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Abstract

Estimation of 3D Left Ventricular Deformation
from Medical Images Using Biomechanical Models.

Xenophon Papademetris
2000

The non-invasive quantitative estimation of regional cardiac deformation has important clinical implications for
the assessment of viability in the heart wall. In this work we describe a general framework for estimating soft
tissue deformation from sequences of three-dimensional medical images. We also explore some of their theoretical
constraints which can be used to guide the selection of an appropriate model for the displacement field. We
then apply this framework to the problem of estimating left ventricular deformations from sequences of 3D image
sequences. The images are segmented interactively to extract the endocardial and epicardial surfaces. Then,
initial frame-to-frame correspondences are established between points on the surfaces using a shape-tracking
approach. The myocardium is modeled using a transversely isotropic linear elastic model, which accounts for
the preferential stiffness of the left ventricular myocardium along its fiber directions. The measurements and the
model are integrated within a Bayesian estimation framework. The resulting equations are solved using the finite
element method, to produce a dense displacement field for the whole of the left ventricle. The dense displacement
field is, in turn, used to calculate the deformation of the heart wall in terms of the strains. This method was tested
on over 40 image sequences, and the strains produced using this non-invasive technique exhibit high correlation
with strains simultaneously obtained from invasive measurements using implanted markers and sonomicrometers.
We also demonstrate that these strains are useful as predictors of the viability of the underlying tissue and can be
used to distinguish between classes of subjects in which there was moderate or severe injury. This proposed method
provides quantitative regional 3D estimates of left ventricular deformation from three-dimensional sequences of
Magnetic Resonance, Ultrasound, and X-Ray CT images.

c© Copyright 2000 by Xenophon Papademetris
All Rights Reserved
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Chapter 1

Introduction

1.1 Structure of the Thesis

The major goal of this thesis is the development of
an approach for the estimation of three-dimensional
left ventricular deformation from medical images de-
rived from different modalities. A secondary goal is
the development of a more general framework for the
estimation of soft-tissue deformation from medical im-
ages.

The thesis reads as follows: chapter 2 is an extended
literature review for the area of cardiac image analysis
with a special emphasis on the techniques used which
would be of more general application in the area of
soft-tissue deformation. In chapter 3 we present ma-
terial relating to the problem of left ventricular seg-
mentation. The segmented endocardial and epicardial
surfaces are the inputs to the geometrical techniques
of chapter 4. Chapter 4 itself provides some geometri-
cal background and describes two key applications of
geometrical ideas in this work, namely, 3D mesh gen-
eration and shape-based tracking. The background
material concludes with chapter 5. Here we present
material relating to continuum mechanics and a brief
description of the finite element method.

In chapter 6 we discuss issues related to the devel-
opment of a general framework for the estimation of
soft-tissue deformation from sequences of 3D medical
images. Finally, in chapter 7 we present experimen-
tal results and validation for the application of the
overall methodology to the problem of left ventricular
estimation.

1.2 Introduction to the Problem

The estimation of soft tissue deformation is related
to the general non-rigid motion problem in Computer
Vision and especially the problem of optical flow es-
timation [46]. Since deformation measures are calcu-
lated as combinations of the derivatives of displace-
ment fields, the key problem in this line of work is
the estimation of a dense and noise-free displacement

field for the region of interest. Once this displacement
field has been estimated, the deformation can be cal-
culated.

In areas such as surgical training and image guided
surgery, the displacement field is what is actually
needed. The deformation measures themselves be-
come important as measures of function of actively
deforming organs such as the left ventricle. It is the
general consensus that the analysis of heart wall defor-
mation provides quantitative estimates of the location
and extent of ischemic myocardial injury.

The major problem faced here is that is in general
difficult to obtain dense displacement fields from med-
ical images. In practice the displacement field can be
measured only at sparse locations in the region of in-
terest and these measurements are often corrupted by
noise. The key to solving this deformation estimation
problem is the techniques used to smooth and inter-
polate these sparse displacements in order to obtain
a dense displacement field for the whole object. The
selection of an appropriate model is constrained by
many factors such as lack of knowledge about the un-
derlying material properties and computational cost.

In this work we describe a methodology for esti-
mating soft-tissue deformation from image derived in-
formation. We review a number of approaches pro-
posed in the literature and propose our own exten-
sions to account for some of the problems. We use
this methodology to estimate left ventricular defor-
mations from 3D medical images obtained using dif-
ferent modalities, primarily Magnetic Resonance and
Echocardiography. The images are segmented inter-
actively and then initial correspondence is established
using a shape-tracking approach. A dense motion field
is then estimated using a transversely anisotropic lin-
ear elastic model, which accounts for the fiber direc-
tions in the left-ventricle. The dense motion field is
in turn used to calculate the deformation of the heart
wall in terms of strain in cardiac specific directions.

1
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The strains obtained using this approach in open-chest
dogs before and after coronary occlusion, show good
agreement with previously published results in the lit-
erature. They also exhibit a high correlation with
strains produced in the same animals using invasive
techniques such as implanted markers and sonomi-
crometers. This proposed method provides quantita-
tive regional 3D estimates of heart deformation from
3D Images.

1.3 Contributions of this Work

There are two major contributions of this work:

• The in-detail analysis and comparisons of various
approaches to modeling the displacement field as
used in many medical image analysis problems.
We also identify similarities and problems with
these approaches and propose a new approach to
deal with many of these deficiencies. We call this
new model the active elastic model.

• The development of a framework for accurate and
reliable 3D left ventricular deformation estima-
tion from medical images, including techniques
for image segmentation. Of paramount impor-
tance here was the proper integration of biome-
chanics with image analysis techniques. This
framework has been tested on a large number of
studies and the results are shown to correlate well
with invasive measures of deformation as well as
other indicators of myocardial function.

We also note that there are some less substantial
contributions in the area of interactive segmentation.
We also developed some interesting geometric tech-
niques to solve problems such as mesh generation and
nearest neighbor estimation in three-dimensions.

1.4 A Personal Note on Methodology

Alexander Solzhenitsyn in this Nobel Lecture 1 tries
to capture two possible attitudes to art. He writes:

“One artist sees himself as the creator of
an independent spiritual world; he hoists
onto his shoulders the task of creating this
world, of peopling it and of bearing the all-
embracing responsibility for it; but he crum-
ples beneath it, for a mortal genius is not ca-
pable of bearing such a burden. Just as man
in general, having declared himself the center

1This lecture was delivered only to the Swedish Academy
and was not actually given as a lecture, as Solzhenitsyn could
not leave the Soviet Union at the time (1970).

of existence, has not succeeded in creating a
balanced spiritual system. And if misfortune
overtakes him, he casts the blame upon the
age-long disharmony of the world, upon the
complexity of today’s ruptured soul, or upon
the stupidity of the public.

Another artist, recognizing a higher power
above, gladly works as a humble apprentice
beneath God’s heaven; then, however, his re-
sponsibility for everything that is written or
drawn, for the souls which perceive his work,
is more exacting than ever. But, in return,
it is not he who has created this world, not
he who directs it, there is no doubt as to
its foundations; the artist has merely to be
more keenly aware than others of the har-
mony of the world, of the beauty and ug-
liness of the human contribution to it, and
to communicate this acutely to his fellow-
men. And in misfortune, and even at the
depths of existence–in destitution, in prison,
in sickness–his sense of stable harmony never
deserts him.2”

In many respects one finds analogues to the above
expressions in the attempt to devise solutions to com-
plicated engineering problems. In the case of the esti-
mation of left ventricular deformation (and soft tissue
deformation in general) a number of choices need to
be made which place the engineer in one of two cat-
egories above. For example, consider the problem of
modeling the displacement field itself. Does one try to
use a method that tries to approximate in some way
the real properties of the material (Solzhenitsyn’s sec-
ond category) or does one try to find a model which
is driven more by convenience and computational re-
quirements, such as a more generic smoothness model?
What is the next step, if the approach appears to not
work satisfactorily? How much is the methodology
driven by the data itself or how much are we trying
force existing approaches on to the problem?

Looking through the contents of the thesis, in ret-
rospect (after the work was completed) one finds a
mixed bag.3 The segmentation work is clearly in the

2Often at the end of some of my many discussions with
Prof Turan Onat, I could see the contrast between the two ap-
proaches. Where I would see problem after problem and tried
to force a solution and move on, he would often, to my frus-
tration, be in a state of wonder and curiosity at the intricacy
and almost ‘perfection’ of the left ventricle. Much of the work
on the active models in this thesis is directly derived from this
sense of wonder, and an attempt to understand it.

3Clearly for Solzhenitsyn, and for this author as well, the
second category is the preferable one.
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first category where we try to force our own conve-
nience and models onto the problem by segmenting
a 3D (if not 4D) object in a slice-by-slice basis. The
ability to see 3D surface reconstructions in almost real
time tries to mitigate this deficiency somewhat. In
the geometry work, the ‘symmetric’ nearest-neighbor
is a step towards letting the problem dictate, but the
shape-based tracking work is still very much asymmet-
ric (unlike the bimorphism work [98].) In the review
of the various techniques for modeling displacement
fields we point out the pitfalls of trying to force seem-
ingly innocent ideas such as smoothing onto the real
world. The blind use of linear elasticity is also seen to
be problematic. The active elastic model which tries
to capture the reality of an actively deforming tissue
offers the promise of solving such problems in the fu-
ture. For the same reason, while using continuum me-
chanics models to model the tissue, we avoid terms
such as ‘stress’ and ‘force’ because these would be re-
ferring to simulated data ‘forces’ and not their physi-
cal analogues. Attempts to calculate the stress on the
myocardial wall without accounting for the wall pres-
sure are doomed to fail even though a quantity labeled
‘stress’ is available after the deformation analysis.

Perhaps the most telling single experiment was the
attempt to see whether the methodology of this thesis
could be used to distinguish between animals where
there was post mortem-confirmed globally transmural
as opposed to nontransmural injury (see section 7.4.1).
In this case, the cardiac specific strains, which amount
to forcing the left ventricular deformation to measured
in a cylindrical coordinate frame, failed to produce a
significant difference. Using the principal strains in-
stead which are the major directions of deformation
of the material irrespective of the external coordinate
system, led to the desired outcome. This is a clear case
when letting the data dictate led to a better answer
than our preconceived notions of how things ought to
work.



Chapter 2

Cardiac Image Analysis

In this chapter we describe research in the area of
estimation of cardiac motion and deformation from
medical images. We focus primarily on the use of 3D
magnetic resonance image sequences, but we will also
discuss the application of some methods to ultrafast
CT and 3D echo.

2.1 Introduction

The estimation of cardiac motion and deformation
from 3D images has been an area of major concen-
tration in medical image analysis. In these prob-
lems, the image data utilized are typically acquired
in 16–20 frames consisting of 10–16 slices each in the
case of Magnetic Resonance. One such image slice
through a canine heart acquired using magnetic res-
onance imaging is shown in figure 2.1 (as well as a
reconstructed long-axis slice). In the figure, we label
major areas such as the left and right ventricles and
the two ventricular walls which bound the left ven-
tricular myocardium (the endocardium and the epi-
cardium). Most researchers have focused almost ex-
clusively on the motion and deformation of the left
ventricle. More recently, however, some preliminary
work on right ventricular deformation has also ap-
peared in the literature [42].

The estimation of regional 3D cardiac deformation
is an important issue as ischemic heart disease is a
major clinical problem. Myocardial injury caused by
ischemic heart disease is often regional. It is the fun-
damental goal of many forms of cardiac imaging and
image analysis to measure the regional function of the
left ventricle (LV) in an effort to isolate the location
and extent of ischemic or infarcted myocardium. Fig-
ure 2.2 illustrates the effect of a blocked artery; in
this case the left-anterior descending artery (LAD) has
been occluded. There is a change in the deformation
in a local region which is supplied by the LAD, which
instead of the normal thickening behavior, actually
thins on contraction. Quantitative estimation of these

changes is a major goal of cardiac image analysis, as it
will hopefully allow for the measurement of both the
location and the extent of the affected region.

In addition, the current management of acute is-
chemic heart disease is directed at establishing coro-
nary reperfusion and, in turn, myocardial salvage.
Also, understanding the physiology of the heart is an
important research problem in cardiology, for the eval-
uation of various surgical procedures such as Transmy-
ocardial Revascularisation [36].

The rest of this chapter reads as follows: In sec-
tion 2.2, we briefly describe alternative invasive tech-
niques to estimating cardiac deformation, involving
surgically implanted beads or ultrasound transducers.
Then in sections 2.3 and 2.4, we turn our attention
to describing current and previous research efforts in
the medical imaging community with respect to esti-
mating Cardiac Motion and Deformation. Typically,
any given method will combine a set of sparse, noisy,
image derived and sometimes partial set of displace-
ment estimates (the ‘data’) with a model which is used
to simultaneously smooth and interpolate these esti-
mates as necessary (the ‘model’). This combination of
‘data’ and ‘model’ produces the resulting displacement
field. We will first analyze the ‘data’-component of
the presented methods in section 2.3 and the ‘model’-
component in section 2.4. Next in section 2.5 we turn
to the all important topic of validation. Finally, in
section 2.6 we present some possible future research
directions in this area.

2.2 Invasive Approaches to Measuring

Myocardial Deformation.

A variety of work is evident in the cardiac phys-
iology literature attempting to quantitatively mea-
sure transmural myocardial strain. Several notewor-
thy efforts in particular have used sonomicrometers
[35, 34, 27] and arrays of implanted markers (see, for
example, [104, 68]). Figure 2.3 shows a schematic of

4
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Short−Axis MR Slice

Right Ventricle

Left Ventricle

Long−Axis MR Slice

 Myocardium

Endocardium

Epicardium

Figure 2.1: Geometry of the Mammalian Heart. In the discussion to follow the terms endocardium and epicardium
will be used to refer to the bounding surfaces of the left ventricular myocardium.

Normal Left Ventricle Image Sequence

Post−Occlusion Left Ventricle Image Sequence

Figure 2.2: Short-axis magnetic resonance images from two 3D acquisitions of a canine heart. The top sequence
was acquired before left coronary anterior artery occlusion and the bottom sequence post-occlusion. The occlusion
generates a disruption of the normal thickening behavior of the myocardium in contraction in the highlighted
region. The quantification of such parameters from 3D image sequences is the focus of methods reviewed in this
chapter.
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Arrays of
Sonomicrometers

Myocardium

Left−Ventricular
Blood−Pool

Figure 2.3: Typical placement of arrays of sonomicrometer crystal (or implanted bead) arrays in the left ventricle.
These can produce highly accurate estimates of the deformation at a small number of locations in the left ventricle.

a typical implantation of sonomicrometers in the left
ventricle. While accepted as being accurate, in both
cases only a sparse number of specific sites on the LV
can be measured, due to the difficulty in implanting
the sonomicrometers and the markers. It would be
quite difficult to measure a large number of sites si-
multaneously.

Also, it is possible that these implanted devices
can alter myocardial perfusion and function, although
there is little published evidence of this. While many
of these measurements are performed in animals, we
note that some interesting measurements of strain
using markers have been produced even in humans
[52]. Finally, we also note that some researchers have
looked at measuring in vivo strain using attached
strain gauges [26] (as noted in Azhari [7]), although
little has been pursued along these lines.

2.3 Approaches to Obtaining Esti-

mates of Cardiac Deformation

from 4D Images

There are two aspects to this problem; the first re-
lates to the manipulation of the acquisition parame-
ters to obtain the most useful images and the second to
the post-processing of these images to estimate cardiac
deformation. Regarding the first aspect, a significant
level of activity has been performed within the mag-
netic resonance imaging (MRI) community regarding
the development of MR tagging, and to a lesser extent,
MR phase velocity imaging. The underlying physics
of these techniques is beyond the scope of this chapter;
the interested reader is referred to a review article by
Leon Axel [6].

The second aspect of this problem, the analysis of

the images, relates to work traditionally done in the
computer vision community, especially in the areas
of non-rigid motion estimation, including the case of
variable illumination, segmentation and surface map-
ping. A general, although somewhat dated, coverage
of the field can be found in Horn [46].

In this section, we focus on the image-derived char-
acteristics used to obtain the initial somewhat sparse,
often noisy and partial displacements and/or velocities
which are combined with a model to produce complete
and dense displacement and deformation estimates.

2.3.1 Methods Relying on Magnetic Reso-
nance Tagging

In this approach, grid lines at certain positions can
be generated at one point in the cardiac cycle and their
deformation tracked over a portion of the cycle, pri-
marily using gated acquisition techniques. The devel-
opment of the grid tagging approach to the measure-
ment of myocardial strain has been vigorously pursued
by two groups in particular, at the University of Penn-
sylvania [6] and Johns Hopkins [67], who are the orig-
inal developers of the tagging ideas. Figure 2.4 shows
an example of such an acquisition. Three frames are
shown. In frame 1 the original tags are laid out paral-
lel to the vertical axis and are shown to deform with
the material in the subsequent frames.

Much of these groups’ current efforts are focused on
how to create dense fields of measurements in 3D by
putting together several orthogonal tagging grid ac-
quisitions. Their approaches certainly show promise,
because of the inherent capability of including dis-
cernible patterns that deform with the tissue, but cur-
rently have the following limitations: i.) it is difficult
to track the tags over the complete LV cycle due to
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Figure 2.4: Samples of short-axis and long-axis magnetic resonance images illustrating magnetic resonance tagging
at 3 time points in the cardiac cycle. Courtesy of Dr Jerry L. Prince, John Hopkins University.

decay of the tags with time, ii.) multiple acquisitions
are required to assemble 3D information and iii) it is
still quite difficult to assemble the detected tags into a
robust 3D analysis/display. All of these problems are
being aggressively pursued by the two primary groups
mentioned above, as well as at a few other institutions
(e.g. Amini [1]).

In general, there seem to be three different ap-
proaches to estimating initial displacement data from
magnetic resonance tagging as follows:

• Tagging in multiple intersecting planes and using
the tag intersections as tokens for tracking [1, 55,
109].

• Tagging in multiple intersecting planes and then
for each tagging plane estimating the magnitude
of the motion perpendicular to the plane. This
generates a sense of partial displacements (i.e. the
component parallel to the tag lines is missing) to
be combined later [42, 24].

• Attempting to model the tag fading over time us-
ing a model for the Bloch equations and using a
variable brightness optical flow approach to ex-
tract the displacements [86, 40].

Using intersections: The multiple intersecting
planes are either generated by imposing a tag-grid pat-
tern in a single acquisition, which can only be done
for two-dimensional grid patterns, or by tagging along
different planes in separate acquisitions and superim-
posing the tagged-planes to create the grid later (see
work by Kerwin and Prince [55], Amini [1], Young and
Axel [109], etc.) An example of the later approach
is shown in figure 2.5, from the work of Kerwin and
Prince [55]. The underlying idea here is to try to gen-
erate ‘material’-markers at the intersection points and
then use these as the features for the overall motion-
estimation scheme.

Using the whole tag lines: The second approach
instead of using just the intersections tries to use the

whole of the tag lines (planes). (See work by Haber
and Metaxas [42], or Denney and Prince [24].) This
has the advantage of being more robust to noise than
the first approach, as it uses more of the tag-line and
also can provide partial information in regions where
there are few intersections. This becomes especially
useful in the case of the right ventricle [42], where
the thickness of the heart wall is much smaller and
the likelihood of having regularly spaced intersections
is very low. The penalty paid for this technique is
that, at this stage, one can only generate displacement
estimates perpendicular to the tag-plane which need
to be processed later to generate a full displacement
field.

In both of the above approaches, in the pre-
processing stage, there is also a need to identify which
of the intersections or parts of the tag lines lie within
the myocardium and to discard all the others. This
results in the need for at least a crude segmentation
of the myocardium. The segmentation is commonly
done interactively such as in the work of Guttman et
al, [41], Young et al, [109] or Kumar et al, [57]. (It
is worth noting, however, that Denney [23] proposes a
new method which bypasses this segmentation step.)

Both the tag detection step and the pre-
segmentation work, in general use methods based on
deformable models, following the original work by
Kass [54]. (See also the review article by McInerney
and Terzopoulos [66].) A deformable model tries to
find the curve which minimizes an energy functional
which consists of an image based term (typically the
gradient) and an internal energy or smoothness term.
In the formulation of Kass [54], the snake equation
had the form:

∫

s

|∇I(x, y)|2+α[(
dx

ds
)2+(

dy

ds
)2]+β[(

d2x

ds2
)2+(

d2y

ds2
)2]ds

(2.1)

where I(x, y) is the image as a function of the coordi-
nates x, y, s is the arclength which parameterizes the
curve c(s) = (x(s), y(s)) and α and β are the smooth-
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Figure 2.5: Reconstruction of 3 perpendicular tagging planes acquired in different acquisitions. From Kerwin et
al.[55] Courtesy of Dr Jerry L. Prince, John Hopkins University.

Figure 2.6: An example of a low-frequency tagged
MRI image. From Thetokis and Prince[4]. Courtesy
of Dr Jerry L. Prince, John Hopkins University.

ing parameters. The gradient term ensures adherence
to the image data, whereas the second term tries to
keep the curve smooth. This approach is modified to
allow for different deformable model geometries, such
as grids [57] and for better image adherence terms us-
ing some knowledge of the underlying physics such as
in the case of Amini [2].

Variable Brightness Optical Flow Methods:
In the third case, the whole image is used and data
are extracted using a variable brightness optical flow
approach on the image intensity. Sinusoidal tagging
patterns are primarily used in this case which provide
for the smooth intensity fields needed for efficient op-
tical flow computation. See figure 2.6 for an example
of this.

The variable brightness part of the algorithm is
based on modeling the fading of the tag intensity over
time using a model of the imaging process as gener-
ated by the Bloch equations [86, 40]. For example, in
the work of Gupta [40], the signal (brightness) at time
t is modeled as:

ψ(t) = D0e
−TE/T2

(
1 − e−TR/T1

)
+ (2.2)

D0e
−TE/T2(ξ − 1)

(
e−t/T1 − eTR−T1

)

where D0 is the proton density, T1 and T2 are the re-
lation time constants, TR is the repetition time, TE

is the echo time, and ξ is the tag modulation coeffi-
cient. The first three parameters (D0, T1, T2) are prop-
erties of the underlying tissue where as the last three
(TR, TE , ξ) are the acquisition parameters. In Gupta
[40] a composite of the tissue parameters is estimated
as part of the displacement estimation algorithm.

As with all intensity based-methods, the origi-
nal estimates of the displacement field consist of the
component of the displacements perpendicular to the
isophotes, (this limitation is known as the aperture
problem, see Horn [46] for details) which are later reg-
ularized to produce a full displacement estimate. The
quality of these estimates are highest in the middle of
the wall and can be very noisy near the myocardial
boundaries. This method has the advantage of not
having to detect tags explicitly, but here the bright-
ness variation parameters must be either known or
estimated. A rough pre-segmentation of the ventri-
cle is also needed here to avoid smoothing across the
boundaries. These methods have, so far, been applied
only in 2D.

2.3.2 Methods Relying on Phase Contrast
MRI

Several investigators have employed changes in
phase due to motion of tissue within a fixed voxel
or volume of interest to assist in estimating instanta-
neous, localized velocities, and ultimately cardiac mo-
tion and deformation. While the basic ideas were first
suggested by van Dijk [102] and Nayler[72], it was Pelc
and his team [82, 83, 81] that first bridged the tech-
nique to conventional cine MR imaging and permitted
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Magnitude X−Velocity Y−Velocity Z−Velocity

Figure 2.7: Three-slice thick volumetric dataset obtained using magnetic resonance phase contrast images. The
left column shows the magnitude images for the three slices and the other columns show the magnitudes of the
velocity in the X, Y and Z directions respectively. From Shi et al[91]

the tracking of myocardial motion throughout the car-
diac cycle. This technique basically relies on the fact
that a uniform motion of tissue in the presence of a
magnetic field gradient produces a change in the MR
signal phase that is proportional to velocity. In prin-
ciple, these instantaneous Eulerian velocities can be
derived from each pixel in an image acquisition. An
example of such an acquisition is shown in figure 2.7.

However, clusters of pixels within regions of interest
(ROI’s) are typically analyzed when predicting point-
wise motion, primarily due to signal-to-noise issues.
It is worth noting that, as with MR tagging, accu-
rately tracking myocardial motion in 3D requires ad-
ditional image processing, and little has been reported
in the literature about this problem. Assembling the
dense field phase velocity information into a complete
and accurate 3D myocardial deformation map is cur-
rently a limiting problem for this technology. Further-
more, current phase contrast velocity estimates near
the endocardial and epicardial boundaries are less ac-
curate. This is due to the fact that the required size
of an ROI, for signal-to-noise purposes, is typically
large and can include information from outside the
myocardial wall. Thus, as with MR tagging, the most
accurate LV function information is obtained from the
middle of the myocardial wall, and the least accurate
information is usually near the endocardial and epi-

cardial wall boundaries. In general there seem to be
the following two common approaches to extracting
useful information from phase contrast images:

• Processing the data directly to estimate strain
rate tensors [105, 82].

• Integrating the velocities over time, via some form
of tracking mechanism to estimate displacements
[70, 20, 111, 44].

We also note that Shi [91] combined the phase-
contrast velocities with shape-based displacements
[90] within an integrated framework based on contin-
uum mechanics.

2.3.3 Computer Vision Based Methods

Quantifying the deformation of the LV could be
seen as a two-step process: first establishing corre-
spondence between certain points on the LV at time t
and time t+1 and second, using these correspondences
as a guide, solving for a complete mapping (embed-
ding) of the LV between any two time frames. This
problem could be posed for the entire myocardium
or just portions of it, such as the endocardial surface
alone. There has been considerable effort in general
on these two topics, although rarely have they been
addressed together.
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One common approach to establishing correspon-
dence is to track shape- related features on the LV
over time as reported by Duncan [29], Amini[3], Gold-
gof [53], Ayache [19], McEachen [64] and Shi [90]. The
preliminary displacement estimates here are, in gen-
eral, generated using the following steps:

• First extract the endocardial and epicardial sur-
faces from the images.

• Then calculate the quantity that is used as the
shape feature from these surfaces. These tend to
be the curvatures; either the principal curvatures
[90] or the Gaussian curvature [53].

• Track points on the surfaces from one frame to
the next by minimizing a metric such as bending
energy or difference in curvature.

Then the displacement field is smoothed (as was
the case with previous methods) to produce the final
output displacements. A validation study of shape-
based tracking by comparing trajectories with im-
planted markers was reported by Shi [90], which found
that the accuracy of tracking was within the resolution
of the image voxel sizes. Another interesting approach
by Tagare [99] poses the mapping problem in 2D as a
bimorphism between two curves, thus eliminating the
basic asymmetry in the tracking process. This has not
been extended to 3D yet.

In general all of the methods here depend on an
accurate segmentation of the LV walls, but have the
advantage of being imaging modality independent.
They have been used on MR, CT [90] and 3D ultra-
sound [78]. The dependency on obtaining an accu-
rate segmentation, however, remains a significant is-
sue, as there still are no fully automated robust and
efficient LV surface segmentation methods. The accu-
racy of the LV segmentation needed for these methods
to be successful is obviously greater than in the case
of methods using MR Tagging. This is because the
surfaces themselves provide the features as opposed
to being bounding surfaces within which to search for
intersections.

There has been some work done on using the inten-
sity of the images directly to track the LV. Song and
Leahy [93] used the intensity in ultrafast CT images to
calculate the displacement fields for a beating heart.
This is similar in scope to some of the work done with
MR tagging (e.g. Gupta [40]) but does not have the
advantage of a specially modulated image.

2.4 Modeling used for Interpolation

and Smoothing

In general, the initial displacement fields produced
by the methods discussed in the previous section have
the following characteristics:

• They are sparse. Displacements and/or velocities
are only available at certain points and not the
whole of the myocardium.

• They are noise-corrupted. This is an inherent
problem in all medical image analysis methods,
although the level of noise is very method depen-
dent.

• They may be partial. Even where displacements
and/or velocities are available, only a certain
component of the displacement vector may be
known.

The estimation of accurate myocardial deformation
requires a dense, smooth and complete displacement
field. This is because the deformation is typically cap-
tured in terms of the strain which is a function of the
derivatives of the displacement field. The process of
taking derivatives is very noise-sensitive and this is
what makes this problem so challenging as compared
to simply estimating the volume of the LV which is an
integral measure and hence relatively less sensitive to
noise.

The interpolation and smoothing of the displace-
ment field has been attacked in a number of ways. This
step essentially constitutes the modeling-step and it is
data-independent. The models contain implicitly or
explicitly the assumptions made about the displace-
ment field. All of the ‘models’ currently used in this
area are passive; they ignore the fact that the heart is
an actively contracting organ and not a passive lump
of tissue. Some of the modeling strategies are:

• Impose a regularization constraint which penal-
izes the spatial derivatives, either explicitly [24,
107, 40] combined in some cases with an isochoric
constraint1 [24, 93]. This is further developed in
the use of explicit continuum mechanics models,
which behave as regularizers [90, 42, 77].

• Model the displacement field by using a smooth
spatial parameterization such as affine [70, 73] or

1The myocardium is considered to be nearly incompressible
and the isochoric constraint tries to enforce this incompressibil-
ity.
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splines [55, 1]. This method is used most of-
ten when displacement field modeling and tag-
extraction are combined in a single step, and is
driven by the ease of parameterizing the geome-
try.

• Use of temporal smoothness or damping [80, 42,
99, 91] and temporal periodicity constraints [64].

In a sense, all of the above methods try to penalize
the derivatives of the displacement either in space, or
in time, or both. We note that imposing a polyno-
mial distribution such as an affine model is equivalent
to setting all derivatives higher than a certain order
to zero. This is a limiting case of penalizing spatial
derivatives and will be explored in more detail in chap-
ter 6.

Spatial Smoothness Constraints: The applica-
tion of spatial smoothness constraints relies on the
intuition that given that the myocardium is a single
object, its displacement field can be expected to be
smooth. If this is violated then the tissue would tear
apart. Therefore, high values of derivatives in the dis-
placement field (or equivalently high frequency compo-
nents of its Fourier Transform in the spatial sense) are
likely to be the result of noise. This results in methods
that penalize the spatial derivatives as in the optical
flow method proposed by Horn and Schunk [47]. In
this case the optimal displacement field is found as
a trade-off between satisfying the gradient constraint
equation and a regularization term as follows:

û =
arg min

u

∫

x

(
dI

dt
+u.∇I)2 +λ(

∑

ij

(
dui

dxj
)2)dx (2.3)

where the u is the displacement vector field over a
space x which can be two or three-dimensional, t is
time and I represents the image.

The gradient constraint term (It + u.∇I)2 essen-
tially tries to match points of equal intensity and is
the data term, whereas the sum of squared deriva-
tives multiplied by the smoothness factor λ constitutes
the regularizing term. The regularizing term can be
thought of as a model term as it contains no image re-
lated information. It captures the authors’ prior belief
in the properties of the displacement field.

This framework is used in many of the approaches
described earlier, although it is adapted to either
match the data or the prior information. For ex-
ample, in the case of the variable brightness optical
flow method [40, 86], the gradient constraint term is

replaced by a different measure which allows for the
fading in the tag pattern. In a more general case, the
gradient constraint term can be replaced by an image-
data adherence term. This term tries to find a dis-
placement field which stays close to some pre-existing
displacement estimates obtained using approaches de-
scribed in section 2.3. For example if an estimate um

of the displacement field exists, we could modify the
Horn and Schunk framework as follows:

û =
arg min

u

∫

x

|(u − um)|2 + λ(
∑

ij

(
dui

dxj
)2)dx (2.4)

We can expand on this model by also using an
isochoric constraint which tries to penalize volume
changes, as was done in Denney [24] and Song [93].
This takes the form (∇.u)2 and is motivated by the
fact that the myocardium, like most soft tissue, is
thought to be approximately incompressible2. Alter-
natives also include the use of thin-plate spline energy
terms [55] or B-spline terms [1].

The combination of the smoothness and isochoric
terms describes the myocardium in terms of what is
essentially an internal energy function. Continuum
mechanics models of the myocardium as found in the
biomechanics literature [51] are also described as in-
ternal energy functions, which also essentially penal-
ize derivatives. So it is a natural step at this point to
try to bridge some of this knowledge into the inverse
problem of motion estimation. To do this, the regu-
larization term is replaced by an explicit mechanical
model, which is in most cases an isotropic linear elas-
tic model[91, 80, 42]. A transversely isotropic elastic
model is used by Papademetris [78]. This allows the
model to account for the preferential stiffness of the
myocardium along the fiber directions. It is interest-
ing to note that, from continuum mechanics theory
[62], an internal energy function can describe a real
material if and only if it is invariant to rigid transla-
tion and rotation, otherwise this material violates the
2nd law of thermodynamics. It can be shown that the
classical model of Horn and Schunk is not invariant to
rotation and would fail this criterion.3

If we discretize equation (2.4), differentiate it with
respect to u, and concatenate all the individual dis-
placements u into a large vector U we can write the
generalized expression:

[K]U = F (2.5)

2There is in fact some change in volume, due to blood flow
(reperfusion) into the wall, but this is considered to be small.

3We will discuss this in more detail in section 5.2.
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where K is the assembled matrix of local derivative
operators (as in Kass [54]) and is sparse. This con-
tains the model constraints which can be derived ei-
ther from a regularization term or an explicit contin-
uum mechanics model. F is the external driving force
which tries to deform the model to adhere to the im-
age data. This equation is most easily solved using the
finite element method [9] in cases of complex geometry
and especially in three dimensions.

Temporal Smoothness Constraints: There are
two types of temporal smoothness constraints in the
literature. In the first case, we have an explicit tem-
poral filtering scheme applied to individual displace-
ments. This is primarily, but not exclusively, done in
the case where the input data is derived from phase
contrast velocity. In the work of Meyer [70], a Kalman-
filtering approach is used to smooth the displacement
field. Zhu [111] and McEachen [64] parameterize the
problem in the frequency domain by expanding the
displacement of an individual point over time in terms
of Fourier series and try to take advantage of the pe-
riodicity of the left-ventricular motion.

The second case involves extending equation (2.5)
to include dynamics. This results in the following gen-
eralized expression:

MÜ + CU̇ + KU = F (2.6)

where M is a mass matrix and C is a damping ma-
trix. This approach also results in a form of temporal
smoothing, which is motivated by similar approaches
in continuum mechanics. In the work of Park [80], this
was reduced to CU̇ = F by ignoring the mass matrix
and setting the stiffness to 0. In Haber [42] the stiff-
ness term is also preserved. The full dynamical model
is employed in Shi [91]. In this case both shape-based
displacements and phase-contrast velocity information
are used. The full dynamical model is also used in
work done in the computer vision and graphics com-
munities by Metaxas and Terzopoulos [101].

We also note that Pentland [48] and Nastar [71]
use this approach and by ignoring the damping term,
reduce it to a modal finite element equation, which
parameterizes the deformation in terms of the eigen-
modes of the stiffness matrix K. In both of these ap-
proaches, however, there is no explicit notion of corre-
spondence between material points and the displace-
ments are found using a global distance measure.

2.5 Validation of Results

The validation of LV deformation results is an ex-
tremely important and often neglected aspect of work

in this area. In general, we need to address the follow-
ing questions:

• Does the imaging modality produce an accurate
picture of the underlying geometry and/or dis-
placement and velocity?

• Does the analysis algorithm extract these data
accurately and reliably?

• Are the results meaningful for clinical and/or
physiological purposes? Do they discriminate be-
tween healthy/dysfunctional regions?

In general, the first two questions are difficult to
address in vivo. Often phantoms are used with known
shapes and displacements, so there is ground truth
information to compare any measurements with (e.g.
Kraitchman [56] and Constable [20]). An example of
this is shown in figure 2.8. In Young [108] it was
shown that away from the free surfaces of the gel-
phantom, a Rivlin-Mooney [62] analytic model accu-
rately reproduced the 2-D displacement of magnetic
tags. This showed agreement between the theory
(model) and the image-derived displacements. How-
ever, the real in vivo measurement of the beating heart
usually presents additional complexities which intro-
duce problems not typically accounted for in phan-
toms, such as full and complex 3D motion and fast
blood flow through the ventricle. These can generate
artifacts in the images and cause significant distor-
tions.

The second question has been attacked in ap-
proaches based on MR tagging (e.g. Amini[1] Prince
[86] and Haber [42]) using simulations. One example
shown in figure 2.9 uses a kinematic model of the left
ventricular motion by Arts [5] within an MR tag im-
age simulator [103] to generate synthetic images with
known displacements. Comparison with manual ex-
traction has often been used as the gold standard to
validate the process of tag-extraction, as in Kraitch-
man [56].

In the shape-tracking work of Shi [90], implanted
markers are used as the gold standard. These mark-
ers are physically implanted in the myocardium before
the imaging. An MR image of a heart with implanted
markers is shown in figure 2.10. This approach to val-
idation tries to attack the first two questions simul-
taneously. Here, algorithm generated displacements
are compared to the marker-displacements (these are
easily identifiable from the images). This technique
has the disadvantage of comparing trajectories in a
smaller number of points, however, it is done on real
data as opposed to simulations.
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Figure 2.8: MR image of gel phantom with SPAMM
(tag) stripes in undeformed state. (From Kraitchman
[56]) Courtesy of Dr Leon Axel, University of Penn-
sylvania.

The third question is not addressed much in the im-
age analysis literature, quantitatively. Often an exam-
ple of the results on a normal and a hypertrophic heart
is shown and the differences ‘correlated’ with other ev-
idence from the cardiology literature. It is known from
the literature (e.g. Croisille et al, [21]) that on average
the changes between normal and abnormal regions in
terms of radial and circumferential strains is on the
order of 10 − 15%, and much smaller in the case of
borderline regions. A quick calculation shows that, in
the case of MR tagging based work where the tags are
typically 5 voxels apart at end-diastole, the change in
the spacing at end-systole is going to be around 0.5
voxels or less. In the case of shape-based methods
where the whole of the ventricle is used, this num-
ber is somewhat larger (around 0.8 voxels). If such
changes are to be detected reliably, and we were to ig-
nore accumulated tracking errors after the tags and/or
boundaries have been extracted, we need to be able to
extract tags/boundaries at a precision of 0.25–0.4 of
a voxel or less. This is currently beyond the perfor-
mance level of all automatic algorithms on real data;
hence manual and semi-automatic algorithms are used
in most cases.

In Croisille [21], the reported results are averaged
over a number of studies to reduce the effects of errors

in detecting individual tag lines and variations among
different subjects. This may be useful for exploring the
physiology but not plausible in the case of diagnosis,
unless the results are averaged over large sections of
the ventricle to reduce noise.

2.6 Conclusions and Further Research

Directions

The major problem/bottleneck in most of the work
presented in this chapter is the extraction of features
such as tag lines and especially left ventricular sur-
faces from the image data. As mentioned in the pre-
vious section, there is a reliance on manual and semi-
automatic techniques to obtain this information. An-
other problem, which is less an issue of image analysis
and more an issue of medical imaging technology, is
the difficulty of using magnetic resonance in a clin-
ical setting. It is not possible to image patients in
an emergency room (as is the case for example with
ultrasound) and metallic objects such as pacemakers
cause serious problems and dangers when placed in
the magnet.

As mentioned earlier, most of the models used to
smooth and/or interpolate the displacement field are
passive; they do not contain any active contraction in-
formation. This can result in an underestimation of
the deformation, as the model biases the results to-
wards no change. This was noted in the work of Park
[80] and is the reason why no spatial smoothness was
employed there. This, however, is not a sufficient so-
lution to the problem as some spatial smoothing is of-
ten needed to cope with the noise in the data and the
sparseness in the image information. A possibly bet-
ter solution would be to incorporate some knowledge
of the active contraction of the left ventricle during the
first half of the cardiac cycle. This has the potential of
eliminating the bias problem, although it would intro-
duce more parameters to be set or ideally estimated
from the image data. We explore this problem in more
detail in chapter 6.

Magnetic resonance imaging represents a promis-
ing modality and the development of improved analy-
sis techniques will enhance the possibilities of it being
used clinically. In the meantime we note that improve-
ments in 3D echocardiography technology, such as the
introduction of harmonic imaging [13] and contrast
agents [84], are beginning to make this modality an at-
tractive and somewhat cheaper alternative. We have
already reported preliminary work in this area [78]. A
more detailed exposition can be found in chapter 7.
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Figure 2.9: Example of the use of the cardiac simulator [5, 103] used to validate methods based on MR tagging.
Left: the undeformed prolate spheroidal model of the LV in the reference state. Right: a tagged image corre-
sponding to a selected image plane. (From Amini[1]) Courtesy of Dr Amir A. Amini, University of Washington,
St Louis.

Figure 2.10: 2D MR image slice of left ventricle with implanted markers. These are used to validate shape-based
displacement estimates. (From Shi [90])



Chapter 3

An Interactive Approach to Left

Ventricular Segmentation

3.1 Introduction

In this chapter, we present the methodology used
to extract the bounding surfaces of the left-ventricular
myocardium from an image sequence. These surfaces
are used as inputs to the mesh generation and shape-
based tracking methods, which will be described in
sections 4.3 and 4.4.

For the accurate estimation of cardiac deformation,
the accuracy required is above what automated al-
gorithms can currently achieve. We therefore used a
semi-automated approach which allows for both user
interaction and correction. Recently some interesting
work in the area of interactive segmentation has ap-
peared in the literature [60, 50]. To satisfy the need
for user interaction at all stages of the segmentation
process, we take a slice-by-slice approach to 3D seg-
mentation. In this way the surface is extracted in
a 2D fashion one contour at a time (a contour rep-
resenting the intersection of the surface with the 2D
image slice) and reconstructed using shape-based in-
terpolation (see section 4.1.1) and Delaunay triangu-
lation (see section 4.2.1).

Two-dimensional contour extraction in Biomedical
image analysis has often been done using deformable
models or snakes. These were first introduced by Kass
et al[54]. A review article by McInerney and Ter-
zopoulos [66] describes the use of deformable models
in more detail. We also note the alternative level-set
approach [87, 110] which instead considers the con-
tour to be the zero-level set of a three dimensional
function and tries to evolve this function to solve the
segmentation problem. The level-set approach is not
well suited for easy user interaction1 so in this work

1In the case of level-sets the definition of the curve is implicit.
This makes it is harder to come with an easy way to interactively
edit the curve. One way might be to first extract the zero-

we use a snake-based deformable model approach.
We further represent the two-dimensional contours

as B-splines [22]. The choice of B-splines was deter-
mined by two major factors (1) the ease of parame-
terization of a curve with excellent smoothness and
continuity properties and (2) the ease of user interac-
tion for editing curves before and after the automated
segmentation stage. Also splines are available in the
Open-Inventor toolbox[106] used for the visualization
part of the segmentation.

Ease of interaction was was probably the princi-
pal reason for the use of B-splines as opposed to the
Fourier parameterization employed by Staib [95] and
Chakraborty [15].

3.2 Parameterizing Closed Curves Us-

ing B-splines

In this section we describe how closed curves can be
parameterized using B-splines. We start by defining
the terms normalized arclength, knots, knot points and
control points. Next we describe the definition of the
B-spline itself. Finally we put the two together to
parameterize a closed curve using B-splines.

Definitions We will define a two-dimensional curve
as:

c(s) = (x(s), y(s)) , s ∈ [0.0, 1.0) (3.1)

where s is the normalized arclength, that is the ar-
clength divided by the total circumference of the
curve. Each curve is divided into N non-overlapping
segments. We define the knot vector k, to be the con-
catenation of the normalized arclengths of the points

level set, parameterize it using splines, edit this, and then form
the level-set function again. While this is doable, it is also
cumbersome.

15
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Curve
(N=6, n=4)

Control
Polygon

q3
q0 p0 ,s=k0=0.0 p3 ,s=k3

p1 ,s=k1

q1
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p5 ,s=k5
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q2

q4
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s

Knot Point 3 at s=k3

Control Point 3

Figure 3.1: The elements of a B-spline. This curve is
parameterized using six (N=6) cubic (n=4) B-splines.
The parameterization is defined N , n the location of
the control points (qi) and the knot sequence (ki). The
curve is divided into N non-overlapping segments. Ad-
jacent segments are joined together at the knot points
pi. The curve has continuity C2 at the knot points,
and C∞ elsewhere.

where the adjacent segments of the curve are joined.
For example segment 0 and segment 1 are joined at
the point s = k1.

2 The point pi = c(ki) is called a
knot point. These definitions are illustrated in figure
3.1.

We further note that the knot vector k has size N .
For later notational convenience we define a (recur-
sive) periodic extension to k as:

ki = ki 0 ≤ i < N

= ki+N i < 0

= ki−N i ≥ N

B-splines Here we follow the notation of
Lancaster[58, section 4.4] (see also deBoor[22].)

Definition: Let ki where i = −3,−2, . . . , N + 3
be knots satisfying km < km+1,m ∈ (−3, N + 3). A
one-dimensional B-spline of order n, n=1,2,3,4 with
these knots is a piecewise (n-1)th degree polynomial
not identically zero of continuity class C(n−2) in the
region [k−3 ≤ x < kN+3] and of minimal support.
When n = 1 we interpret the class C−1 as admitting
functions with discontinuities at the knots ki.

B-splines of orders 1 to 4 are shown in figure

2Hence the use of the term knot, a place where two different
things are joined together.

3.2(left). Note that a spline is defined as Bi,n where
i defines the start of the region of support of the B-
spline in terms of the knot sequence ki and n defines
the order of the spline. All of the splines in figure
3.2(left) start at i = 1 hence are all B1,n. A function
is approximated as a sum of different splines as also
illustrated in figure 3.2(right).

We compute the value of a B-spline recursively as
follows:

Bi,n =
s − k1

ki+n−1 − ki
Bi,n−1(s) + (3.2)

ki+n − s

ki+n − ki+1
Bi+1,n−1(s)

Bi,1 =

{
1 ki ≤ s < ki+1

0 otherwise
(3.3)

where i = 0, . . . , N − 1 and n = 1, 2, 3, 4..
B-splines calculated in this way also have the addi-
tional property that:

N−1∑

i=0

Bi,n(s) = 1 (3.4)

Using the above definitions we represent a function
f(s) as a weighted sum of order n B-splines as:

f(s) =

N−1∑

i=0

qiBi,n(s) (3.5)

where qi are the appropriate weights. We further note
that we can write the derivatives of f(s) as linear com-
binations of the derivatives of Bi,n(s) as:

drf(s)

dsr
=

N−1∑

i=0

qi
drBi,n(s)

dsr
(3.6)

A two-dimensional curve c(s) = (x(s), y(s)) is pa-
rameterized as:

x(s) =

N−1∑

i=0

qx,iBi,n(s) , y(s) =

N−1∑

i=0

qy,iBi,n(s)

(3.7)
So the full representation of the curve c(s) consists

of a set of knots ki, a corresponding set of weights
qx,i, qy,i and the choice of the order of the B-spline n
(see figure 3.1). We describe the selection of these,
next, in reverse order:

Choosing the order of the B-splines: In this
work we only use fourth-order (n = 4, cubic) B-
splines. This ensures at least C2 connectivity over
all the curve which allows us to compute the second
partial derivatives needed in the segmentation work
(see section 3.3).
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f

Figure 3.2: Approximation of a function with B-splines. Left: B-splines of orders 1 to 4. Note (i) the limited
support of each spline and (ii) that the order of the polynomial describing each spline is one less than the
order of the spline. Right: Representation of a function f as a set of cubic (fourth-order) B-splines. We can
represent function f in the region [k3, k4) as a linear combination of the B-Splines B0,4, B1,4, B2,4 and B3,4, e.g.

f(s) =
∑3

i=0 qiBi,4, where qi are the appropriate weights.
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Selecting the knots: There are two common
choices for setting of the values of the knots ki. The
first is the so-called uniform parameterization which
sets ki = i

N . A better choice is the chord length pa-

rameterization which sets ki+1 = ki+|pi+1−pi|
L , where

L is the total length of the curve. The chord length
parameterization has the advantage of allowing the
placement of more knots in regions of high curvature.
There still is, however, no firm concept of an optimal
knot spacing [33].

Selecting the weights via a control polygon:
Often the pair (qx,i, qy,i) is given a geometrical inter-
pretation as the coordinates of the equivalent control
point for knot point i. These control points are often
linked together to form the so called ‘control-polygon’
for the spline as shown in figure 3.1. Next we define
the following vectors which consist of the x and y co-
ordinates of the knot points and the control points
respectively:

px = [x(k0), x(k1), . . . , x(kN−1)]
′

qx = [qx,0, qx,1, . . . , qx,N−1]
′

py = [y(k0), y(k1), . . . , y(kN−1)]
′

qy = [qy,0, qy,1, . . . , qy,N−1]
′

It can be shown that px = [W ]qx and py = [W ]qy

where W is an N × N matrix.3 We can use this re-
lationship to generate a set of control points from a
set of knot points specified by the user in some fash-
ion. This is also exploited in the interactive segmen-
tation part of this work. The user may adjust the
knot points (px, py) which are on the curve and the
control points (qx, qy) can be computed using a sim-
ple matrix multiplication. The matrix W only needs
to be inverted once at the start of the process. It is
also worth pointing out that for cubic B-splines W is
a circulant pentadiagonal matrix and can be inverted
using sparse matrix methods [85].

Alternatively the control points qx, qy and the knots
ki can be generated by performing a least squares fit
to a set of ordered points. Algorithms exist which will
automatically select the number of knots as well as the
placement of control points and knots given a smooth-

3This is easy to see. The position of any point on the curve

v(s) = (x(s), y(s)). We can write x(s) =
∑N−1

i=0
Bi(s)qx,i and

similarly y(s) =
∑N−1

i=0
Bi(s)qy,i. For the r-th element of px

and py , s = kr and Bi(s) = Bi(kr) is a constant. So the r-
th element of px (and similarly the r-th element of py) can be
written as a linear combination of the control point coordinates
qx,i weighted by the constants Bi(kr). We collect the values of
these constants into the N × N matrix W .

ness criterion. For more information see Dierckx[25,
chapters 3-6].4

3.3 A B-spline Snake Implementation

A snake is a controlled continuity spline deforming
under the influence of image forces. The deformation
tries to minimize an energy functional of the form:

E =

∫ 1

0

Eint(c(s)) + Eext(c(s))ds (3.8)

where Eint is the internal energy function which tries
to preserve the smoothness of the curve and Eext is the
external or potential energy term which tries to attract
the curve towards desirable image features. Typically,
Eint consists of squared derivatives of c(s) with respect
to s. Eext is usually defined as the negative of the
magnitude of the image gradient.

3.3.1 The Internal Energy Functional

In our implementation we set the internal energy
to be equal to:

Eint(c(s)) =
(∂2x(s)

∂s2

)2

+
(∂2y(s)

∂s2

)2

(3.9)

We will discuss the external image function in section
3.3.2.

The snake c(s) is parameterized using B-splines.
This enables us to construct a straightforward numer-
ical algorithm to find the optimal c(s).5

We use fourth-order or cubic B-splines. This is the
lowest order which ensures C2 continuity throughout
the curve. This enables us to calculate the Eint term
as defined in equation (3.9). The knots ki are also kept

4When using standard packages for the implementation of
B-splines such as FITPACK [25] or Open Inventor [106] one
can only specify knot spacing and control points for open
curves. Closed curves can be generated by using the fol-
lowing trick. Consider a curve parameterized using N cubic
(n = 4, N ≥ 4) B-splines with control points q = [q0, . . . , qN−1]
and knot vector k = [k0, . . . , kN−1]. Both FITPACK and
Open Inventor will require this closed curve to be converted
into open-curve notation. This is achieved by padding the
knot vector as: k = [1 − kN−1,1 − kN−2,1 − kN−3, k0, . . . ,

kN−1,1 + k0,1 + k1,1 + k2,1 + k3]. and setting the control
point vector to have the form q = [qN−1, q0, . . . , qN−1,q0,q1].
We note here number of extra elements in the vectors k and q

(shown in bold-print) is independent of the number of control
points N and is solely a function of the order of the B-splines n.
These adjustments generate the equivalent open curve for use
in algorithms which do not assume closed curves.

5The original implementation for uniformly parameterized
contours was by Hemant Tagare [no reference available] who
generously allowed the author access to his source code. This
was subsequently extended for cases where the parameterization
was not uniform.
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fixed during the iterations of the snake. Hence the
change in the position of the snake is solely a function
of the location of the control-points (qx, qy).

3.3.2 The External Energy Functional

.
The external energy functional (the Eext term of

equation (3.8)) defines the type of feature which we
would like the snake to be attracted to. One common
form of this is

Eext(s) =

∫ 1

0

−|∇I(c(s)|2ds (3.10)

which tries to attract the snake towards maxima in
the local image gradient. This is the most common
energy function when one is trying to detect relatively
clean boundaries, such as is the case in MR images.

Chakraborty et al [14] demonstrate the improve-
ment that can be obtained by using also an intensity
homogeneity constraint for the interior of the contour.
This approach leads to a generalized form for Eext(s)
as follows:

Eext(s) =

M∑

m=1

αm

∫ 1

0

Em(c(s))ds (3.11)

where now the external energy is dependent on M
different modules Em weighted by their relative confi-
dence αm.

In this work we use a combination of the following
three modules; the gradient module where as above
E1(c(s)) = −|∇I(c(s))|2, E2(c(s)) which is derived
from a texture module and E3(c(s)) which is derived
from a prior curve vp(s).

The texture module: This is a classification
scheme where each pixel in the image is assigned to
a texture class c. This work approach described in de-
tail by Chakraborty [15, 14, Section 3.3] and is derived
from the work of Manjunath[63]. We follow here the
presentation given in Chakraborty [14] and model the
intensity image as a Gaussian Markov random field
(GMRF). This models the conditional probability of
the image intensity given the classification.

Let S denote the M × M image lattice, i.e. S =
{(i, j), 1 ≤ i, j ≤ M}. Let {Ls, s ∈ S} and {Ys, s ∈ S}
denote the labels and the zero mean array obtained
from the image data respectively. Note that the la-
bels can belong to only a certain number of texture
classes (typically 2 or 3). Let Ns denote the symmet-
ric second order neighborhood of a site s consisting
of the eight nearest neighbors. Now, assuming that

all the nearest neighbors of s also have the same la-
bel as s, we can write the following expression for the
conditional density of the intensity at the pixel site
s[63]:

P (Ys = ys|Yr = yr, r ∈ Ns, Ls = l)

= exp(−U(Ys=ys|Yr=yr,r∈Ns,Ls=l))
Z(l|yr,r∈Ns) (3.12)

where Z(l|yr, r ∈ Ns) is the partition function of the
conditional Gibbs distribution, and

U(Ys = ys|Yr = yr, r ∈ Ns, Ls = l) (3.13)

=
1

2σ2
l

(

y2
s − 2

∑

r∈Ns

Θl
s,rysyr

)

In (3.14), σl and Θl are the GMRF model parameters
of the lth texture class. Further, the model parameters
satisfy: Θl

s,r = Θl
s−r = Θl

r−s = Θl
r. These parameters

for each region are estimated by a least squares esti-
mate method using a window around a user specified
point, representative of that particular region.

Once the intensity image Y ∗ has been modeled, the
next task is to determine the classification. This is
achieved by maximizing the posterior distribution of
the texture labels given the intensity image:

P (L|Y ∗) =
P (Y ∗|L)P (L)

P (Y ∗)
(3.14)

where L corresponds to the classified image with Ls

describing the label at the sth pixel. The label field
L is modeled as a second order MRF, which says that
P (Ls|LS/s) = P (Ls|Lr, r ∈ N̂s) where LS/s is the
whole label field excluding the site s. It acts as a
prior that emphasizes the property that neighboring
pixels of the classified image share the same label (see
Leahy [59] for details). Maximizing (3.14) gives an
optimal Bayes estimate. We maximize (3.14) using the
coordinate-wise descent method of Leahy [59], similar
to the iterated conditional mode (ICM) algorithm [10,
11].

Once the classification L has been obtained we
would like to attract the curve to locations where there
is a texture boundary. So we create an energy function
E2(c(s)) = −|∇L(c(s))|2 to be included in equation
3.11.

The prior module: The third term in equation
(3.11) comes from a prior curve. For the purpose of
generating E3(c(s)) we represent the prior curve as its
distance map (generated using the chamfer method of
section 4.1.1. If this prior curve was to be derived
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Texture+Intensity
 Energy Map

Original Image Texture Based MRF
Segmentation

Intensity Energy Map

Figure 3.3: External Energy Functions for intensity and intensity+texture snakes. Note that the intensity only
energy function is very noisy inside the left-ventricular blood-pool which creates many local minima for the
deformable contour. The use of the texture eliminates most of these minima.

End−Diastole

End−Systole 3D wireframe in image cards rendering

Figure 3.4: Left: Images and superimposed extracted contours. Only two of the eight frames are shown. Right:
3D rendering showing all the wire-frame contours superimposed on a long axis (original) and a short-axis (inter-
polated) image slices.
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(a) (b) (c)

(f)(d) (e)

Figure 3.5: This figure illustrates the use of multiple external energy functions. (a) shows the original image, (b)
the texture segmentation, (c) the temporal smoothness term, (d) the external energy function using the gradient
alone, (e) gradient+texture external energy function and (f) enlarged gradient+ texture+ temporal smoothness
external energy function.

from a number of curves, it could simply generate as
the zero set of the (possibly weighted) means of the
distance functions of these curves.

In this particular work the prior curve is used to
enforce a temporal constraint on the segmentation.
Consider a time frame t where we are trying to es-
timate curve c(t). We can generate a prior curve for
the segmentation as follows:

dm(cp(t)) = 0.5β(dm(c(t − 1)) + dm(c(t + 1)))

+(1.0 − β)dm(c0(t)) (3.15)

where dm() is the distance map of a curve as defined
in section 4.1.1. The curves c(t− 1), c(t+1) represent
the current estimates of the same contour in the pre-
vious and next time frames and c0(t) represents the
last estimate of this curve. The factor β is the damp-
ing factor. All these are used to generate an estimate
for the current curve cp(t). Given dm(cp(t)) (there is
no need to explicitly extract cp(t)) we can generate an
external energy term E3(c(s)) as follows:

E3(c(s)) = −|dm(cp(t))| (3.16)

which tries to constrain c(s) to stay close to cp(t).
In a similar way we could impose a known expected

thickness constraint such as the one in Zeng [110] to
keep a curve within a certain distance from another
curve. In that case E3(c(s)) would take the form:

E3(c(s)) =

{
0 |dm(cp(t))| < t

−1 otherwise
(3.17)

where t is the pre-specified thickness. Note that
while both in this definition and also in Zeng[110]
there is no explicit correspondence between the two
curves/surfaces, an ‘asymmetric nearest neighbor’ cor-
respondence is implicitly used6. This is because
at each point p on the curve/surface the value of
dm(cp(t)) is the distance between p and its nearest
neighbor on the prior curve cp.

Minimization of Energy Functional: Having de-
fined the terms of the energy functional of equation
(3.8) we describe here the procedure used to obtain

6This approach runs into problems when the two curves are
locally not parallel as whole regions of one curve map to a sin-
gle point on the other curve. Also, whole regions on the second
curve may not contribute to this map resulting in ‘cutting cor-
ners’. We will discuss this problem in greater detail in section
4.1.2.
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the final curve. First given the external energy func-
tion Eext(x, y) defined over the image plane we cal-
culate its derivatives with respect to x and y, ∂Eext

∂x

and ∂Eext

∂y . These derivatives are the driving terms for
the deformation of the snake. Further we note that
the coordinates of control point i, (qi,x, qi,y) are the
weights for the B-spline Bi (we use Bi to abbreviate
Bi,4 as the order of the B-splines from here on is as-
sumed to be 4). We can write the energy function E
as a sum of N parts each relating to a B-spline part
of the snake Bi as:

E =

N∑

i=1

Ei (3.18)

Ei has a region of support from ki ≤ s < ki+4. The
individual elements7 Ei are defined as:

Ei(s) =

∫

s

Bi(s)×
(

Eint(s)
︸ ︷︷ ︸

internal energy

+ Eext(c(s))
︸ ︷︷ ︸

external energy

)

ds

(3.19)
where the integration is carried over the region of sup-
port of Ei. In this way we also approximate Ei(s) us-
ing the same B-spline parameterization. Then essen-
tially we perform a local steepest descent, by moving
one control point at a time until convergence. This is
best described algorithmically as follows:

• numiter = 0

• New Iteration:

– numiter 7→ numiter + 1

– Set maxshift = 0.0.

– For all control points i

∗ Calculate current estimate of Eint(s) =
E0

int.

∗ Next estimate Eδx
int which is is the inter-

nal energy function after shifting control
point (qi,x, qi,y) by δx.8

∗ At this point calculate ∂Eint

∂x as:

∂Eint

∂x
=

Eδx
int − E0

int

δx

∗ Then reset curve to original position,
shift control point (qi,x, qi,y) by δy and
similarly calculate ∂Eint

∂y .

7The use of the word element here is deliberate. This ap-
proximation is essentially a specialized application of the finite
element method. We will discuss the details of this method in
section 5.3.

8Typically δx = δy = 0.5 pixels.

∗ Perform steepest descent at control
point (qi,x, qi,y by estimating the shift
(dx, dy) as:

dx = β ×
(∂Eint(s)

∂x
+

∂Eext(x, y)

∂x

)

qi,x 7→ qi,x + dx

dy = β ×
(∂Eint(s)

∂y
+

∂Eext(x, y)

∂y

)

qi,y 7→ qi,y + dy

where β is the step size which is set
adaptively.9

– maxshift 7→ max(|dx|, |dy|,maxshift).

• If maxshift > threshold and numiter <
maxiterations goto New Iteration:

• End:

3.4 An Interactive Surface Segmenta-

tion Platform

In this section we describe a software platform
which implements the ideas presented so far in this
chapter. This software package called SurfaceEdit has
been used to significantly reduce the time needed to
accurately segment cardiac images. The package can
automatically propagate contours from slice to slice
and time-frame to frame if set in ‘batch’-mode. Also
it has on option to interpolate across frames saving
the expert user the need to initialize all the frames
before the automated segmentation can start, as illus-
trated in figure 3.6. Once a set of results is generated
the user can use the ‘editor module’ (see figure 3.8)
to correct the curves by moving the knot points. A
simple click of the ‘update’ button updates, in almost
real time, the 3D rendering of the surface in the 3D
viewer shown in figure 3.7 which can also be displayed
in long axis view as shown in figure 3.9.

SurfaceEdit has an intuitive user interface and can
simultaneously display orthographic views of the 3D-
image, for both Cartesian-space images (such as mag-
netic resonance) and cylindrical-polar space images
(such as 3D ultrasound). It can also display multi-
ple surface sections as well as multiple 3D surface ren-
dering from any angle. All of the above can also be
displayed in cine-mode. This is important as some-
times, especially in the case of ultrasound, the expert

9This comes from the work of Hemant Tagare [no reference
available]. The user sets a starting value β = β0. Then until

β
√

dx2 + dy2 < 3.0. we scale β 7→ 0.5β, to ensure that the
optimization does not go too fast.
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Figure 3.6: This figure illustrates the effectiveness of
temporal interpolation. On the left the original hand
traced contours for every second frame between end-
diastole(ED) and end-systole(ES). One the right the
contours produced by linearly interpolating between
ED and ES. Though somewhat smoother they still are
very close to the ‘true’ answer and would represent ex-
cellent initialization positions for the deformable con-
tour algorithm.

user needs to see the heart in motion in order to de-
termine where the boundary is. Additionally the col-
ors and transparency of the surfaces can be edited to
allow the user to display one surface inside another.
The software development was done in C++[97] using
the Open Inventor 3D Graphics Toolkit[106] and the
Motif[43] toolkit on the Silicon Graphics(SGI) Plat-
form. The FITPACK package [25] was used for the
implementation of the spline algorithms.

Figure 3.7: 3D Viewer: this shows embedded surfaces
and orthogonal image slices which help the expert user
evaluate and correct the results of the segmentation.
This viewer can also be used to display the images in
‘cine-mode’, i.e. in movie mode.

Figure 3.8: The Editor Module: we use a deformable
contour-based segmentation to extract contours on
short-axis slices and then form the surfaces using a
Delaunay Triangulation. The contours are parame-
terized using B-splines which allows for easy editing
by moving knot points, so that the expert user can
easily correct for cases where the image data is not
ideal. The editor also allows the user to edit up to
four contours at any given time.
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Figure 3.9: A long axis view: the user has almost
instantaneous feedback in 3D of any changes made
in the 2D contour editor. Contours can be propa-
gated both spatially and temporally which reduces the
amount of manual input necessary and takes advan-
tage of the smooth variation of the contours across
time and space.



Chapter 4

Geometrical Background and

Techniques

This chapter is divided in four sections. In section
4.1 we present techniques in two dimensions for inter-
polating between curves and generating ‘symmetric-
nearest’ neighbors for points on two curves. In section
4.2, we review the geometry of surfaces and focus on
techniques for surface construction from a set of planar
contours, local curvature calculation and an extension
to the ‘symmetric-nearest’ neighbors technique to 3D.
Then in sections 4.3 and 4.4 we describe the two two
major applications of exclusively geometrical ideas in
this work, the generation of a hexahedral mesh for a
volume and the shape-based tracking algorithm.

4.1 Geometrical Methods in Two-

dimensions

In this section we describe two numerical
techniques: the shape-based contour interpola-
tion technique and the symmetric nearest-neighbor
correspondence-finding technique.

4.1.1 Shape-Based Interpolation of Contours

The geometrical input to this work is slice-by-slice
contours of the left ventricular surfaces, extracted us-
ing the methods presented in chapter 3. One of the key
post-processing steps in generating either equally sam-
pled surfaces or tesselating between surfaces to gener-
ate solids is contour interpolation. Pengcheng Shi in
his thesis [89] provides motivation for generating equi-
spaced contours and an introduction to the Chamfer-
based shape interpolation technique. In this work we
extend this work [89] to the sub-pixel level. This is
important because the movement of points on the left-
ventricular wall is on average less than one voxel per
frame, hence it is crucial that the input surfaces pre-
serve as much as possible a sub-pixel resolution.

The first step in the interpolation process is to con-
vert each contour into a gray-value 2D image, where

200

200 200

200

0 0

283

283283

283

Figure 4.1: Chamfer transformation templates. The
two templates used by the dual chamfering processes
to calculating the distance maps: template (a) for the
top-to-bottom, left-to-right chamfering, and template
(b) for the bottom-to-top, right-to-left chamfering.

pixel values represent the shortest distance of points
from the contour, with positive values for inside the
contour and negative values for outside. After the
initialization, where we assign positive distances to
points inside the contour and negative distances to
points outside the contour, for all points that lie within
2 pixels of the contour, the complete distance map is
calculated from two consecutive chamfering processes.
The first chamfering updates the pixels row by row
from top to bottom with a left-to-right ordering within
the rows, using the leftmost template in figure 4.1.
The second chamfering updates the pixels row by row
from bottom to top with a right-to-left ordering within
the rows, using the rightmost template in figure 4.1.
These templates are scaled versions of the ones used
in Shi [89], and this is done to improve sub-pixel reso-
lution. The choices of the original unscaled two 3 × 3
templates have been justified to be near-optimal [45].
The resulting image represents the chamfer distance
map of the given contour.1

1The chamfer procedure is very efficient as it uses integer
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Figure 4.2: Extracting Zero Crossings. The numbers
represent the distance values of the output distance
map. The new contour (in this case half-way between
the two original contours) is shown in a solid line. Note
that the contours goes through squares where there is
at least one sign change across one of the sides of the
square.

The second step in the interpolation process is the
generation of the output distance map. This is done by
combining the input distance maps in the appropriate
way. If we label two contours as c1 and c2 and their
distance maps to be dm(c1) and dm(c2) respectively
and we need to find the mean contour cm, we first

generate dm(cm) = (dm(c1)+dm(c2))
2 .

The third step is the extraction of cm from its dis-
tance map dm. We define cm to be the zero level set
in the distance map dm and we extract it using a bor-
der following scheme adapted from the level-set work
of Malladi et al [87] (which in turn is derived from
the marching cube work of Lorenson [61].) It is this
last step which gives the method its sub-pixel reso-
lution compared to the one used in Shi [89]. There
are four possible combinations of distance values for
each square connecting the centroids of four pixels; the
three non trivial ones are shown in figure 4.2. These
are:

1. All distances have the same sign. In this case the
contour does not pass through this square. This
is the trivial case.

2. Two adjacent points have the same sign and the
other two (also adjacent) have the opposite sign.
In this case the contour intersects the sides of
the square in which there is a sign transition (i.e.
sides connecting a point of positive distance to a
point of negative distance). See figure 4.2(left).

3. One point having a different sign from the other
three. In this case the contour divides the square
such that this one point lies on the one side

arithmetic only.

and the other three on the other. See figure
4.2(middle).

4. Two non-adjacent points have the same sign and
the other two (also non-adjacent) have a differ-
ent sign as shown in 4.2(right). In this case the
contour has to enter and exit the grid twice. To
avoid ambiguity, we define the preferred direction
of the contour to be anti-clockwise. Then the con-
tour enters and exits preferentially to accommo-
date this constraint.

4.1.2 Symmetric Nearest Neighbor Corre-
spondences in Curves

The estimation of a nearest neighbor correspon-
dence between two curves (and two surfaces) plays an
important role in many parts of the work presented
in this thesis. In most computer vision applications
and in previous work [89, 65] the estimation of initial
correspondences is done using what we will term an
‘asymmetric nearest neighbor’ technique. In this case
for each point on curve/surface c1 the nearest point
on curve/surface c2 is found and labeled as the initial
point. This has problems when the two curves are lo-
cally not parallel as whole regions of one curve map
to a single point on the other curve. Also, whole re-
gions on the second curve may not contribute to this
map resulting in ‘cutting corners’ as demonstrated in
figure 4.3. In this section we focus on the 2D case; we
present extensions to the full three-dimensional case
in section 4.2.4.

Motivated by the bimorphism work of Tagare[98,
99] we develop a symmetric technique to estimate ini-
tial correspondences without ‘cutting corners’. This is
important so as to ensure that as much as possible the
whole of curve c1 maps to the whole of curve c2 and
that the map is free from singularities (such as two
points mapping to the same point) which are not ei-
ther permissible or plausible in the areas of application
of this algorithm.2 Further, we emphasize that the aim
of this technique is not to estimate a registration be-
tween two curves or two surfaces but rather to gener-
ate a set of initial correspondence vectors based purely
on distance that can be used as a starting point for
a nonrigid registration/correspondence method which
incorporates information such as shape.3 This method
is useful in its own right in the case of mesh generation.

The symmetric nearest neighbor algorithm has
three steps as follows:

2In the case of true 3D deformation, material particles can-
not appear or disappear. This requires that the map between
two solids (and surfaces) be invertible.

3We use the 3D extension of this algorithm to initialize the
shape-based tracking algorithm in section 4.4.
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Cutting Corners

Symmetric
Match

Match from inner
curve to outer curve

Match from outer
curve to inner curve

Cutting Corners

Reconstructed curve after connecting points

Figure 4.3: Illustration of problems with asymmetric nearest neighbor matches. The two examples (left and
middle) where the correspondence is driven exclusively in one direction show problems such as ‘cutting corners’
when the two curves are not roughly parallel. In the third case by using a symmetric nearest neighbor map the
problem is avoided.

1. For all points on curve c1 find the nearest neigh-
bors on curve c2 using a Euclidean distance met-
ric. So for example for a point p1 on curve c1 we
have a corresponding point p2 on curve c2. Then
for point p2 estimate its nearest neighbor p̂1 on
c1. If p1 = p̂1 then the points (p1, p2) are symmet-
ric nearest neighbors and the match is retained.
Otherwise, the match is discarded.

2. For all points on curve c1 which do not have sym-
metric nearest neighbors on c2, find a matching
point on c2 by interpolating between the match-
ing points of its neighbors. We do this until all
points on c1 have a matching point on c2.

3. Smooth the displacement field slightly to elimi-
nate potential near-singularities.

Step 1 is self-explanatory, although it can be ex-
tremely time consuming for large surfaces (on the or-
der of 10,000 points each) unless the points are some-
how sorted to reduce the search time. The more dif-
ficult part is the implementation of step 2, which we
now describe.

Here we take advantage of the fact that a curve
can be parameterized using its arclength. An
example will help to illustrate the point: con-
sider the case that curve c1 has four points

(c1(0.0), c1(0.25), c1(0.5), c1(0.75)) which match to dif-
ferent positions on c2, as illustrated by figure 4.4, and
noting that c1(s1) represents the point on curve c1

at arclength of s = s1. In this case step 1 resulted
in three symmetric neighbor pairs and left one point
without a match. We can represent the points on c2

by their arclengths as follows:

[c1(0.0), c1(0.25), c1(0.5), c1(0.75)]

7→ [c2(0.0), c2(0.4), ??, c2(0.9)]

In this case point c1(0.5) has no corresponding
point after step 1. To generate a match for c1(0.5)
we interpolate between the corresponding points of
c1(0.25) and c1(0.75) the nearest points to c1(0.5) on
c1 that do have symmetric nearest neighbors. This
results in c1(0.5) 7→ c2(0.65). Note that we in effect
place the corresponding point of c1(0.5) at the centroid
of the (shortest) segment4 of the curve c2 connecting
the corresponding points of its neighbors (c2(0.4) and
c2(0.9)). This generalization will become useful when
we move to 3D.

4Since the curve is closed there are two possible segments
of the curve connecting any two points on it. We choose the
shortest segment. Then we essentially interpolate along this
segment, using the arclength, to find the position of the corre-
sponding point for c1(0.5), as 0.65 = 0.5(0.4 + 0.9).
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c1(0.0)

c1(0.25)

c1(0.75)

c1(0.5)

c2(0.0)

c2(0.4)

c2(0.9)

c1(0.25)

c1(0.75)

c1(0.5)

c2(0.0)

c2(0.4)

c2(0.9)

Nearest Neighbour of
c1(0.5). Not used. c2(0.65)

c1(0.0)

Figure 4.4: An example of the 2D Implementation
of the symmetric nearest neighbor algorithm. In
this case we try to map the inner curve c1 to the
outer curve c2. Curve c1 is defined by four points
(c1(0.0), c1(0.25), c1(0.5), c1(0.75)), all of which apart
from c1(0.5) have a symmetric nearest neighbor. The
nearest neighbor of c1(0.5) is shown on the left (bad)
and the point c1(0.5) is mapped to by the algorithm
is shown on the right (c2(0.65) good!).

So the result of step 2 is:

[c1(0.0), c1(0.25), c1(0.5), c1(0.75)]

7→ [c2(0.0), c2(0.4), c2(0.65), c2(0.9)]

Then in step 3 we smooth the displacements slightly5

to ensure no near singularities. This could result in a
map like:

[c1(0.0), c1(0.25), c1(0.5), c1(0.75)]

7→ [c2(0.05), c2(0.38), c2(0.62), c2(0.88)]

which tries to equispace the points on c2 subject to
staying close to their original positions. For this ap-
proach to work well in practice where the curves are
discretized, c2 has to be sampled much more finely
than c1 (typically 5 to 8 times more).

4.2 Geometrical Methods in Three-

dimensions

In section 4.2.1– 4.2.3 we describe the process of
constructing a surface from planar contours, non-
shrinking surface-smoothing and for the estimation of
the local curvatures of a discretized surface.6 This
process is summarized graphically in figure 4.5. In
section 4.2.4 we describe an extension of the symmet-
ric nearest neighbor algorithm to 3D.

5We smoothed the arclengths on c2 by convolving them with
a small Gaussian kernel.

6All of this material is directly derived from the work of
Pengcheng Shi [89] and the interested reader is referred to Shi
[89, 90] for the details. In this work we simply highlight some
of the aspects of this work which are particularly important in
the context of this thesis.

4.2.1 Delaunay Triangulation Between Planar
Contours

In this section, we describe a method to calculate
the 2D-constrained Delaunay triangulation [89, sec-
tion 3.4] for a surface to be constructed from planar
contours oriented in the same direction (in this case
anticlockwise). This restriction enables the implemen-
tation of a simple and fast triangulation algorithm.
This algorithm creates the triangulation which has the
smallest total length of triangle sides of all possible
triangulations between the two planar contours. Con-
sider the case of figure 4.6(A). Here two adjacent tri-
angles are shown. If we flip the middle line (drawn as
a dotted line) we can create an alternative triangula-
tion. This triangulation method is optimal in that no
flipping of connections can decrease the total length
of all the sides of all the triangles. For the case of
constructing a set of triangles between two discretized,
anticlockwise oriented, closed planar contours the pro-
cedure is as follows:

• Initialization Step:

1. Initialize empty list of triangles.

2. For a point p1 on contour c1 find the nearest
point (in the Euclidean sense) to it p2 on
contour c2. For this p2 find the nearest point
to it p̂1 on contour c1.

3. If p1 = p̂1 label s1 = p1, s2 = p2 as the
starting pair of points and goto Connection

step.

4. If p1 6= p̂1 choose another point on contour
c1 and repeat the initialization step.

5. The process fails if there is no point p1 for
which this criterion is satisfied. (This is ex-
tremely unlikely).

• Connection Step:

1. Given starting points s1, s2 find the two test
points t1 and t2. t1 is the next point along
c1 from s1, and t2 which is the next point
along c2 from s2. See figure 4.6B.

2. If |t1−s2| < |t2−s1| label next point np = t1
else np = t2, and add triangle s1, s2, np to
the list.

3. If np = t1 then set s1 = np, else set s2 = np.

4. If s1 = p1 and s2 = p2 goto End.

5. Repeat Connection Step.

• End: procedure stops as we have returned to the
starting point.
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 1. Slice−by slice
 b−spline contours

2. Slice−by slice 
sampled points

6

4. Surface Rendering
of Wireframe

5. Smoothed
Surface

6. 1st Principal
Curvature Map

7. 2nd Principal
Curvature Map

3. Triangulated 
Surface

Figure 4.5: Steps involved in moving from slice by slice contours to full surface representation. (1) Slice by slice
B-spline parameterized contours as extracted by the segmentation process. (2) Discretized contours as equally-
spaced points. (3) Formation of wire-frame by Delaunay triangulation. (4) Surface rendering of surface. (5)
Smoothing of surface using non-shrinking smoothing algorithm. (6)+(7) First and second principal curvatures of
surface.



30

s1

s2

t1

t2 w2

C1

C2

C1

C2

A B

Figure 4.6: Schematic for the proof of the optimality
of the triangulation procedure.

Proof: In this section we prove that this algorithm
generates the triangulation which has the smallest to-
tal lengths of the sides of the triangles. First, note
that clearly all points on c1 will be connected to their
adjacent neighbors on c1 and similarly for all points
on c2. This reduces the proof to finding the optimal
‘inter-connections’ between c1 and c2. Given a good
starting point p1 and p2, we can always choose the
shortest possible length (in the connection step) for
the next point to be attached, hence this further re-
duces the proof to showing that the proposed method
of initialization using points p1 and p2 which are sym-
metric nearest neighbors is appropriate. This is equiv-
alent to points p1 and p2 being part of a triangle in
the optimal triangulation.

Instead of using this method for initialization, let
us consider the case were we initialize using points g1

and g2 which is the pair that generates the globally
smallest inter-connection distance between curves c1

and c2 as found by exhaustive search. Clearly this
pair would satisfy the criteria for optimality. Then
we proceed around the contours as per the connection
step. Consider the case of figure 4.6B, and assume
that t1 and t2 are symmetric nearest neighbors. The
next triangle will either be s1, t2, w2 if w2−s1 < t1−t2
(bad case) or s1, t2, t1 otherwise.

This further reduces the proof to showing that
t1 − t2 < w2 − s1. Since t1 and t2 are symmetric
nearest neighbors, this implies that locally c1 and c2

are almost parallel. Hence t1 − w2 < s1 − w2. But
t1 − t2 < t1 − w2 as t1 and t2 are symmetric nearest
neighbors. Therefore t1−t2 < s1−w2 which concludes
the proof.

This implies that in an optimal (from a shortest
length viewpoint) triangulation the side t1, t2 will ex-
ist if t1 and t2 are symmetric nearest neighbors. So we
can start the triangulation using any pair of symmet-
ric nearest neighbors, as opposed to the more compu-
tationally expensive alternative of finding the pair of
points g1, g2 described above.
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Figure 4.7: Left: portion of a triangulated endocar-
dial surface. Right: closeup illustrating the neighbors
of point p. Points labeled (1) are the first order neigh-
bors, points labeled 2 are second ordered neighbors
and the point labeled 3 is a third order neighbor. (Not
all second and third order neighbor points are shown.)

Connectivity Distance: The Delaunay triangula-
tion defines the connectivity of the points on each sur-
face and provides the all-important concept of a neigh-
boring point, as illustrated in figure 4.7. We further
define the distance between the two points to be the
order of their connection. A point has a distance of 0
with itself, a distance of 1 with a first order neighbor,
a distance of 2 with a second order neighbor and so
on. We will call this the connectivity distance dc.

4.2.2 Non-Shrinking Surface Smoothing

Once the surface triangulation has been con-
structed, we smooth the surfaces to correct for noise
in the segmentation and to make the computation of
curvatures more stable. In this work we use the non-
shrinking two stage Gaussian algorithm proposed by
Taubin [100]. It is compared to the more typical one
stage Gaussian filtering in Shi [89]. The algorithm
works as follows:

• For all points p on surface s define the set of its
first order neighbors W .

1. For all odd-numbered iterations

p 7→ (1 − λ1)p + λ1

∑

q∈W

q

2. For all even-numbered iterations

p 7→ (1 − λ2)p + λ2

∑

q∈W

q

with λ1 = 0.33 and λ2 = −0.34. This alternat-
ing smoothing and unsmoothing process was shown
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to preserve the shape visually better. An example is
shown figure 4.5 parts 4 and 5. (For further analysis
again see Shi [89, pages 66–75].)

4.2.3 Curvature Computation

Here we briefly review the method used for the com-
putation of curvature. First we briefly review some
basic concepts of differential geometry (see DoCarmo
[28] and also Shi [89, pages 76–91] for more details.)

Differential geometry of a surface: A general
surface S ⊂ R3 is defined as follows: For each point
p ∈ S there exists a neighborhood V ∈ R3 and a
map x : U 7→ V

⋂
S on an open set U

⋂R2 onto
V

⋂
S ⊂ R3 such that:

• x(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ S is differen-
tiable.

• x is a homeomorphism. And since x is continuous
by the previous condition, this means that x has
an inverse x−1 : V

⋂
S 7→ U which is continuous;

that is, x−1 is the restriction of a continuous map
F : W ⊂ R3 7→ R2 defined on an open set W
containing V

⋂
S. (This condition prevents self-

intersections in S, and also means that objects
defined in terms of a parameterization do not de-
pend on this parameterization but rather only on
the set S itself.)

• For each q ∈ U , the differential dxq : R2 7→ R3

is one-to-one. (This condition guarantees the ex-
istence of a tangent plane at all points of S).

The mapping x is called a parameterization or a
system of local coordinates in a neighborhood of p.
The neighborhood V

⋂
S of p in S is called a coordi-

nate neighborhood. This definition allows us to place
each point p of a regular surface in a coordinate neigh-
borhood, and to define the local properties of point p
in terms of the coordinates u and v.

The plane dxq, which passes through x(q) = p,
does not depend on the parameterization x. This
plane is called the tangent plane to S at p, and is
denoted by Tp(S). The choice of the parameteriza-
tion x determines a basis {(∂x/∂u)(q), (∂x/∂v)(q)},
or {xu(q),xv(q)}, of Tp(S), called the basis associated
to x. Similarly, a unit normal vector at point x(q) = p
of S is determined by

Np =
xu ∧ xv

|xu ∧ xv|
(q)

where ∧ denotes cross product. See figure 4.8 for an
illustration.

xu

xv

Iso u �
✁✄✂✆☎✞✝✠✟

Iso v �
✁✄✂✡☎☛✝☞✟

N

p

Figure 4.8: At any point p in a differentiable surface
we can find a local parameterization x parameterized
along vectors u and v. We also define the outward
normal of the surface at this point to be N .

We then proceed to define the following quantities
at point p = (u0, v0):

E(u0, v0) = < xu,xu > (4.1)

F (u0, v0) = < xu,xv > (4.2)

G(u0, v0) = < xv,xv > (4.3)

e(u0, v0) = − < Nu,xu >=< N,xuu > (4.4)

f(u0, v0) = − < Nv,xu >=< N,xuv >= − < Nu,xv >(4.5)

g(u0, v0) = − < Nv,xv >=< N,xvv > (4.6)

These quantities which appear in the definition of the
first and second fundamental forms of the surface [28]
enable us to define the the Weingarten Mapping Ma-
trix as follows:

[β] = −
(

e f
f g

)(
E F
F G

)−1

(4.7)

This is also known as the shape operator matrix
of the surface. This matrix determines surface shape
by relating the intrinsic geometry of the surface to
the Euclidean (extrinsic) geometry of the embedding
space. The Gaussian curvature of a surface can be
defined from the Weingarten mapping matrix as its
determinant:

K = det[β] =
eg − f2

EG − F 2
(4.8)

Meanwhile, the mean curvature of a surface is similarly
defined as half of the trace of the Weingarten mapping
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matrix:

H =
tr[β]

2
=

eG − 2fF + gE

2(EG − F 2)
(4.9)

We also define the principal curvatures which are
the eigenvalues of the Weingarten mapping matrix,
with their directions along the two eigenvectors. They
are can be calculated in terms of the Gaussian and
mean curvatures as:

κ1 = H +
√

H2 − K (4.10)

κ2 = H −
√

H2 − K (4.11)

Calculating the curvature at a point on a dis-
cretized surface: We calculate the principal curva-
tures κ1 and κ2 at a point p on a discretized surface s
by first fitting a biquadratic surface to the collection of
all the points r on s that have a connectivity distance
dc(p, r) < t where t is a constant and defines the scale
of the neighborhood. This has to be large enough to
avoid local segmentation noise and small enough to
capture the local differential properties. In this work
where surfaces are sampled to 0.5 voxel spacing we use
a window size of t = 4.

Before the biquadratic surface is constructed, we
first rotate the coordinates of all the points that satisfy
dc(p, r) < t to a local coordinate system with point
p as the origin, the local surface normal N as the z
axis and two tangent directions as x and y axis. We
estimate the normal N by averaging the normals of
all the triangles of which point p is a node. Then
we estimate the coefficients of the biquadratic surface
which takes the form:

z = h(x, y) = a1x
2 + a2xy + a3y

2 + a4x + a5y (4.12)

These are estimated using a least squares fit to
the neighborhood points , and can be used then to
form the Weingarten mapping matrix and hence com-
pute the curvatures. An example of such curvatures
is shown graphically in figure 4.5 parts 6 and 7.

4.2.4 Symmetric Nearest Neighbor Corre-
spondences in Surfaces

In this section, we extend the work of section 4.1.2
to three-dimensions. It is generally true that easy geo-
metrical problems in 2D become almost impossible in
3D as a result of the loss of the arclength parameteri-
zation. So the key step here is to find a way of replac-
ing the arclength parameterization. We attempt to do
this by using the Euclidean distance and partially us-
ing a connectivity distance defined on the surface. We
focus here on steps 2 and 3 of the algorithm; step 1 is

identical to the 2D case and need not concern us any
further.

Some additional definitions: If a point p1 on sur-
face s1 is mapped to a point p2 on surface s2 then we
define the displacement vector u(p1) = p2 − p1. Any
point p1 on s1 that has a corresponding point on s2

also by definition has a displacement vector.

A description of Step 2: This is the step in which
we find corresponding points for all the points on p1

that do not have a symmetric nearest neighbor. It
is best explained algorithmically as follows: (see also
figure 4.9.)

• Set i = 0

• beginning:

• Let point p1 be point pi on surface s1.

1. If point p1 has a displacement vector goto

endloop.

2. If none of the first-order neighbors of
point p1 have a displacement vector goto

endloop.

3. Average the displacement vectors of all the
first order neighbors of point p1 that do have
displacement vectors, to generate a displace-
ment vector u1

4. Translate p1 by u1 to a point p̂1.

5. Find the nearest neighbor of point p̂1 on s2.
Label this point as p2 and then calculate the
displacement vector u(p1) = p2 − p̂1. p2

is also the corresponding point of p1. Now
point p1 has a displacement vector.

• endloop: i 7→ i + 1.

• If i < Np where Np=number of points on s1 goto

beginning.

• If not all points on s1 have a displacement vector
set i = 0 and goto beginning.

• end.

So long as one point on s1 has a symmetric near-
est neighbor after step 1 this algorithm will generate
a set of point pairs. This algorithm is illustrated in
figure 4.10. We next consider approaches to step 3,
the smoothing step.
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Figure 4.9: Symmetric Nearest Neighbor Algorithm in 3D. A portion of surface s1 shown on the left centered
on a point p1 which has first order neighbors a, b, c, d, e, f . Of these neighbors a, b, c have symmetric nearest
neighbors a′, b′, c′ on s2 shown on the right. p1 itself does not have a symmetric nearest neighbor on s2. We
generate the first estimate of the position of the corresponding point of p1, p̂1, by averaging u(a), u(b) and u(c)
the displacement vectors of points a,b,c to estimate a vector u1 and translating p1 by u1. Then p̂1 is mapped to
surface s2 by finding its (asymmetric) nearest point on s2. This is point p2 which is the corresponding point of
point p1 on surface s2. We also define u(p1) (not shown) as u(p1) = p2 − p1. We further show the first order
neighbors of p2 on surface s2 labeled as g, h, i and j.

A Euclidean approach to smoothing: This
approach is labeled Euclidean as the term being
smoothed is the ‘Euclidean distance’. This is an al-
ternating iterative process, and it works as follows:

• For all odd numbered iterations and for all points
p1 on s1:

1. Find the average displacement vector un of
all its first order neighbors. (These would be
u(a), u(b), u(c), u(d), u(e) and u(f) of figure
4.9.)

2. Generate a new displacement vector
u(p1) 7→ 0.75u(p1) + 0.25un.

• For all even number iterations and for all points
p1 on s1:

1. Translate p1 by û to a point p̂1.

2. Find the nearest neighbor of point p̂1 on s2.
Label this point as p2 and then calculate the
displacement vector u(p1) = p2 − p̂1. p2 is
also the corresponding point of p1 on s2.

A connectivity distance approach to smooth-
ing: In this case we try to maximize the connectiv-
ity distances of the corresponding points p2 on s2 as
follows:

• For all iterations and all points p1 on s1:

1. Generate the set N which contains all the
corresponding points of the first order neigh-
bors of p1 on surface s2. (Note that the
points in N lie on s2, and would be points
a′, b′, c′, d′, e′ and f ′7 of figure 4.9.)

2. Generate the set W which contains p2 and
all its first order neighbors. (Again note that
the points in W lie on s2, and would be
points g, h, i, j and p2 of figure 4.9.)

3. For all points in W look for the point p̂2 that
maximizes:

p̂2 =
arg min

p ∈ W

(arg max

q ∈ N
dc(p, q)

)

In words this tries to find the point in W that
is nearest to the centroid of N as defined by
connectivity distance.

4. Let u(p1) = p̂2 − p1 and let p̂2 be the corre-
sponding point of p1 on s2.

This method has the advantage of relying less on
the Euclidean distance and more on the geometry of

7d′, e′ and f ′ are not shown in the figure but will by now
exist as each point has a corresponding point.
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Figure 4.10: Symmetric 3D Nearest Neighbor Algo-
rithm. (This is shown in 2D for simplicity.) Part A
shows the result of step 1, where only points 1 and 6
have corresponding points. In part B (Step 2 itera-
tion 1) points 2 and 5 also acquire displacements as at
least one of their neighbors has a displacement (points
1 and 6 respectively). Note that the displacement vec-
tors of points 2 and 5 have two parts. The first shown
using a dotted line is the average of the displacements
of the neighbors, and the second part, shown using a
solid line, is as a result of mapping this position to
next surface. In part C (Step 2 iteration 2) points 3
and 4 also have displacements. Parts D-F show it-
erations of the Euclidean distance based approach to
smoothing. Note how the map becomes progressively
more regular.

the surfaces. It is computationally more expensive
however.

As a final post-processing step for both of this ap-
proaches, surface s1 is translated by translating each
point p1 on s1 by its corresponding displacement vec-
tor u(p1) to a new point p̂1 and then slightly smoothed
using 5 iterations of the non-shrinking algorithm de-
scribed in section 4.2.2. Then the resulting u(p1) is ad-
justed to be u(p1) 7→ u(p1) + p̂1 − p1. This is needed
as it is computationally not feasible to have surface s2

be sampled a factor of 5 − 8 times more finely than

s1. In practice s2 is sampled three to four times more
finely than s1.

It also worth noting that there is no algebraic proof
of the quality of these methods.8 They have been both
tested (and especially the Euclidean approach) and
have been found to perform well over a large number
of datasets.

4.3 Generating Hexahedral Meshes

After we have extracted and tessellated the endo-
cardial and epicardial surfaces we need to construct a
solid mesh in the space between them, to represent the
heart wall muscle, the myocardium. This is needed for
the application of the finite element method9 in the
deformation estimation stage. We choose to divide
this solid into hexahedral elements as these have sig-
nificant numerical advantages over the more common
tetrahedral elements.

As mesh generation in three-dimensions is a notori-
ously difficult problem for complicated geometries[8],
we propose here an algorithm which takes advantage
of the ‘cylindrical-like’ geometry of the left ventricle,
to make the problem easier. The two basic building
blocks of the algorithm are the shape-based contour in-
terpolation method of section 4.1.1 and the symmetric
nearest neighbor correspondence algorithm described
in section 4.1.2. The algorithm is best described with
reference to figures 4.11 and 4.12. It consists of four
steps as follows:

• Step 1: Interpolate on a contour by contour ba-
sis between the endocardial and epicardial sur-
faces using shape-based interpolation to generate
an appropriate number of in-between interpolated
surfaces (typically 3 or 4). Because of the greater
geometrical complexity of the endocardium, we
space the interpolated surfaces to be preferen-
tially closer to the endocardium.10 Discretize the

8The odd numbered iterations of the Euclidean based
smoothing method can be proven to converge. Essentially we
are solving a system of the form [A]xk = xk+1 where A is
a square 3N × 3N smoothing matrix and xk is the 3N vec-
tor of the positions of all the points in iteration k. This
is analogous to the Gauss Seidel method[85] which can be
shown to converge if the matrix A is diagonally dominant i.e.

Aii > 1
2

∑N

r=1
Air, ∀i ∈ [1, N ]. In the Euclidean based smooth-

ing method this is the case as Aii = 0.75, and
∑N

r=1
Air = 1.

It is harder to show convergence for the odd numbered itera-
tions as the mapping step is non-linear. However in practice the
method converges very rapidly (in 3-5 iterations.)

9The finite element method is described in section 5.3.
10Let sn and sp be the endocardial and epicardial surfaces

respectively. We could generate two in-between interpolated

surfaces s1 and s2 as s1 =
2sn+sp

3
and s2 =

sn+2sp

3
. To space

the surfaces preferentially closer to the endocardium we actually



35

Endocardial
surface 
contour

Epicardial
surface 
contour

Interpolated
contours �✂✁☎✄✝✆✟✞☎✠✡✄✝☛☎☞✍✌✏✎✒✑✔✓✕☞✍✄✝✎✒✖

interpolation)

Step 1: For each slice interpolate between endo and epi
contours to generate interpolated contours

Step 2B: Estimate contour by 
contour correspondences  on each 

slice outwards from the 
endocardial surface contour.

Step 2A: Estimate contour by 
contour correspondences for 

the endocardial surface
starting at the middle slice.

Step 3: Connect the
dots to form elements.
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Figure 4.11: A schematic of the mesh generation process. First, we interpolate between the endocardial and
epicardial surfaces on a contour by contour basis using shape based interpolation to create the interpolated
surfaces. Next, we find correspondences between the contours on the endocardial surface starting at the middle
level using the 2D algorithm of described in section 4.1.2. Next, we find correspondences on each slice starting
from the endocardium, using the same algorithm. Finally, we connect the dots to generate the elements. A 3D
illustration of this can be found in figure 4.12
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Figure 4.12: A further illustration of the mesh gener-
ation process. This figure illustrates steps 2 and 3 of
the mesh generation algorithm.

contour on the middle slice of the endocardium
to the desired number of nodes (typically 35-45).

• Step 2A: Using the symmetric nearest neigh-
bor algorithm, estimate correspondences between
slices on the endocardial surface on a contour by
contour basis starting in the middle slice. This
generates a grid of connected points on the en-
docardium. These correspondences are shown in
blue in figures 4.12 and 4.11.

• Step 2B: For the points present in the correspon-
dence maps of step 2A, find their correspondences
within each slice starting at the endocardium and
moving on level at a time towards the epicardium.
This generates a grid of connected points on each
slice. These correspondences are shown in purple
in figures 4.12 and 4.11.

• Step 3: Use transitivity of connections to com-
plete the mesh. These connections are drawn with
dotted blue lines in figures 4.12 and 4.11. Because
of the grid-like nature of the mesh, once a corre-
spondence is established on the endocardial sur-
face, the correspondence is fixed for the mid-wall
and the epicardial surfaces as well. Consider the
following example which is illustrated in figure
4.12. A point P1 on slice S10 is mapped to point
P5 on slice S11 on the endocardial surface (step
2A), and point P3 on slice S10 on the first mid-
wall surface (step 2B). Further, point P5 on slice
S11 on the endocardium corresponds to point P7

generate the first interpolated surface s1 as s1 =
3sn+sp

4
.

on slice S11 of the first midwall surface (step 2B).
By transitivity P3 also has to connect to P7. This
completes the quadrilateral which forms one face
of the element.

4.4 A Shape-Based Tracking Algo-

rithm

The shape-based tracking algorithm tries to follow
points on successive surfaces using a shape similarity
metric. This distance is based on the difference in
principal curvatures. The method was validated us-
ing implanted markers [89]. In this work, we modify
the initialization step of this algorithm to take ad-
vantage of the symmetric nearest neighbor correspon-
dence finding algorithm previously described in sec-
tion 4.2.4.

The first step in this algorithm is to estimate for
all points on surface s1 their symmetric nearest neigh-
bor, as explained in section 4.2.4. Next, for any given
point p1 on a surface s1 at time t1 and which has a
corresponding point p2 on surface s2 at time t2 as a
result of the symmetric nearest neighbor estimation
step we construct a plausible search window W on s2.
This search window W consists of all the points on s2

which have a connectivity distance less than a thresh-
old t from p2 on s2, i.e. pw ∈ W iff dc(p2, pw) < t.

Next, a search is performed within this plausible
region W on the deformed surface s2 and the point p̂2

which has the local shape properties closest to those
p1 is selected. The shape properties here are captured
in terms of the principal curvatures κ1 and κ2. This is
illustrated in figure 4.13. The distance measure used
is the bending energy required to bend a curved plate
or surface patch to a newly deformed state. This is
labeled as dbe and is defined as (see Shi[89]):

dbe(p1, p2) =
( (κ1(p1) − κ1(p2))

2 + (κ2(p1) − κ2(p2))
2

2

)

(4.13)

The displacement estimate vector for each point p1,
um

1 is given by

um
1 = p̂2 − p1 , p̂2 =

arg min

p2 ∈ W

[

dbe(p1, p2)
]

Confidence Measures in the match: The bend-
ing energy measures for all the points inside the search
region W are recorded as the basis to measure the
goodness and uniqueness of the matching choices. The
value of the minimum bending energy in the search re-
gion between the matched points indicates the good-
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Figure 4.13: The shape-tracking algorithm. For a
point p1 on the original surface, a window W of plau-
sible matching points on the final surface is first gen-
erated around point p2 which is the symmetric nearest
neighbor of p1 on the deformed surface. (In this case
∀pw ∈ W : dc(p2, pw) < 3). Then the point p̂2 in W
which has the most similar shape-properties to p1 is
selected as the candidate match point. The distance
function for shape-similarity is based on the principal
curvatures.

ness of the match. Denote this value as mg, we have
the following measure for matching goodness11

mg(p1) = −dbe(p1, p̂2) (4.14)

On the other hand, it is desirable that the chosen
matching point is a unique choice among the candidate
points within the search window. Ideally, the bending
energy value of the chosen point should be an outlier
(much smaller value) compared to the values of the
rest of the points. If we denote the mean values of
the bending energy measures of all the points inside
window W except the chosen point as d̄be and the
standard deviation as σd

be, we define the uniqueness
measure as:

mu(p1) =
dbe(p1, p̂2)

d̄be − σd
be

(4.15)

This uniqueness measure has a high value if the
bending energy of the chosen point is small compared
to some smaller value (mean minus standard devia-
tion) of the remaining bending energy measures. Com-
bining these two measures together, we arrive at one
confidence measure cm(p1) for the matched point p̂2

of point p1:

cm(p1) =
1

k1,g + k2,gmg(p1)
× 1

k1,u + k2,umu(p1)
(4.16)

11This is the negative of the equivalent definition in Shi [89].
That definition is really a measure of badness!

where k1,g, k2,g, k1,u, and k2,u are scaling constants
for normalization purposes. We normalize the confi-
dences to lie in the range 0 to 1.



Chapter 5

Continuum Mechanics Models and the

Finite Element Method

This chapter is divided in three sections. In sec-
tion 5.1 we examine the purely geometrical aspects
of continuum mechanics methods. The focus here is
the definition of the all-important concept of strain.
In section 5.2 we use the concept of strain to define
a method for capturing the material properties of an
object in terms of a strain energy function. Finally
in section 5.3 we present an overview of the finite el-
ement method which is the key numerical technique
used in this work for the solution of problems involv-
ing mechanical models. It must be emphasized how-
ever that the finite element method can be used to
solve other kinds of partial differential equations (see
Huebner [49] for examples), though it is most often
used in this context.1

5.1 Deformations

In this section we follow the presentations in
Spencer [94, chapter 6] and Hunter[75]. Consider a
body B(0) which after time t moves and deforms to
body B(t). A material particle initially located at
some position X on B(0) moves to a new position x
on B(t). If we further assume that material cannot
appear or disappear there will be an one-to-one cor-
respondence between x and x, so we can always write
the path of the particle as:

5.1.1 The Deformation Gradient Matrix

x = x(X, t) (5.1)

We can also define the displacement vector for this
particle as

1A commonly used misnomer is the term ‘finite element
model’. There exists no such thing. The finite element method
is simply a numerical procedure for solving partial differential
equations whose source defines the model.

B(0) B(t)

X

dX

dx

u
x

Figure 5.1: Definition of displacement

u(t) = x(t) − X (5.2)

This relationship is also invertible, given x and t we
can find X. If we consider two neighboring particles
located at X and X = dX on B(0). In a new config-
uration B(t) using equation (5.1) we can write:

dx =
∂x

∂X
dX (5.3)

The Jacobian matrix F (t) = ∂x(t)/∂X is called the
deformation gradient matrix. We note that by defi-
nition F (0) = I. Using this we can rewrite equation
(5.1) more fully as:

dx(t) = F (t).dX (5.4)

Fij = ∂xi

∂Xj
, F (0) = I

= ∂ui

∂Xj
+ δij , u(0) = 0

δij =

{
1 i = j
0 otherwise

The mapping defined by equations (5.1)–(5.5) has
two components: a rigid motion component and a
change in the shape or deformation of the object. For

38
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the purposes of capturing the material behavior (to be
discussed in section 5.2) we need to extract from F the
component which is a function of the rigid motion and
the component which is a function of the deformation.

To extract the deformation component we use the
polar decomposition[96] to write F as:

F = R
︸︷︷︸

Rotation Matrix

× U
︸︷︷︸

Symmetric Matrix

(5.5)

The matrix R is a rotation matrix having the prop-
erties R ∗ R′ = I, det(R) = 1 and U is a symmetric
matrix i.e. U ′ = U .

It is also useful to define the right Cauchy-Green
deformation matrix G = F ′F . When we apply the
polar decomposition we get:

G = F ′F = U ′R′RU = U ′U (5.6)

This shows that G is independent of the rotation and
is purely a function of the deformation. In the case
of a pure rotation i.e. F = R we find that G = I.
This shows that G in the case of a rotation is equal
to identity. We also note that G has three invariants
under a coordinate transformation defined as follows:

I1 = trace(G)

I2 =
1

2

(
(trace(G)2 − trace(G2)

)

I3 = det(G) (5.7)

In particular, in the case of an incompressible material
det(G) = I3 = 1. We next consider the important case
of small deformations and rotations.

5.1.2 Small Deformations and Rotations

If the deformations and the rotations are small (<
2 − 3%), we use the approximation[94, section 6.6]:

∂u

∂x
≈ ∂u

∂X
(5.8)

From here we can re-write F = RU as:

F = RU = (I + ω)(I + ǫ) (5.9)

Here ω is the small rotation tensor and is antisym-
metric. ǫ is the small(infinitesimal) strain tensor and
is symmetric. These are defined as:

ω =
1

2
(F − F

′)

=
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2
(F + F

′) − I (5.10)
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∂x1

1
2

(
∂u1
∂x2
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∂u3
∂x2

+ ∂u2
∂x3
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∂x3








Often, taking advantage of the symmetries these ten-
sors are written in vector form as:

e = [ǫ11 , ǫ22 , ǫ33 , ǫ12 , ǫ13 , ǫ23]
′

θ = [0 , 0 , 0 , ω12 , ω13 , ω23]
′

This e is the classical definition for strain in infinites-
imal linear elasticity[94].

5.1.3 Finite Deformations

The infinitesimal deformation measures are appli-
cable only for very small deformations and rotations.
In the case of soft-tissue deformation and specifically
the left ventricle these are not applicable. Using equa-
tion (5.6) for the definition of G we can define the
Lagrangian (or Green) strain tensor E as:

E =
1

2

(

C − I
)

(5.11)

The components of E become equal to zero when there
is no deformation (G = I), and in the case of small
deformations and rotations reduce to the strain ten-
sor2 of classical infinitesimal elasticity theory. We can
also write this in component form as:

Eij =
1

2

(∑

k

∂xk

∂Xi

∂xk

∂Xj
− δij

)

(5.12)

=
1

2

( ∂ui

∂Xj
+

∂uj

∂Xi
+

∑

k

∂uk

∂Xi

∂uk

∂Xj

)

5.1.4 Some Further Properties of the Strain
Tensor

Given a strain tensor Ex (a 3 × 3 matrix) which
was computed in a coordinate frame x parameterized
by three unit vectors x1, x2, x3 we can transform it to
a coordinate frame y similarly parameterized by unit
vectors y1, y2, y3 as follows. First construct the 3 × 3
rotation matrix R. Each component of R, Rij is given

2The finite strain tensor has the form 1
2
(F ′F −I) as opposed

to the infinitesimal strain tensor which is defined as 1
2
(F +F ′)−

I = 1
2
(F + F ′ − 2I). Hence the approximation involved in the

infinitesimal strain tensor is F +F ′−2I ≈ F ′F −I. If we define
F = I + dF we can write F ′F − I = (I + dF )′(I + dF ) − I =
dF ′+dF +dF ′dF and F ′+F −2I = dF +dF ′. So in making the
infinitesimal approximation the assumption is that the second
order term dF ′dF ≈ 0, and so can be ignored. This is easily
seen from equation (5.12).
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by the dot product of xi and yj , i.e. Rij =< xi, yj >.
This results in R : x 7→ y. Using this matrix R we can
write the image of Ex in the y coordinate frame Ey

as:
Ey = RExR′ (5.13)

We also note that the eigenvalues of E are known as
the principal strains and the eigenvectors as the prin-
cipal directions. These are invariant to a change of
coordinate frame. The principal strains are particu-
larly useful in the case of comparing strains produced
from two sets of measurements whose relative coordi-
nate transformation is unknown.

5.2 Material Models

So far we have restricted our description to the ge-
ometry of the deformation. In this section we extend
this to account for what happens when a material de-
forms and relate the deformation to the change in the
internal structure of the material. Before proceeding
to give examples of possible material models we first
note that there some theoretical guidelines which must
be observed[32]. The most important ones for this
work are:

1. The axiom of objectivity–this requires the mate-
rial model to be invariant with respect to rigid
motion or the spatial frame of reference.

2. The axiom of material invariance–this implies
certain symmetry conditions dependent on the
type of anisotropy of the material, and implicitly
reduces the number of free parameters.

The first axiom can be satisfied by postulating an
internal or strain energy function which depends on
the gradient deformation matrix F only through the
Green deformation tensor G, the Green strain ten-
sor E, on in small deformation cases the infinitesimal
strain tensor ǫ. The strain energy function serves as
the material model. If we postulate an internal energy
which is not invariant to a global rotation we arrive at
the following problem. Suppose that work is needed
to rotate the object clockwise. From conservation of
energy principles, this energy will be returned when
the object is turned counter-clockwise. We can keep
turning the object counter-clockwise to get more and
more energy and in this way we have created a perpet-
ual motion machine and not a material model.

5.2.1 Linear Elastic Energy Functions

In this section e will be used to denote the vec-
tor form of either the Green strain tensor E or the
infinitesimal strain tensor ǫ as appropriate. The sim-
plest useful continuum model in solid mechanics is the

linear elastic one. This is defined in terms of an inter-
nal energy function W which has the form:

W = e′Ce (5.14)

where C is a 6×6 matrix and defines the material prop-
erties of the deforming body3, as it relates the change
in geometry (strain) to the internal energy function
W . The simplest model is the isotropic linear elas-
tic model used widely in the image analysis literature
[42, 30]. In this case the matrix C takes the form:

C
−1 =

1

E










1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)










(5.15)

where E is the Young’s modulus which is a measure
of the stiffness of the material and ν is the Poisson’s
ratio which is a measure of incompressibility.

In this work, the left ventricle of the heart is specif-
ically modeled as a transversely elastic material to ac-
count for the preferential stiffness in the fiber direc-
tion. This is an extension of the isotropic linear elastic
model which allows for one of the three material axis
to have a different stiffness from the other two. In this
case the matrix C takes the form:

C
−1 =













1
Ep

−νp

Ep

−νfp

Ef
0 0 0

−νp

Ep

1
Ep

−νfp

Ef
0 0 0

−νfpEf

Ep

−νfpEf

Ep

1
Ef

0 0 0

0 0 0
2(1+νp)

Ep
0 0

0 0 0 0 1
Gf

0

0 0 0 0 0 1
Gf













(5.16)

where Ef is the fiber stiffness, Ep is cross-fiber stiff-
ness and νfp, νp are the corresponding Poisson’s ra-
tios and Gf is the shear modulus across fibers. (Gf ≈

3This class of model is linear as it results in a linear stress-
strain relationship i.e. σ = Cǫ. We do not use stresses in this
work so we will not express material models explicitly in terms of
their stress-strain relationships. In this chapter, we deliberately
avoid the terms ‘force’, ‘stress’ and ‘equilibrium’. These would
be inappropriate as the problem we are trying to solve has no
real forces as such. The use of the word ‘forces’ in related work
such as Terzopoulos[101] in the context of physics-based vision
may have been appropriate as the authors were not trying in
any way to use real physics in their methods. In this work,
since we are using real mechanical models to model real tissue
properties we would only use words such as force to describe
real forces.
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Figure 5.2: Fiber direction in the left ventricle as de-
fined in Guccione et al [39]. More details can be found
in section 7.2.2.

Ef/(2(1 + νfp)). If Ef = Ep and νp = νfp this model
reduces to the more common isotropic linear elastic
model. The fiber stiffness was set to be 3.5 times
greater than the cross-fiber stiffness [39]. The Pois-
son’s ratios were both set to 0.4 to model approximate
incompressibility.

5.2.2 Non-Linear Energy Functions

Linear models do not capture the progressive hard-
ening of many materials (especially soft tissue) when it
is stretched. In the case of linear elastic models the ef-
fective stiffness is a constant with respect to the strain
whereas in practice the stiffness increases as the strain
increases.4 Even though, in this work we use a linear
model, the following summary of non-linear models is
included here for the sake of completeness.

One common non-linear model in the case of
isotropic incompressible materials is the Mooney-
Rivlin material model[62]. In this case the internal
energy function is a function only of the invariants of
the right Cauchy-Green deformation matrix G (this is
as a result of the axiom of material invariance) and
can be written as:

W (I1, I2) = a(I1 − 3) + b(I2 − 3) (5.17)

with the further constraint that the solution must sat-
isfy I3 = 1. This is often imposed as a Lagrange mul-
tiplier in an optimization framework.

4This is an effect of a transition in the process of stretching.
In elastomers, at low strains, the stretching results mostly in
‘uncoiling’ the long polymer chain molecules which effectively
results in low stiffness. At higher strains, once the chains are
fully uncoiled, the stretching process is trying to extend the
polymer chains themselves which gives rise to a much higher
stiffness.

In the work of Guccione and McCulloch[39] a trans-
versely isotropic model is used for the myocardium,
defined as follows:

W =
C

2
(eQ − 1) − p

2
(I3 − 1) (5.18)

Q = b1E
2
11 + b2(E

2
22 + E2

33 + E2
23 + E2

32) +

b3(E
2
12 + E2

21 + E2
13 + E2

31)

In this case, the model can have different stiffness
along the local x direction from the one in the y and
z directions. Also the incompressibility constraint is
imposed by penalizing the variation of the third strain
invariant I3 from 1. Further refinements of this work,
including the incorporation of active contraction and
electrophysiology, can be found in Hunter[75].

5.3 The Finite Element Method

The finite element method is a numerical analy-
sis technique for obtaining approximate solutions to
a wide variety of engineering problems[49]. The key
to this method is that the domain of problem is di-
vided into small areas or volumes called elements. The
problem is then discretized on an element by element
basis and the resulting equations assembled to form
the global solution. In this work we discretize the
problems using the custom mesh generation technique
described in section 4.3.

5.3.1 An Example Problem

In this section we will describe an example problem
and outline how it could be solved using the finite
element method. We will pose the problem in terms
of an energy minimization framework where the goal is
to estimate the displacement field u(x, y, z) which is an
optimal tradeoff between an internal energy function5

W (C, u) and approximating a noisy displacement field
um(x, y, z) in a weighted least squares sense.

We define the optimal solution displacement field
u is the one that minimizes functional P (u). This is
defined as:

P (u) =

∫

vol

( W (C, u) + V (u, um))d(vol)

W (C, u) = e(u)′Ce(u)

V (u, um) = α(um − u)2

where W (C, u) is the internal energy function defined
by a strain energy function. C is the constitutive law

5Note that although W is defined as function of the strain e,
as e is a function of the displacement u, W can also be written
as a function of the displacement field u.
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Figure 5.3: A 3D hexahedral mesh generated by in-
terpolating and filling between the endocardial and
epicardial boundaries.

and e is the local strain which is a function of the dis-
placements u. V (u, um) is the external energy term.
um is the original (shape-tracking) displacement esti-
mate and α is the confidence in the match.

5.3.2 Outline of the Solution Procedure

Step 1: Divide Volume into elements (tetrahedra or
hexahedra) to provide the basis functions for the dis-
cretization. In figure 5.3 a myocardium is shown tes-
sellated into hexahedral elements. (See section 4.3.)

Step 2: Discretize the problem by approximating
the displacement field in each element as a linear com-
binations of displacements at the nodes of each ele-
ment. For a hexahedral element this discretization
can be expressed as:

u ≈
8∑

i=1

Niui

where Ni is the interpolation shape function for node
i and ui is the displacement at node i of the element.
For the isoparametric hexahedral element shown in
figure 5.4, we define a local coordinate system ξi, and
in this the shape functions Ni take the form[49, section
5.5]:

Ni(ξ1, ξ2, ξ3) =
1

8
(1 + ξ1ξ1,i)(1 + ξ2ξ2,i)(1 + ξ3ξ3,i)

(5.19)
where (ξ1,i, ξ2,i, ξ3,i) are the local coordinates of node
i. It is easy to verify that the shape function Ni takes
a value of 1 at node i, a value of 1

8 at the origin and a
value of 0 at all other nodes. These functions are the
generalization in 3D of the linear splines of figure 3.2.

Step 3: Write down internal energy equation as the
sum of the internal energy for each element:

W (u) =
∑

all elements

[

∫

vel

e′Ced(vel)] (5.20)

We further note that in an element we can approxi-
mate the derivatives of u with respect to components
of the global coordinate system x as follows (note that
the ui are constant in this expression):

∂u

∂xk
=

8∑

i=1

∂(Niui)

∂xk
=

8∑

i=1

∂Ni

∂xk
ui

However the shape functions Ni are expressed in
terms of the local coordinate system ξ. Using the chain
rule we can write:







∂N
∂ξ1
∂N
∂ξ2
∂N
∂ξ3







=






∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∂ξ3




 ×







∂N
∂x1
∂N
∂x2
∂N
∂x3







(5.21)
or equivalently in matrix notation as Nξ = [J ] × Nx.

Hence we can calculate the desired derivatives Nx

from the known derivatives Nξ by inverting the Ja-
cobian as follows: Nx = [J ]−1Nξ. As long as the
elements do not have intersecting sides the Jacobian
will remain invertible.

Note also that the derivatives of the displacement
field u (i.e. ∂u

∂xk
) are a linear function of the nodal

displacements ui. Since the infinitesimal strain tensor
consists of only sums and differences of partial deriva-
tives (see equation (5.11)) the infinitesimal strain ten-
sor can also be expressed as a linear function of the
nodal displacements.6 This can be written in matrix
form as e = Bu. Substituting this in equation (5.20)
we get:

W (u) =
∑

all elements Ue′
[∫

vel

B′CBd(vel)
]

Ue

=
∑

all elements Ue′[Ke]Ue

where Ke7 is the element stiffness matrix8, and Ue is
6The finite strain deformation case is non-linear and does

not allow for this simplification. The subsequent expressions
are so complicated that it makes the material beyond the scope
of this brief overview. The reader is referred to Bathe [9].

7The integration is carried out using Gaussian quadrature
[49].

8Each component of Ke indicates the ‘stiffness’ between any
two nodes. One could in some sense think of Ke

14 as the stiffness
of a spring connecting the x-directions of local nodes 1 and 2.
(This ‘2’ is not a typo. The first three rows of Ke correspond to
the components of the displacement of node 1, the second three
to the displacement of node 2 etc. See the definition of Ue.)
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1 (−1,−1,−1)
2 (1,−1,−1)

7 (1,1,1)

O

ξ2

ξ3

1 (−1,−1)
2 (1,−1)

3 (1,1)
4 (−1,1)

O
ξ1

ξ1

ξ2

4 (−1,1,−1)

5 (−1,−1,1)

8 (−1,1,1)

6 (1,−1,1)

3 (1,1,−1)

Figure 5.4: Definition of local element coordinate system ξi and node coordinates for the nodes of a 2D 4-node
isoparametric element (left) and a 3D 8-node isoparametric element(right). For example, in the 2D case, node
1 has coordinates (-1,-1). The centroid of the element O is the origin of the element specific coordinate system.
Note also that the axes are not necessarily orthogonal.

a vector obtained by concatenating all the displace-
ments of the nodes of the element i.e. :

Ue = [u1,x, u1,y, u1,z, . . . , u8,x, u8,y, u8,z]

where ui = (ui,x, ui,y, ui,z) is the displacement of node
i.

Step 4: Rewrite the internal energy function in ma-
trix form. First, we define the global displacement
vector U as:

U = [u1,x, u1,y, u1,z, u2,x, u2,y, u2,z, . . . , un,x, un,y, un,z]
′

(5.22)
where n is the total number of nodes for the solid.
We also define the global stiffness matrix K as the
assembly of all the local element stiffness matrices Ke

as:
K =

∑

all elements

I(Ke) (5.23)

where I is the re-indexing function. This takes an
element Ke

ij and adds it to the element Kkl, where k
and l are the global node numbers of local nodes i and
j.9

The internal energy can now be written as W (U) =
U ′KU .

9Within an element the nodes are always numbered from 1
to 8. However this is a local index (short-hand) to the global
node numbers. When the global matrix is assembled the local
indices (1 to 8) need to be converted back to the global indices
(e.g. 1 to n). Ke has dimensions 24×24 and K has dimensions
3n× 3n. Ke

14, which is the stiffness between the x-directions of
local nodes 1 and 2 would be part of Kkl where k = 3(a−1)+1

Step 5: Write down the external energy function as
a weighted least squares term:

V (u) =

n∑

i=1

αi(u
e
i − ui)

2

If there is no initial displacement estimate for a given
node j set αj = 0.

Step 6: Rewrite external energy in a matrix form:
We define the global initial displacement vector Um

in the same way as U above (see equation (5.22)) and
the global confidence matrix A to be a diagonal ma-
trix with the confidence values for each displacement
(αi) forming the elements of the leading diagonal as
follows:

A =











a1

a1

a1

. . .

an

an

an











(5.24)

The external energy can be rewritten as V (U) =
(Um − U)′A(Um − U).

Step 7: Form total potential energy equation
P (U) = W (U) − V (U).

and a is the global index of local node 1 and l = 3(b − 1) + 1,
where b is the global index of local node 2. Since nodes appear
in more than one element the final value of Kkl is likely to be
the sum of a number of local Ke

ij ’s.
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Step 8: Solve for U. Differentiate P (U) w.r.t U and
set to 0. This results in the final equation

KU = A(Um − U)

This is then solved for U using sparse matrix meth-
ods.10 U represents the values of u at the nodes,
and by means of the finite element approximation
(u ≈ ∑8

i=1 Niui) we can compute the resulting values
of the displacement field u anywhere in the volume.

10In the case of finite deformations we end up with an expres-
sion of the form K(U) = A(Um −U) which is solved iteratively.



Chapter 6

Modeling the Displacement Field

In this chapter we expand on material presented in
section 2.4 regarding the use of modeling for interpo-
lation and smoothing. In section 6.1 we present the
general regularization framework and discuss a prob-
abilistic formulation for this as well as some generic
implications. Next in the section 6.2 we focus on
the common first-order regularization function, which
we examine in some detail. We also briefly examine
the thin-plate functional. In section 6.3 we consider
the use of the linear elastic functional and discuss the
problems associated with this as well as various pos-
sible solutions. Finally in section 6.4 we describe a
possible extension to the elastic model paradigm, the
Active Elastic Model.

6.1 The General Regularization

Framework

6.1.1 The Energy Minimization Framework

In this section we describe a framework in which
the goal is to estimate a displacement field u which
approximates another displacement field um. We will
assume that um is derived from some image-based al-
gorithm, such as the shape-based tracking algorithm,
where the relationships between different displace-
ments are not modeled. We simplify the approxima-
tion problem to be a least-squares fit of u to um sub-
ject to some constraints. This takes the form:

û =
arg min

u

(∫

V

W (α, u, x) + c(x)|um(x) − u(x)|2dv

)

(6.1)

where:

• u(x) = (u1, u2, u3) is the vector valued displace-
ment field defined in the region of interest V and
x is the position in space.

• um(x) = (um
1 , um

2 , um
3 ).

• c(x) is the spatially varying confidence in the
measurements um.

• W (α, u, x) is a positive definite functional which
defines the approximation strategy and is solely
a function of u, a parameter vector α and the
spatial position x.

This is commonly known as the regularization ap-
proach which was already described in section 2.4.
W (α, u, x) is known as the stabilization functional. In
certain cases the input displacement field um is sparse
and is defined only on a finite number (P) of points p
within V . In this case the overall functional takes the
form:

û =
arg min

u

(
∫

V

W (α, u, x)dv +

P∑

i=1

c(pi)|u
m(pi) − u(pi)|

2

)

(6.2)

6.1.2 A Probabilistic Interpretation

We now derive a probabilistic interpretation of the
energy minimization framework. In this setup again
we aim to estimate the output displacements u from a
set of measurements um. We further assume that we
are given the measurement probability density func-
tion p(um|u), which also corresponds to the noise
model for the measurements, and the prior probabil-
ity density function for u, p(u).1 We pose this as a
Bayesian a-posteriori estimation problem. Within this
framework, the solution û is the u that maximizes the
posterior probability density p(u|um). Using Bayes’
rule we can write the posterior probability as:

û =
arg max

u

{

p(u|um) =
p(u, um)

p(um)
=

p(um|u)p(u)

p(um)

}

(6.3)

1We will not define the basic terms of probability here, they
can be found in standard textbooks such as Papoulis [79].
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First we note that p(um) is a constant once the mea-
surements have been made and can therefore be ig-
nored in the maximization process. We can re-write
the above expression by taking logarithms to arrive
at:

û =
arg max

u

(

log p(u) + log p(um|u)
)

(6.4)

This expression is now in the same general form as
equation (6.1). As previously demonstrated by Geman
and Geman[38] and applied to medical image analysis
problems (e.g. Christensen [16], Gee [37]), there is a
correspondence between an internal energy function
and a Gibbs probability density function. Given an
energy function W (α, u, x) we can write an equivalent
prior probability density function p(u) (see equation
(6.3)) of the Gibbs form[38]):

p(u) = k1 exp(−W (α, u, x))

log(p(u)) = log(k1) − W (α, u, x) (6.5)

where k1 is a normalization constant.
Next we define the noise n = u− um. Then we can

model the noise probabilistically, using a multivariate
Gaussian distribution, as:

p(n) = k2 exp(
−n′Σ−1n

2
)

log p(n) = log k2 −
1

2
n′Σ−1n (6.6)

where k2 is also a normalization constant and Σ is the
covariance matrix which in this case can be assumed
to be diagonal. The mean of the noise is assumed to
be equal to zero. Substituting for n in this expression
we get:

log p(um|u) = k2 −
1

2
(um − u)′Σ−1(um − u) (6.7)

By an appropriate choice of Σ the second term can
be mapped to the data adherence term of equation
(6.2). In this case Σ−1 will be a diagonal matrix with
values c(pi) on the leading diagonal very similar to the
matrix A of equation (5.24).2

6.1.3 Advantages of the Probabilistic Inter-
pretation

In the soft tissue deformation problem there are
usually two types of information: (i) the image derived

2This is very similar to the way the classical least squares
problem is converted into a Bayesian estimation problem by
assuming a Gaussian noise model. The advantage in both cases
is that this generalization allows for more complicated models
for the noise to be introduced more cleanly.

data which is corrupted by noise and (ii) the material
properties of the soft tissue.

The data term is best modeled probabilistically in
order to allow for the construction of a proper noise
model. Here we can use ideas from the field of Digi-
tal Signal Processing (see for example Openheim and
Schafer[74]). The material term however is best de-
fined in terms of a continuum mechanical model. The
ability to generate an equivalent probability density
function for an internal energy function, as was done
in equation (6.5), allows us to take a continuum me-
chanics model defined in terms of an internal or strain
energy function and generate a probability density
function which can then be used together with the
probabilistic noise model within a Bayesian Estima-
tion framework.

6.1.4 The Problem of Different Units

There is one fundamental problem with the prob-
abilistic framework, which is also present but less ob-
vious in the energy minimization framework. This is
the problem of ‘different units’. This problem arises
because the model stiffness is measured in different
units from the noise variance. It is best explained by
means of an example.

Let as assume for the moment that W = e(u)′Ce(u)
which is the linear elastic model defined in equation
(5.14) and the noise model used is model of equation
(6.6). When these are substituted into equation (6.4)
we get (ignoring the constant terms k1 and k2):

û =
arg max

u
−

(

e(u)′Ce(u)+
1

2
(um−u)′Σ−1(um−u)

)

(6.8)
Given the fact that the um’s are constant and that

u, and hence the e(u)’s, are unknowns, the user con-
trolled terms are C and Σ. C defines the mechanical
model and Σ−1 the inverse covariance. We can write
both of these matrices in this general form (using the
n × n matrix M to be either C or Σ−1) as:

M =





M11 . . . M1n

. . . . . .
Mn1 . . . Mnn



 = Mmax[M̄ ] (6.9)

[M̄ ] =





M11

Mmax
. . . M1n

Mmax

. . . . . .
Mn1

Mmax
. . . Mnn

Mmax





where Mmax is the maximum value of M . In the case
of the material matrix C, Cmax would the highest
value of the stiffness or the Young’s Modulus, whereas
in the case of the Covariance matrix Σ−1, Σ−1

max would
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be the smallest variance, or the highest confidence in
any of the measurements. We can now rewrite equa-
tion (6.8) as:

û =
arg max

u
−

(

Cmaxe(u)′[C̄]e(u) +

Σ−1
max

2
(um − u)′[Σ̄−1](um − u)

)

û =
arg max

u
−

(

e(u)′[C̄]e(u)
︸ ︷︷ ︸

dimensionless

+ (6.10)

Σ−1
max

2Cmax
(um − u)′[Σ̄−1](um − u)
︸ ︷︷ ︸

dimensionless

)

At this point, it is clear that the absolute values of
Cmax and Σ−1

max enter into the functional only through

their ratio
Σ−1

max

Cmax
. Given that the rest of the expres-

sions in equation (6.10) are dimensionless3 for equa-
tion (6.10) to add up from a dimensionality viewpoint

we need to convert this ratio
Σ−1

max

Cmax
in order to also

make it dimensionless.4 This is done by multiplying
by a scaling constant ksc of the appropriate units i.e.

Σ−1
max

Cmax
7→ kscΣ

−1
max

Cmax
(6.11)

From a dimensionality viewpoint the value of the scal-
ing constant ksc is completely arbitrary.5 This value
can be interpreted as defining in some sense the ra-
tio of the relative confidences in the data as a whole
and the model as a whole. One method for setting the
value of this constant can be found in section 7.2.3.

6.1.5 Soft Tissue Objects as Markov Random
Fields

In using the Gibbs form (equation (6.5)) we have
modeled the displacement field of the solid probabilis-
tically as a Markov Random Field, an example of

3The term ‘dimensionless’ is used to describe a quantity that
is a pure number and has no associated units. A dimension-
less quantity will have the same value regardless of the system
of units used in its calculation. For example the ratio of two
lengths will the same regardless of whether the lengths are mea-
sured in meters or in feet.

4Cmax is measured in Pascals and Σmax in voxels. Hence
their ratio will not be dimensionless.

5Consider the following example. We are trying to optimize
the design criteria for a new computer and two criteria are speed
S in MHz and cost C in dollars. We proceed to optimize the
criterion αS+βC. The value of the ratio α

β
which will determine

the optimal S and C is completely arbitrary as S and C have
different units. It is up to the designer/salesperson to select the
value that matches some other external criterion.
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Figure 6.1: Example of an object discretized by parti-
cles shown as black circles. If the displacement field is
modeled as a first-order Markov Random Field (MRF)
the displacement of a specific particle p depends only
on external data and the displacements of its immedi-
ate neighbors a, b, c, d.

this is shown in figure 6.1. The Markov random field
(MRF) then can be thought of as the probabilistic
analog of the continuum mechanical model. There are
two interesting similarities: (i) Both can be defined
using energy functions and (ii) the energy functions
at any given point are functions only of the values of
that point and its immediate neighbors. In the case of
the MRF point (ii) comes from the fact that the the
Gibbs probability density function is often defined on
first and/or second order cliques which are very local
neighborhoods of the point. So if the displacement
field is modeled as a MRF, the probability of the dis-
placement of a given point p effectively only depends
on the displacement of its neighbors. In the case of
the mechanical model described using a strain energy
function, the value of the internal energy function,
which via exponentiation in equation (6.5) becomes
the probability density function, at a given point de-
pends only on the local strains. These local strains are
only dependent on the displacements of the neighbors
of the point and not on the displacements of the whole
volume.

6.2 A First-Order Regularization

Functional

In this section we begin by examining the most
common regularization functional, first proposed by
Horn and Schunk[47, 46] and subsequently used by
many others with various modifications [86, 24, 109,
93]. In this case W (α, u, x) takes the form:
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W (α, u, x) =
∑

i,j

αij

( ∂ui

∂xj

)2

(6.12)

which tries to enforce smoothness by penalizing all
first order derivatives, hence the name. The main mo-
tivation for its use is the assumption that it makes
very weak and generic assumptions about the under-
lying material properties. We will show this statement
to be false later in this section. A perennial problem
with this model is the setting of the values of the con-
stants αij , for which there is no good criterion.

6.2.1 The Two Dimensional Dense Case

In this case, for simplicity, we will consider the two
dimensional dense case. Here we assume that um is
defined over the whole volume of the object V . We
further set all the weighting constants αij equal to a
single constant λ. We substitute for this W in equa-
tion (6.1) to obtain:

û = arg min
u

(∫

V
λ
((

∂u1

∂x1

)2

+
(

∂u1

∂x2

)2

+
(

∂u2

∂x1

)2

+
(

∂u2

∂x2

)2)

+(u1 − um
1 )2 + (u2 − um

2 )2 dx1dx2

)

(6.13)

This can be divided into two functionals one for
each component of û. Since the two functionals will
have same form, we consider only the first component
û1. In this case we have:

û1 = arg min
u

(∫

V
λ
((

∂u1

∂x1

)2

+
(

∂u1

∂x2

)2)

+(u1 − um
1 )2 dx1dx2

)

(6.14)

A Frequency Domain Interpretation Taking
the Fourier transform (F : (x1, x2) 7→ η1, η2) and us-
ing the the capital letters signify the function in the
transform domain i.e. U = F(u), Um = F(um) etc.)
results in:

Û1 =
arg min

U

∫

η

λ
(

(η1U)2+(η2U)2
)2

+(U−Um)2 dη1dη2

Using calculus of Variations we ‘differentiate’ this
functional with respect to U to get

Û1 =
Um

1 + λ(η2
1 + η2

2)

which has the same basic form as a spatial low-pass
filter with λ controlling the cut-off frequency. Thus
this first order regularization model can be seen to be
a generalization of the low pass filter.

Limiting Case–The Translational Model: In
the limiting case as λ → ∞ this reduces to taking the
D.C. term of Um which makes um a constant over the
whole object. This is a complicated way of deriving
the translational model for the displacements which
has all the derivatives equal to zero. In this case we
can rewrite equation (6.14) to take the form:

û1 =
arg min

u

(∫

V

(u1 − um
1 )2 dx1dx2

)

(6.15)

subject to:
(∂u1

∂x1

)2

+
(∂u1

∂x2

)2

= 0

This effectively defines u1 to be a constant k1. The
problem is reduced to finding the k1 that minimizes
the functional. In this case k1 will be the spatial av-
erage of um

1 .

6.2.2 Relationship with Infinitesimal Linear
Elasticity

The linear elastic model was defined to have the
form W = e′Ce in equation (5.14). We note that
for the infinitesimal strain case, we had defined the
strain tensor ǫ and the small rotation tensor ω as (see
equation (5.11)).

ǫij =
1

2

( ∂xi

∂uj
+

∂uj

∂xi

)

(6.16)

ωij =
1

2

( ∂xi

∂uj
− ∂uj

∂xi

)

(6.17)

We further note that ǫij + ωij = ∂xi

∂uj
. This allows

us the rewrite the first order regularization functional
in terms of the strain and rotation tensor as;

W (α, u, x) =
∑

i,j

αij

(
ǫij + ωij

)2
(6.18)

The first non-trivial observation that can be made
by looking at equation (6.18), is that the first order
regularization model implicitly assumes small defor-
mations and rotations, as it is solely a function of the
infinitesimal deformation and rotation tensors. More
importantly however, as it is a function of ω, this func-
tional is not invariant to a global rotation (even allow-
ing for the small rotation case). In this case it violates
the axiom of objectivity, (see section 5.2.) This means
that no real material could possibly behave in this
way. Further we contradict the desired underlying as-
sumption in the use of this model, that it makes weak
and generic assumptions for the material properties.
In fact this model makes assumptions so strong that
no possible material could behave this way.6

6The fact that reasonable results have often been obtained
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Figure 6.2: Example of an object described by a set of springs connecting neighboring points. (a) Four elements
of a simple solid. (b) An element of the simple solid and (c) An element of a more complicated solid model.

6.2.3 The Discrete Spring Model

One way to make the first-order regularization
model invariant to rotations is to set αij = 0 when
i 6= j. This results in the so-called ‘spring-model’
which is illustrated in figure 6.2 (a). This model tries
to describe the solid as a discrete set of point masses
connected by springs. Alternatively, and more fre-
quently, the same stabilizing functional is derived from
the local internal energy function of the springs. To
further simplify this we will only consider half the
setup as shown in figure 6.2(b). Assuming constant
stiffness k for all springs, and small deformations we
can write this internal energy function as:

W (α, k, u) = αk
(

(u1(c) − u1(p))2 + (u2(b) − u2(p))2
)

(6.19)

Next we note that ∂u1

∂x1
= u1(c)−u2(p)

l and ∂u2

∂x2
=

(u2(b)−u2(p)
l , where l is the length of the springs. Sub-

stituting for these we get:

W (α, k, u) = αkl2
((∂u1

∂x1

)2

+
(∂u2

∂x2

)2)

= λ
((∂u1

∂x1

)2

+
(∂u2

∂x2

)2)

(6.20)

This can be recognized is a form of the first order
regularization functional of equation (6.12), with all
the constants αij , i 6= j equal to zero. Further we note
that using the second half of figure 6.2(a) will result
in another expression of the same form and the two
can be added to yield the final expression.

using this first order regularization model probably has to do
with the quality and density of the input data um. Given perfect
data no model is needed, and given very good data, even a poor
model will do a reasonable job.

This model now is a simplification of an infinitesi-
mal isotropic linear elastic model (see equation (5.15)),
with the Poisson’s ratio ν = 0. This implies that
shearing is not penalized. One way to fix this is to
add diagonal springs as shown in figure 6.2(c). How-
ever at this point it is probably easier to abandon this
discrete model and go to the full continuum model.

6.2.4 A Second-Order Regularization Func-
tional and the Affine Model

Another common model is the second order regu-
larization functional, which in two dimensions has the
form:

û = arg min
u

(∫

V
α
((

∂2u
∂x2

)2

+
(

∂2u
∂y2

)2

+
(

∂2u
∂x∂x2

)2

+

(
∂2u2

∂x2

)2

+
(

∂2u2

∂y2

)2

+
(

∂2u2

∂x∂x2

)2)

+(u1 − um
1 )2 + (u2 − um

2 )2 dx1dx2

)

(6.21)

The solution to this takes the form known as the
‘thin-plate’ spline as used by Bookstein and others[12].
It is again interesting to note the limiting case where
α → ∞. In this case u and v take the form:

u1 = a1x1 + b1x1 + c1 , u2 = a2x1 + b2x2 + c2 (6.22)

which is the affine mapping. So if α = ∞ the pro-
cess of solving equation (6.21) is reduced to estimating
a parametric form of the displacement as defined by
equation (6.22), using a straightforward least-squares
approach.

This model, unlike the first order regularization
model, is invariant to rigid rotation and hence satisfies
the axiom of objectivity. It is, however, also invariant
to an affine transformation which means that there is
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some deformation for which there is no penalty, as the
affine transformation can also change the shape of the
object. This is a problem in real tissue we do not have
energy free deformations.7

6.3 The Use and Abuse of Linear Elas-

ticity

The isotropic infinitesimal linear elastic model was
most likely introduced into the medical image analysis
literature as a means of avoiding the arbitrariness of
setting parameters for the generic first-order regular-
ization model. The isotropic linear elastic model has
two8 parameters, the Young’s modulus and the Pois-
son’s ratio. Moreover by virtue of the observations of
section 6.1.4, the absolute value of the Young’s modu-
lus is not important, only its ratio to the highest data
confidence is important.

There are two fundamental problems with the use
of this model: (i) the obvious restriction to small de-
formations, and (ii) a bias towards no deformation.
While problem (i) is important and easy to observe
from the name of the model9, it is (ii) that constitutes
the bigger problem. Often, given poor performance,
there have been solutions proposed with problem (i)
in mind (such as the fluid model) whereas the real
problem was problem (ii). Also, even when problem
(ii) was observed[31] the solutions were ad-hoc.

The problem of bias The easiest way to see the
bias problem is the following: Since the elastic model
penalizes all deformations, any estimation framework
which uses it as a prior model or internal energy model
as defined in equations (6.4) and (6.1) will underesti-
mate the actual deformation. The linear elastic model
can be thought of as a prior probability density func-
tion on the strain with zero mean and variance pro-
portional to the reciprocal of the Young’s modulus.

When the linear elastic model is used to regularize
estimates of myocardial deformation (with strains of
the order of 20 − 30%) this causes serious problems.

In some respects the thin-plate spline model of sec-
tion 6.2.4 has an advantage here in that it penalizes
the deviation from an affine transformation and not
the total transformation. If most of the deformation

7The exception is the case of actively deforming tissue, see
section 6.4.

8Compare this with the possible nine parameters in the
generic first-order regularizer of equation (6.12). Even though
these nine parameters can all be set to be equal, hence reducing
the number to one, there is no principled reason for doing so.

9This is also easily solved by using a finite strain formulation
and perhaps also a non-linear elastic model.

can be captured by an affine model this would effec-
tively only generate a bias in that component of the
deformation left over after the affine transformation.
This is probably why it is successfully employed in
many brain registration problems.

A number of methods have been proposed to im-
plicitly deal with this problem, we discuss these next,
but note that none of these has dealt with the cause
of the problems, they are in sense trying to limit, with
varying degrees of success, its effects.

6.3.1 Zero Stiffness

One approach by Park[80] eliminates the elastic
model altogether and provides some noise reduction by
temporal filtering. While this eliminates the problems
associated with bias it also forfeits all the usefulness
of exploiting the spatial relationships between differ-
ent points in the model. The method is successful in
part because the input data are very clean.

6.3.2 Bias Correction

This is essentially the approach we use in chapter
7. If at the end of a step there is some known infor-
mation about the position of a point, (that is should
lie on a surface or line), the point gets mapped to this
surface via a ‘nearest’ neighbor method. This elimi-
nates bias in some directions but not others (i.e. bias
is corrected perpendicular to the surface but not along
the surface).

6.3.3 The History-Free Approach

In this case the problem is divided into a number
of small steps and at the start of each step the strain
is assumed to be zero.10 By splitting the problem into
many small problems the effect of the bias is reduced,
as in each step the deformation is small. Consider the
example shown in figure 6.3. In case (A) the whole
measurement 2r is applied at once resulting in a large
bias 2r − z. In the second case (figure 6.3) the mea-
surement is applied incrementally in two steps B and
C. In step B we apply a displacement r and we get an
output z1. If the process does not remember the past,
for the second step C, though we apply a displacement
2r, in practice this is the same as 2r − z1 as the new
position of the solid is taken to be the rest state. So
in this case p(u) has a mean of z1. This reduces the
bias in the second step resulting in a better overall
estimate and a bias reduction.

The incremental approach substantially reduces the
bias, but as the history of the deformation is lost
at each step it cannot capture issues such as rela-
tive hardening of parts of the model. Hence in this

10This is part of the solution used in chapter 7 of this thesis
in the estimation of left ventricular deformation.
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Figure 6.3: Example of bias in the maximum a-posteriori approach. The bias is the difference between the true
solution and the actual solution. Note that the bias is more pronounced as the true solution (the maximum of
p(um|u)) deviates more from the prior mean (which is zero).

way we cannot capture aspects of real materials such
as progressive hardening with increased strain (using
non-linear elastic models) as at each step the strain is
assumed to be zero. We also note that this is the ap-
proach effectively used in deformable model segmen-
tation and optical flow estimation where at each step
the model is assumed to be deformation free.

6.3.4 Fluid Model

This is essentially the limiting case of the history
free approach. In the work of Christensen[17] it takes
the differential form:

µ∇2v + (λ + µ)∇(∇.v) = F (6.23)

where F is the image derived forcing function and v is
the local velocity vector related to the displacement u
as[17]:

v =
du

dt
=

∂u

∂t
+

3∑

i=1

vi
∂u

∂xi
(6.24)

where in this definition u and v are defined is a Eu-
lerian Framework, as opposed to the standard La-
grangian framework used in solid mechanics.11

11In the Lagrangian formulation the vector u is attached to
the particle originally at location X whereas in the Eulerian

The isotropic linear elasticity model can also be
written in differential form by differentiating the en-
ergy functional posed in equation (6.1) and generating
a force F by grouping together all external displace-
ments um. This takes the form (as derived in Chris-
tensen [18]):

µ∇2u(X) + (µ + λ)∇(∇.u(X)) = F (6.25)

where λ and µ are the Lamè constants which are de-
fined in terms of the Young’s modulus E and the Pois-
son’s ratio ν as[49]:

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)

If we compare equations (6.23) with (6.25) we see that
they are essentially the same, with the one being in
terms of the velocity v and the other in terms of the
displacement u. The fluid model can be seen to be the
limiting case of the history free approach of the previ-
ous section (section 6.3.3) as the step size goes to zero.

First note that v = limδt→0
u(t+δt)−u(t)

δt . Then if the

formulation u is the displacement of the particle currently at
this position. As Strang points out, in the context of Fluid
Mechanics[96]: “The fluid is flowing past Euler, who sits at a
point and watches Lagrange go by.”
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problem were solved using the history-free approach
and a large number of steps the effective displacement
u would approach the velocity as the step size gets
smaller.

The ‘fluid-model’ approach has the advantage of
explicitly stating its assumptions properly and possi-
bly some numerical advantages. However it does not
essentially change the solution that would have been
obtained given the history-free approach and a linear
elastic solid.

6.4 Active Elastic Models

6.4.1 Problems With Passive Models

The rational for the use of biomechanical models in
the recovery of soft tissue deformation from medical
images, is that they capture something of the real ma-
terial properties of the object. If the object though, as
in the case of the left ventricle, is deforming actively,
a passive model such as those discussed earlier in this
chapter has severe bias problems.

We can try to deal with the effects of the bias prob-
lems in a number of ways as discussed in the previous
section, but none of these methods can provide the
following properties:

1. Incorporate a prior model for the deformation
which preferentially penalizes some deformations
but not others.

2. Include the ability to model the deformation from
start to finish and at any time in the process pe-
nalize the deformation from the original state.

Regarding the first point, most elastic models will
penalize deviations from rigid motion, that is all defor-
mations. Models based on the thin-plate spline (see
section 6.2.4) penalize any deviations from an affine
deformation. This would be a good choice if we knew
that the true deformation was on average affine, but
this is not very likely in arbitrary soft tissue deforma-
tion.

The second point would allow the imposition of con-
straints such as fiber hardening or locking. In the case
of the left ventricle (and generally where elastomers
are concerned) a material will become rigid in certain
directions after a certain amount of deformation. Any
attempt to deform it further in this direction will re-
sult in a twisting motion as the deformation has to be
captured in a direction other than the one that has
locked.

6.4.2 A Proposed Extension

One possible correction for the elastic models is the
adjustment of the model for non-zero bias. Consider

the following generalization of the standard linear elas-
tic model, which we will label the active elastic model :

W = (e − ea)′C(e − ea) (6.26)

This is the equivalent of having a non-zero mean prior
probability density for the deformation. The strain e
is divided into two parts. The part ea which is energy
free and the part e − ea which is penalized. If this
model where used, we would be assuming that the
expected value of the deformation would be close to
ea and not to zero as is currently done. This has the
advantage over the thin-plate spline model (which also
penalizes only part of the deformation) of being able
to map the the active deformation directly in terms of
local strains.

6.4.3 A Hierarchal Estimation Scheme for
Finding the Active Component

In this scheme we are proposing an approach for
solving for the active component ea in a multi-frame
estimation setup, such as for left ventricular defor-
mation. The problem is to be solved in an iterative
fashion where we iterate over the frame-set a number
of times until convergence.

The first step in the approach is the generation of a
database of strains from a previously analyzed set of
experiments of the same type. We will label this prior
database to generate a prior probability distribution
for ea, p(ea), with mean ed.

At any given frame we label the value of the strain
at the previous time frame as e− and the value at the
next frame as e+ if these are available (unless it is the
first iteration we will have estimates of these.) We use
this to generate the average strain et = 0.5(e− + et),
and we model the difference et − ed with a zero mean
Gaussian distribution as:

p(et|ea) = k exp (−(et − ed)′Σ−1(et − ed)) (6.27)

Then êa can be defined as the maximum a-posteriori
estimate of ea given measurements et and the prior
probability density function of ea derived from the
strain database. Thus ea would take the form:

êa =
arg max

ea
p(et|ea)p(ea) (6.28)

This best estimate of ea, êa can then be used as the
mean from the prior probability density function of e
itself, by inserting it into the ‘active’ energy function
of equation (6.26).

We further note that there is an interesting side is-
sue here. In equation (6.26) the matrix C plays a role
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similar to the covariance matrix. However we can de-
termine an alternative covariance matrix from the esti-
mation of êa. It is not clear what the best choice ought
to be, but it is possible that the matrix C could also be
adjusted to take account of the probabilistic variation
of the strains given the values of the adjacent frames
and the strain database. If for example the strain in
a particular direction does not vary over a number
of experiments we would be tempted to increase the
stiffness in that direction to keep this variation low
regardless of whether this would contradict the un-
derlying material properties. In practice, one would
hope, that the strain along stiffer material directions,
as measured from biomechanical experiments, would
be less variable and hence C as derived from the model
would be close to the estimated covariance of e as de-
rived from the strain database.



Chapter 7

Estimating Left Ventricular

Deformation

In this chapter we turn our attention to the ma-
jor practical application in this thesis: the estimation
of left ventricular deformation from three-dimensional
medical images from a variety of modalities.

In section 7.1 we first describe how the images were
acquired. Following this in section 7.2 we focus on
how the general methodology developed in chapters
3–6 was applied to the analysis of the left ventricu-
lar image sequences. In section 7.3 we compare the
output of the algorithm to implanted sonomicrome-
ters and markers used as a gold standard. Finally in
section 7.4 we describe the output of this method from
various datasets and see how these correlate with in-
vasive measurements such as histochemical markers of
infarction and measures of myocardial blood flow.

7.1 Image Acquisition

7.1.1 Canine MR-images

ECG-gated magnetic resonance imaging was per-
formed on a GE Signa 1.5 Tesla scanner. Axial images
through the LV were obtained with the gradient echo
cine technique. The imaging parameters were: section
thickness=5 mm, no intersection gap, 40 cm field of
view, TE 13 msec, TR 28 msec, flip angle 30 degrees,
flow compensation in the slice and read gradient direc-
tions, 256 x 128 matrix and 2 excitations. The result-
ing 3D image set consists of sixteen 2D image slices per
temporal frame, and sixteen temporal 3D frames per
cardiac cycle, with an in-plane resolution of 1.6mm
and a slice thickness of 5mm. The dogs were posi-
tioned in the magnetic resonance scanner for initial
imaging under baseline conditions. The left anterior
descending coronary artery was then occluded, creat-
ing an infarcted region producing mechanical dysfunc-
tion, and a second set of images was acquired. An
example of such an acquisition was shown in figure
2.2. In some of the studies, markers were implanted

Myocardium

Left−Ventricular
Blood−Pool

3D Ultrasound
probe

Ultrasound 
Gel Pad

Figure 7.1: Image acquisition geometry for the 3DE
images, in the case of open chest dogs.

for validation purposes. This will be discussed in more
detail in section 7.3.

7.1.2 3D Echocardiography (3DE)

The 3DE images were acquired using an HP
Sonos 5500 Ultrasound System with a 3D transducer
(Transthoracic OmniPlane 21349A (R5012)). The 3D-
probe was placed at the apex of the left-ventricle of
an open-chest dog using a small ultrasound gelpad
(Aquaflex) as a standoff. This is illustrated in fig-
ure 7.1. Each acquisition consisted of 13–17 frames
per cardiac cycle depending on the heart rate. The
angular slice spacing was 5 degrees resulting in 36 im-
age slices for each 3D frame. In some of the studies we
also implanted sonomicrometer crystals for validation,
see section 7.3 for the details.

54
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7.1.3 Human MR-images

The Human MR images were acquired using
breath-hold techniques at 16 slice levels. These acqui-
sitions provide exquisite full, cine-3D image sequence
magnitude data within several minutes at a spatial
resolution of 1.5mm x 1.5mm x 5mm and a temporal
resolution equal to the duration of the cardiac cycle
divided by 20 phases (usually around 40msec).

7.1.4 Dynamic Spatial Reconstructor Data

The Dynamic Spatial Reconstructor is a three-
dimensional X-Ray computed tomography scanner at
Mayo Clinic. It can provide accurate, stop-action im-
ages of moving organs of the body. The canine data
we are using was acquired at 33 msec frame intervals
in real time, with the spatial resolution of 0.91mm in
all three dimensions. For more information the reader
is referred to Robb[88].

7.2 Image Analysis

7.2.1 Segmentation and Shape-Based Track-
ing

The endocardial and epicardial surfaces were ex-
tracted interactively using a software platform [76]
which was described in section 3.4. In the case of
the 3DE images the contours were extracted from the
original images then resampled to generate planar con-
tours in Cartesian space, to match the output from the
MR and the DSR data. Interpolated contours were
generated between the extracted ones using chamfer
interpolation (see section 4.1.1) to give isotropic sam-
pling of the resulting surfaces. The distance between
adjacent points on the surface was approximately 0.5
voxels. The surfaces were then reconstructed using
Delaunay Triangulation (section 4.2.1) and smoothed
using the non-shrinking algorithm described in section
4.2.2. Curvatures were calculated (section 4.2.3) and
the shape based tracking algorithm applied to gener-
ate a set of initial matches and confidence measures
for all the points on the surface. (see section 4.4)

Probabilistic modeling the initial displacement
estimates: Given a set of displacement vector mea-
surements um and confidence measures cm, we model
these estimates probabilistically by assuming that the
noise in the individual measurements is normally dis-
tributed with zero mean and a variance σ2 equal to
1

cm . In addition we assume that the measurements are
uncorrelated. Given these assumptions we can write
the measurement probability for each point as:

p(um|u) =
1√

2πσ2
e−

(u−um)2

2σ2 (7.1)
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Figure 7.2: Coordinate system used to define fiber
orientation. The fiber direction (F) lies in the plane
defined by the circumferential (C) and longitudinal
axis(L) at an angle θ anti-clockwise from the circum-
ferential axis.

This constitutes the data term of the deformation
model.

7.2.2 Modeling the myocardium

The myocardium is modeled as a transversely
isotropic linear elastic solid. This model is described
in section 5.2.1 and enabled us to capture the prefer-
ential anisotropy of the tissue along fiber directions.
The fiber orientations were modeled using the model
of Guccione et al [39] which resulted in the fiber pat-
tern shown in figure 5.2.

This model assumes that fibers lie in the plane de-
fined by the local circumferential (C) and longitudinal
(L) axes. First we define the cardiac-specific coordi-
nate system shown in figure 7.2. In the undeformed
state, the radial (R) axis points outwards, the circum-
ferential axis (C) is along the circumference of a planar
section and the longitudinal axis (L) is vertical. The
fiber (F) and cross-fiber axis (X) lie in the plane de-
fined by C and L. The fiber orientation can then be
defined by the angle θ as shown in the diagram. The
epicardial fiber angle varied between −43◦ at the base
and −53◦ at the apex, and the endocardial fiber angle
varied between 82◦ at the base and 97◦ at the apex.
All the other fiber angles can be found by linearly
interpolating both along the vertical and the radial
directions[39].

The model resulted in an internal energy function
W (C, u), where C represents the material properties
and u the displacement field. This was used to gen-
erate an equivalent prior probability density function
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p(u) of the Gibbs form:

p(u) = k1 exp(−W (C, u)) (7.2)

Geometrically the myocardium was discretized us-
ing the algorithm described in section 4.3 to produce a
hexahedral mesh. This mesh consisted of 1000− 2000
elements (depending on the geometry).

7.2.3 Integrating Model and Data

Having defined both the data term (equation (7.1))
and the model term (equation (7.2)) as probability
density functions we naturally proceed to write the
overall problem in a Bayesian estimation framework.
Given a set of noisy input displacement vectors um,
the associated noise model p(um|u) (data term) and a
prior probability density function p(u) (model term),
find the best output displacements û which maximize
the posterior probability p(u|um). Using Bayes’ rule
we can write.

û =
arg max

u
p(u|um) =

arg max

u

(p(um|u)p(u)

p(um)

)

(7.3)
The prior probability of the measurements p(um) is

a constant once these measurements have been made
and therefore drops out of the minimization process.
In this expression we also note that there is an un-
defined constant. This is the scaling factor ksc that
translates the stiffness of the mechanical model to the
effective maximum value of the covariance matrix of
its equivalent probability density function p(u). This
was discussed in more detail in section 6.1.4. The
value of this constant (ksc) sets the relative weight
of the data term to the model term. We set this
adaptively to be as large as possible (which pushes
the optimum towards the data side) subject to solu-
tion convergence. In this way we make the following
assumption: the best solution is the one which ad-
heres as much as possible to initial estimate of the
displacement field but still results in a connected solid.
Convergence fails when the Jacobian of the deforma-
tion field1 becomes singular. In this case we lower the
value of this weight to produce a smoother displace-
ment field.

Model bias and correction: We also note that
the mechanical model prior is generated by a passive
biomechanical model. As this does not capture the ac-
tive deformation of the heart, it has a major weakness
in that it penalizes all deformations. This model could

1The Jacobian of the deformation is the matrix F defined in
figure 5.1.

be thought in some sense as having a mean of zero
strain and a variance proportional to the reciprocal of
the stiffness. It will tend to bias the strain estimates
towards zero. As a certain amount of deformation does
occur the use of this passive model results in an un-
derestimation of the deformation. At this point the
problem is dealt with by forcing the nodes which lie
on the endocardial and epicardial surfaces at time t to
lie on the segmented surfaces at the time t + 1. (See
also section 6.3.)

7.2.4 Numerical Solution

Taking logarithms in equation (7.3) and differenti-
ating with respect to the displacement field u results
in a system of partial differential equations, which we
solve using the finite element method [9]. This is al-
most identical to the example problem described in
section 5.3.

For each frame between end-systole (ES) and end-
diastole (ED), a two step problem is posed: (i) solving
equation (7.3) normally and (ii) adjusting the position
of all points on the endocardial and epicardial surfaces
so they lie on the endocardial and epicardial surfaces
at the next frame using a modified nearest-neighbor
technique and solving equation (7.3) once more. This
ensures that there is a reduction in the bias in the
estimation of the deformation.

7.2.5 Strain Analysis

For the purpose of analyzing the results, the left-
ventricle of the heart was divided into a number of
cross-sectional slices, slice 1 being at the apex of the
ventricle, with the slice number increasing towards
the valve plane. Each slice was further subdivided
into 8 sectors, as shown in figure 7.3. We report, de-
pending on the application, the average of radial(RR),
circumferential(CC) and longitudinal(LL), fiber (FF)
and cross-fiber (XX) strains for these sectors. In some
cases we will report average strains over endocardial
and epicardial half-sectors, again as shown in figure
7.3 in the case of sector 7.

7.2.6 Measures of Myocardial Viability

In this section we present two techniques used to
invasively assess myocardial viability. The results of
these techniques are used to assess whether the image
derived strains are an effective measure of the under-
lying state of the tissue, that is if they can be used to
distinguish between different pathophysiological states
of the myocardium.

Postmortem: Triphenyl-Tetrazolium Chloride
(TTC) staining was used to define the extent of cell
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Figure 7.3: Division of the left ventricle(LV) into slices and sectors for the the purpose of reporting results, and
comparing the postmortem and regional blood flow data. In this example the LV is divided into four slices,
although this number differed depending on the size of the LV and the purpose of the data analysis. Each sector
consists of approximately 75 elements in the finite element mesh. In some cases we divide each sector into two
half-sectors, an endocardial half-sector and an epicardial half sector. (For an example see sector 7.)
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Figure 7.4: Labeling of sectors on one postmortem
slice based on TTC staining. A sector was labeled as
Infarct (INF) if the injury extended around the full
extent of the endocardium within the sector. When
the infarct area was less substantial (< 25%) the sector
was labeled as Mixed (MX). In cases where a sector
had little or no injury zone but was next to a MX or
an INF sector it was labeled as a Border (BD) (This
part of the labeling also accounted for the labels of
the sectors in slices above and below the sector). All
other sectors were labeled as normal (NL).

necrosis (death) following five hours of coronary oc-
clusion, thus defining the area of actual injury in the
tissue. The regional volume of the postmortem injury
zones are found by digitizing color photographs of the

TTC–stained post mortem myocardial slices (5mm
thick) from the excised hearts. The endocardial,
epicardial and infarction zone boundaries of each post
mortem left ventricular slice are hand-traced, aligned,
and stacked to reconstruct the three-dimensional
profile of the injury zone. Each slice is divided into
8 sectors, as was the case with the regional strains
(see figure 7.3). Each sector is then labeled as Infarct
(INF), Mixed (MX), Border (BD) or Normal (NL)
depending on the percentage of injury within the
sector and the labels of the neighboring sectors
as described in figure 7.4. We also calculate the
percentage of the injury in each sector.

Regional Blood Flow: In the 3DE studies, where
the postmortem information was not available, the
regional blood flow in the myocardium was used to
identify the underlying functional state.2 The regional
blood flow was determined using a radio-labeled mi-
crosphere technique. Here, radio-labeled microspheres
were injected into the left atrium and reference blood
samples were drawn from the femoral arteries. Re-
gional myocardial blood flow was calculated using a
method previously described by Sinusas et al[92]. We
again divide the left ventricle into four slices (as shown
in figure 7.3) and each slice into 8 sectors. A sector is
considered to be in the risk area if endocardial micro-

2These blood flow measurements were also available for the
canine MR studies, but since the postmortem information was
also available, the blood flow measurements were not used in
that case.
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Figure 7.5: Implantation of Image-Opaque Markers.
This figure shows the arrangement of markers on the
myocardium. First a small bullet-shaped copper bead
attached to an elastic string was inserted into the
blood pool through a needle track. Then the epicar-
dial marker was sutured (stitched) to the myocardium
and tied to the elastic string. Finally, the midwall
marker was inserted obliquely through a second needle
track to a position approximately half-way between
the other two markers.

sphere flow was less than 0.25ml/min/g at the time
of the occlusion. In the case of LAD occlusion the
normal region was defined by 5 transmural sectors lo-
cated in the posterior lateral wall at the base of the
heart (sectors 5,6,7 of the basal slice and sectors 6,7
of the mid-basal slice).

7.3 In-Vivo Validation

In this section we present validation of the image
derived strains using implanted markers and sonomi-
crometers as gold standards. We note that, to the best
of our knowledge, this is the only such validation cur-
rently in the literature.

7.3.1 Implanted Image-Opaque Markers:

Methodology: To validate the image-derived
strains markers were implanted on canine hearts as
follows: First the canine heart was exposed through
a thoracotomy. Arrays of endocardial, midwall and
epicardial pairs of markers were then implanted as
shown in figure 7.5. They were loosely tethered,
combinations of small copper beads (which show
up dark in the MR images) at the endocardial wall
and the midwall region and small plastic capsules
filled with a 200:1 mixture of water to Gd-DTPA
at the epicardial wall (which show up bright in the
MR images). Marker arrays were placed in two
locations on the canine heart wall. The location
of each implanted marker is determined in each

Endo     Mid     Epi

Marker Centroids
Identified Point

Figure 7.6: Localization of implanted markers. Ar-
rays consisting of 12 markers each were placed at two
positions on the left ventricle. In this figure, we show
the portion of one marker array as it intersected a
short-axis MR image slice. A human observer identi-
fied the pixels corresponding to each marker (left) and
the marker positions (right) were found by calculating
centroids of these points.

temporal frame by first manually identifying all pixels
which belong to the marker area (because of imaging
artifacts the marker ‘image’ extends to more than one
voxel) and then computing the 3D centroid of that
cluster of points, weighted by the grey level3. Figure
7.6 shows a short-axis MR slice of the heart with the
identified marker pixels shown in blue (left). The
marker centroids are shown on the right.

Results: The image-derived strains were compared
to strains derived from implanted markers. In the case
of the markers the strains were computed as follows
using only the epicardial and endocardial markers. In
each region of the LV that contained markers, groups
of either 6 or 8 markers (depending on the geometry)
were connected to form either prism or hexahedral el-
ements. Given the known displacements, we then cal-
culated the strains in these markers. These strains
were compared to the average strains in the elements
contained within each marker array. We used princi-
pal strains4, as the marker arrays where large and in-
cluded elements where the cardiac-specific directions
varied widely.

Comparison results are shown in figure 7.7 for N =
4 dogs (2 acquisitions per dog, one pre-occlusion and
one post-occlusion). We observe a strong correlation
of the principal strain values (r2 = .89).

3In the case of dark markers the image is first inverted.
4These are defined in section 5.1.4.
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R2   = 0.89

S.E.= 0.08

Figure 7.7: Algorithm-derived Strains vs. Implanted Marker-derived Strains. Left: Reconstructed LV volume
from cine-MRI at ED with marker positions noted as spheres (red=endo,yellow=mid,green=epi). Right: Scatter
plot of principal strains derived from baseline and post-infarction cine-MRI studies using algorithm vs. same
strains derived from implanted marker clusters at two positions in the LV wall for N = 4 dogs (There was a total
of 12 useable extracted marker arrays).

7.3.2 Sonomicrometers

Methodology: In the case of the 3DE images we
validate the strain estimates using implanted sonomi-
crometers. The canine heart is again first exposed
through a thoracotomy. With the aid of an implanta-
tion device constructed in our laboratory, two crystal-
arrays each consisting of 12 crystals (3 sub-epicardial,
∼2.0 mm, 6 mid-wall and 3 sub-endocardial, ∼0.75
mm diameter) were placed in the heart wall. To de-
fine the LV long axis a crystal was implanted in the
LV apex and two at the base of the LV, one near the
bifurcation of the left main coronary artery and the
second in the posterior wall. Finally, to define a fixed
coordinate space, 3 crystals attached to a plexi-glass
frame were secured in the pericardial space under the
right ventricle.

Digital sonomicrometry employs the time of flight
principal of ultrasound to measure the distance be-
tween a transmitter and a receiver. A total of 32 crys-
tals are used in each study. The distances between all
possible pairs of crystals are recorded along with LV
and aortic pressure at a sampling frequency of greater
than 125 Hz. There are a number of preprocessing
steps involved in obtaining the positions of the crys-
tals over time from the crystal to crystal pair lengths.
These are described by Dione et al[27]. The efficacy
of this technique was illustrated by additional work
[69] that showed that the distances obtained with so-
nomicrometers compared favorably (r = 0.992) with
those obtained using the more established technique of
tracking implanted bead displacements using biplane

radiography.

Results: We compared our image-derived strains
to concurrently-estimated sonomicrometer-derived
strains at several positions in the LV myocardium in
the same dogs. The sonomicrometers were visually lo-
cated from the images and the two nearest sectors of
algorithm-derived strains were selected for comparison
purposes. The comparison of the principal strain com-
ponents in two separate regions for a set of 3 studies
(the sonomicrometer data was not available for study
‘D4’) showed a strong correlation (r2 = 0.80). Here
we compare the principal strains as it is difficult to
estimate the cardiac specific directions in the case of
the sonomicrometer data. A scatter plot of algorithm-
derived principal strains versus sonomicrometer de-
rived principal strains is shown in figure 7.8. This
validation is still in a preliminary stage and we hope
in the future to also validate strain patterns which are
not fully averaged across the wall.

7.4 Results

In this section we presents results obtained using
this algorithm on Magnetic Resonance (both canine
and human), 3D Echocardiography and DSR Images.
Further, in the case of canine MR we compare the re-
sults with postmortem information and in the case of
3DE with myocardial flow measurements. No comple-
mentary measure was available for the human MR and
the DSR images.



60

R2   = 0.80

S.E.= 0.11

Arrays of
Sonomicrometers

Myocardium Left−Ventricular
Blood−Pool

Figure 7.8: 3DE Algorithm-Derived Strains vs. Sonomicrometer-derived Strains. Left: Placement of arrays of
sonomicrometers in the Left Ventricular Wall. Right: Scatter plot of principal strains derived from N=3 3DE
studies using the algorithm vs. same strains derived from sonomicrometer arrays (12 crystals in each cluster)
at two positions in the Left Ventricular wall. Note the high correlation between the two sets of strain values
(r2 = .80).

Figure 7.9: Average strain information at base-
line for N=8 dogs. Endocardial (EN) vs. epicar-
dial strains (EP) are significantly different for all
strains except longitudinal (p < .05); Note that
RR=radial, CC=circumferential, LL=longitudinal,
FF=along fiber, XX=cross-fiber strains.

7.4.1 Canine MRI

Normal: For reporting purposes, the left ventricle
was divided into three slices each consisting of eight
sectors. We observed uniformity of Radial (R) and
Circumferential (C) strains (ranges: R:15 ± 6% to
23±7%; C:−9±5% to −12±2%). Regional LV strains
and shears were consistent between dogs and compa-
rable to values derived using both implanted markers
and MR tagging [21]. Figure 7.9 shows average strains
in the endocardial half-sectors and the epicardial half-
sectors. Note that statistically significant differences
were observed between the endocardial and the epi-

cardial half-sectors.5

Figure 7.10 shows the temporal development of Ra-
dial and Circumferential strains from End-Diastole
(ED) to End-Systole (ES) for one canine study. Here
we plot strain for half-sectors (each sector is divided
into an endocardial half and an epicardial half). This
is also illustrated in the top half of figure 7.11 which
compares the raw non-averaged strain patterns with
those obtained after LAD occlusion.

Post-Occlusion The occlusion of the LAD causes
significant changes in the observed strain patters as
expected. A pre-occlusion/post-occlusion comparison
is shown in figure 7.11. This shows the same pattern
as the raw images shown in figure 2.2.

For quantitative analysis, the ventricle was divided
to have the same number of slices as the histochemi-
cal staining maps of the actual injury zone, to make
registration between the two easier. In the first part
of the analysis each slice was further subdivided into
eight sectors. The histochemical staining maps were
used to label these sectors as one of four categories: in-
farcted (INF), mixed (MIX), adjacent (BD), and nor-
mal (NL).

Given the relative uniformity of the radial and
circumferential strains from the normal data-set, we

5In the simplified case of a thick cylinder contracting without
changing its volume, it can be shown that the in-plane (perpen-
dicular to the long-axis of the cylinder) deformation varies as a
function of 1

r2 where r is the distance from the long axis. Hence,
were this model to be applied in the case of the left ventricle,
it would predict that the radial and circumferential endocar-
dial strains would be larger than the corresponding epicardial
strains. While this model offers a course approximation to the
actual deformation, it is nice to see that the real results are in
qualitative agreement with it.
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Figure 7.10: Baseline (normal) canine LV strains derived from cine-MRI. Development of radial and circumfer-
ential strain at 3 slice levels in 8 radial sectors in a single study. Each plot shows the strain evolution from ED
to ES in 2 transmural halves (endocardial half=blue, epicardial half=magenta).
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Figure 7.11: Strain Development in Post-Infarction (and vs. Baseline) Canine LV derived from cine-MRI. Left
side: mid-ventricle cutaway views through the 3D reconstructed volume show the strain patterns that develop
at 1/3, 2/3 and 3/3 of the time between ED and ES. The leftmost displays illustrate the circumferential (CC)
strains (normal ED-ES shortening is in the blue-green region). The displays just to the right show the radial
(RR) strains (normal ED-ES thickening in yellow-red region).

%
 S

tr
a
in

* * *

*
* p<0.05 vs all other CC, + p<0.05 vs normal RR

+
+

+

Figure 7.12: Average radial and circumfer-
ential strains (vertical axis is % strain) for
different postmortem-classified regions, from
N=8 post-occlusion cine-MRI studies. Note
that CC is able to separate all classifications
(INF=infarct,MIX=mixed,BD=border,NL=normal),
while RR can only separate NL from the other
classifications.

tested whether any of the strain components as es-
timated in the post-occlusion studies could be used
to discriminate between these different classes (INF,
MIX, BD, NL). We found that the circumferential

p<0.05

Figure 7.13: Results from Nontransmural (N = 6) vs.
Transmural (N = 6) Acute Canine Studies: Shown
are the 3 principal strains (p1,p2,p3) derived from
cine-MRI. Note significant difference in first principal
endocardial strain.

strain discriminated all myocardial regions to a level
of significance p < 0.05. This demonstrated that this
methodology can be applied to discriminate different
regions non-invasively as shown in figure 7.12.

In the second part of the analysis we attempted
to see whether this methodology could distinguish be-
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tween animals where there was post mortem-confirmed
globally transmural injury, as opposed to nontrans-
mural injury. Here, we used 12 studies performed ex-
perimentally and imaged as described above, which
separated into two N = 6 groups based on the fol-
lowing post mortem criteria. The first group, labeled
transmural, contained the dogs that had two or more
post mortem infarct (I) sectors with greater than 75%
injury. The other dogs were placed into the nontrans-
mural group. For testing purposes, we then compared
the principal strains within the endocardial and epi-
cardial halves of 1.) the sectors having greater than
75% infarct in the transmural dogs and 2.) the sectors
having greater than 25% infarct in the nontransmural
dogs. We found that there was a significant differ-
ence between the transmural and nontransmural dogs
in the values of the endocardial, first principal strains,
indicating the plausibility of using 3D strain for sepa-
rating these physiological states. A graph of all of the
endocardial and epicardial principal strains for both
the transmural and nontransmural dogs is shown in
figure 7.13.

7.4.2 3D Echocardiography

We report here on results from 3DE studies (N =
4). The images were obtained either before (D1 and
D2) or after occlusion of the left anterior descending
coronary artery (D3 and D4), using the procedure de-
scribed in section 7.1.2

The potential of our methodology is illustrated in
figure 7.14, which shows a cut through our tracked
3D mesh overlaid on a slice through the original 3DE
image data over time. This could be seen as a form
of software-derived, 3DE-based “tissue tagging” some-
what in the sense of MR tagging. Note the spreading
grid lines near the endocardium on the right as the LV
thickens from ED to ES. There is also an infarct re-
gion in the lower left half of the image which exhibits

Study D1 D2 D3 D4

Normal Radial Strain 17.7 13.8 22.4 17.2
Normal Circumferential Strain -13.4 -13.1 -8.4 -12.4
Normal Longitudinal Strain -4.3 -3.2 -3.4 -3.1

Risk Area Radial Strain n/a n/a -4.3 -13.7
Risk Area Circumferential Strain n/a n/a 1.9 -7.3
Risk Area Longitudinal Strain n/a n/a -0.7 -2.0

Table 7.1: Summary of results for four animal studies.
There was no risk area (n/a=not applicable) in studies
D1 and D2 as the 3DE images, in these cases, were
obtained before coronary occlusion.

bulging instead of contraction. The progressive devel-
opment of regional radial and circumferential strains
for ‘D3’ is shown in figure 7.15.

The quantitative results are summarized in Table
7.1. Function in the risk area, which was indepen-
dently defined by microsphere flow, was markedly re-
duced compared to non-affected regions and the con-
trol normal animal. The radial strain is notably
smaller in the risk area after coronary occlusion. The
circumferential strain becomes less negative also indi-
cating a loss of function. There was a small decrease
in the longitudinal strain as well.

It is interesting to note that in a recent
publication, Croisille [21] reported similar val-
ues (Radial=23.2 ± 1.9%, Circum.=−10.5 ± 2.0% and
Long. =−7.5 ± 1.0%) for strains in the normal regions
of dog hearts using three-dimensional tagged MRI.
However, they observed smaller reductions in strains
post-occlusion, which can be attributed to coronary
reperfusion in their model. This probably allowed for
partial recovery of function in the risk region.

7.4.3 Human MRI

We also tested the algorithm on N = 3 sequences of
breathhold images of normal human subjects. The one
difference in the processing, between these acquisitions
and the canine MR acquisitions, was that since, in this
case, different 3D slice levels are acquired at different
breath holds, slices at the same time frame can be
misaligned along the long axis of the heart. We have
corrected for this by manually aligning the data in
each frame.

7.4.4 DSR

To show the utility of our strain computation ap-
proach in a third modality, it was also tested on three
cine-CT canine experiments performed by Dr. Erik
Ritman, at the Mayo Clinic, using the Dynamic Spa-
tial Reconstructor (DSR). The results for a set of
baseline (normal state) dogs are shown in figure 7.17.
Note that the values reported are in the same range
as strains from our own cine-MRI data and those from
MR tagging [21].

7.5 Conclusions

In this chapter we have illustrated the application
of the general methodology described in this thesis
to estimating left ventricular deformation from three-
dimensional medical images. We note that modality
specific forms of data can be added to this general
framework. In the case of magnetic resonance such in-
formation could be derived from MR tagging and/or
phase contrast (see section 2.3). In the case of 3D
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1 2

3 4

Figure 7.14: “3DE-tissue-tagging”- a slice through a 3D visualization with the algorithm-driven deforming mesh
overlaid on one slice through a 3DE dataset at four time points between ED and ES. This demonstrates the
output of the algorithm which tries to follow (or tag) material points in time, similar to the Magnetic Resonance
Tagging approach.

End-Diastole End-Systole

0% 30%-30%

Figure 7.15: A long-axis cut-away view of the LV showing 3DE-derived circumferential (top) and radial (bottom)
% strain development at 4 time points between ED and ES in a dog following LAD occlusion (on the lower right
half of the heart). The strains shown here are averaged in eight transmural sectors in each slice as described in
figure 7.3. Note the normal behavior in the left half of the heart, showing positive radial strain (thickening) and
negative circumferential strain (shortening) as we move from ED to ES. The lower right half of the heart where
the affected region was located showed almost the opposite behavior, as expected.
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Figure 7.16: Human cine-MRI-derived results. Left: Magnitude breath-hold ED and ES images at a single slice
level. Upper right: (see color scale in fig 7.11) radial strains at 3 long axis time points between ED and ES. Lower
right: mean cardiac-specific strain values for N = 3 studies at mid-LV.

ED

ES
Figure 7.17: Algorithm-derived Strains from Cine-CT (DSR) Images. Left: Example axial slice from baseline
dog study at end-diastole (ED) and end-systole (ES). Upper right: Radial strains at 3 time points ED to ES.
Lower right: Average radial (RR), circumferential (CC) and longitudinal (LL) strains for N = 3 dogs.
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Echocardiography we could potentially used velocity
data generated using Doppler ultrasound techniques
and/or displacement information generated from fol-
lowing graylevel patterns in the images, sometimes
known as speckle tracking. However, we have tested
the method so far, only using shape-based displace-
ments as an input. The results have been validated
in-vivo using implanted markers in the case of MRI
and sonomicrometers in the case of 3DE. We further
demonstrate the usefulness of the estimated strains in
determining myocardial viability non-invasively.

Further research could include the use of the ac-
tive model proposed in chapter 6, to properly han-
dle the bias problems inherent in the passive biome-
chanical model. The active model could also be
used as a means of incorporating a temporal conti-
nuity/periodicity constraint (see section 6.4.2.)

Ultimately this deformation estimation algorithm
could be combined with a segmentation algorithm, to
segment and track the LV within an integrated frame-
work, where the processing is done in an iterative fash-
ion. The output of the segmentation algorithm can be
used as the input to the deformation estimation algo-
rithm to generate an estimate of the deformation (as
was done in this thesis). Then the deformation esti-
mation algorithm (assuming the presence of an active
model) could be used to generate a better estimate of
the segmentation. Then this new estimate of the seg-
mentation can be used to initialize the next iteration
of the segmentation algorithm. This combination of
the two algorithms would then result in a closed-loop
system, where information from the segmentation al-
gorithm is used to guide the deformation estimation
algorithm and vice-versa, and could potentially result
in substantial savings in the time needed to obtain a
good segmentation of the images.
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