εij, Uij, εxij) are independently from normal distribution with mean zero

and variance σ2
y, σ

2
u, σ

2
x respectively.

Then under conditions (M.1) to (M.5), Xi given Qi is a multivariate-normal

distribution with mean [Σ−1
x + (β2

x/σ
2
y + 1/σ2

u)Im×m]−1(Σ−1
x µx + Qi), where

µx = E[Xi] and Σx is the covariance matrix of Xi and both can be calculated

from condition (M.2). Additionally, E[ε̃ij|Qi] = βx(β
2
x/σ

2
y + 1/σ2

u)
−1Qij and

E[Yi,j−1|Qi] =
∑j−1

k=1 αj−1−k(β0 + βzmz + βx(β
2
x/σ

2
y + 1/σ2

u)
−1Qik) + αj−1my.

Therefore, the moments of E[Yi|Qi], E[Xi|Qi], and E[ε̃ij|Qi] can be further

calculated from the fact

Qi ∼ Multinormal
(
(β2

x/σ
2
y + 1/σ2

u)µx, (β2
x/σ

2
y + 1/σ2

u)Im×m + (β2
x/σ

2
y + 1/σ2

u)
2Σx

)
.
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Table 1: Simulation results for the pseudo conditional score estimates based
on 1000 repetitions

Sample Size Parameter True Value EST EST SE EMP SE CP MSE
Linear transition model

100 βx 3.0 3.023 0.217 0.225 0.94 0.051
βz 0.8 0.804 0.322 0.329 0.95 0.108
α 0.4 0.396 0.039 0.039 0.94 0.0016

200 βx 3.0 3.017 0.152 0.150 0.95 0.023
βz 0.8 0.797 0.227 0.226 0.95 0.052
α 0.4 0.397 0.027 0.027 0.95 0.0007

Logistic transition model
100 βx 1.0 1.067 0.283 0.283 0.97 0.084

βz 0.8 0.796 0.384 0.398 0.95 0.158
α 0.5 0.455 0.311 0.319 0.94 0.103

200 βx 1.0 1.024 0.185 0.186 0.96 0.035
βz 0.8 0.812 0.262 0.258 0.96 0.067
α 0.5 0.481 0.216 0.214 0.95 0.046

Note: EST is the mean of the estimates; EST SE is the mean of the estimated
standard errors; EMP SE is the empirical standard error of the estimators;
MSE is the mean square error; CP denotes the coverage proportion of the 95%
confidence intervals.
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Figure 1: Histogram of log-transformed CD4 counts in the ACSUS data
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Table 2: Robustness comparison between the pseudo conditional score method
and the parametric maximum likelihood method when the X model is mis-
specified

Pseudo conditional score Parametric method
n Par. True Rel. Bias(%) EMP SE CP Rel. Bias(%) EMP SE CP

X from 1st-order transition model with mixture normal error
100 βx 3 0.47 0.116 0.95 -2.50 0.099 0.88

βz 0.8 -0.87 0.231 0.96 -3.87 0.217 0.95
α 0.4 -0.75 0.025 0.94 3.75 0.022 0.89

200 βx 3 0.23 0.082 0.95 -2.63 0.069 0.79
βz 0.8 0.62 0.166 0.94 -2.37 0.158 0.95
α 0.4 -0.25 0.018 0.95 4.00 0.016 0.82

X from 1st-order transition model with extreme-value error
100 βx 3 1.53 0.221 0.94 -2.83 0.127 0.93

βz 0.8 2.75 0.251 0.94 -3.75 0.229 0.95
α 0.4 -1.75 0.049 0.93 7.75 0.033 0.58

200 βx 3 0.53 0.160 0.96 -3.27 0.094 0.88
βz 0.8 0.25 0.173 0.95 -5.75 0.158 0.94
α 0.4 -0.50 0.034 0.94 8.25 0.023 0.31

X from 2nd-order transition model with normal error
100 βx 3 0.40 0.102 0.97 1.87 0.105 0.89

βz 0.8 0.00 0.235 0.95 -6.37 0.238 0.93
α 0.4 0.00 0.023 0.95 9.75 0.024 0.84

200 βx 3 0.20 0.071 0.95 1.80 0.073 0.80
βz 0.8 -0.12 0.169 0.95 -6.62 0.170 0.94
α 0.4 0.00 0.016 0.95 9.75 0.017 0.72

Note: see Table 1.

Hosted by The Berkeley Electronic Press



Table 3: Frequency table of transition orders selected using the pseudo-
likelihood function from 1000 repetitions

selection use P AIC selection use P BIC
n = 200 r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4

q = 1 5 87 42 55 43 340 64 35
q = 2 28 318 129 161 90 334 39 35
q = 3 9 79 37 50 2 14 1 3

n = 400 r = 1 r = 2 r = 3 r = 4 r = 1 r = 2 r = 3 r = 4
q = 1 0 14 10 19 3 160 28 16
q = 2 1 462 200 151 12 678 61 18
q = 3 0 83 30 30 0 14 2 2

Table 4: Application of the pseudo conditional score method to analysis of the
ACSUS data

σ2
u = 0.38 σ2

u = 0.18 Naive Estimate
Parameter Estimate SE Estimate SE Estimate SE

log(CD4/100) (βx) -0.460 0.072 -0.416 0.067 -0.383 0.063
age 0.030 0.056 0.031 0.055 0.032 0.054

antireviral drug use 0.051 0.235 0.077 0.232 0.097 0.230
HIV symptomatic 0.086 0.191 0.069 0.188 0.058 0.187

race 0.208 0.214 0.209 0.211 0.209 0.210
sex (female vs. male) 0.621 0.243 0.577 0.239 0.545 0.237

previous hospitalization (α) 1.838 0.253 1.865 0.250 1.885 0.248
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