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We cast the problem of shape reconstruction of a scene as the global region segmen-
tation of a collection of calibrated images. We assume that the scene is composed of
a number of smooth surfaces and a background, both of which support smooth
Lambertian radiance functions. We formulate the problem in a variational frame-
work, where the solution (both the shape and radiance of the scene) is a minimizer of
a global cost functional which combines a geometric prior on shape, a smoothness
prior on radiance and a data fitness score. We estimate the shape and radiance via an
alternating minimization: The radiance is computed as the solutions of partial differ-
ential equations defined on the surface and the background. The shape is estimated
using a gradient descent flow, which is implemented using the level set method. Our
algorithm works for scenes with smooth radiances as well as fine homogeneous tex-
tures, which are known challenges to traditional stereo algorithms based on local
correspondence.

KEY WORDS: Variational methods; Mumford–Shah functional; image segmenta-
tion; multi-frame stereo reconstruction; partial differential equations; level set
methods.

1. INTRODUCTION

Inferring the three-dimensional shape of a scene from a collection of images is one
of the most studied problems in Computer Vision. In the case of multiple images,
this problem is typically approached in two steps: first image points or regions are



matched across different images to establish local correspondences; then three-
dimensional shape is inferred by combining the local correspondences.6 Corre-

6 There are exceptions to this scheme, for instance the variational approach to stereo, championed
by Faugeras and Keriven [12], who combined the correspondence establishment and the shape
reconstruction into one single step.

spondence suffers significantly from the presence of noise and local minima, and
therefore causes the overall system to break down.

One assumption which most matching algorithms rely on is that the radiance
function of the scene is nowhere constant. In the case that the radiance is smooth or
dominated by fine textures, image matching will give poor correspondence results.
Therefore, we need to seek a global scheme in which we can leverage the prior on
the radiance of the scene.

On the other hand, when the radiance of the scene is smooth, the appearance
of its image projection will be smooth, except self-occlusions. Therefore, shape
reconstruction corresponds to a well-defined problem in the image domain, that can
be posed in terms of region-based segmentation [19].

In [27], Yezzi and Soatto proposed a method to solve the multi-frame shape
reconstruction of smooth surfaces as the joint global region segmentation of the
images. They assumed that the scene of interest was populated by a number of
Lambertian surfaces with smooth or constant radiances as well as fine textures.
They defined an energy functional which combined photometry, geometry and
prior assumptions together and then formulated the problem in a variational
framework. Although the authors of [27] presented a piecewise smooth model,
their experimental evaluations were based on a simplified model in which the
radiances of both the foreground and background were assumed to be constant.
The implementation of this simpler piecewise constant model is considerably easier
than the piecewise smooth case since the latter implementation (to be discussed in
Sec. 3 that follows) must track functions on evolving manifolds, while the former
case must only track evolving manifolds (and a few constants). In this paper, we
will describe in detail the implementation techniques behind this more general
piecewise smooth model and will demonstrate its greater flexibility and power in the
experimental results at the end of the paper.

1.1. Relation to Previous Work

Since this work covers both the topics of segmentation and shape reconstruc-
tion, it relates to a vast body of literature. In stereo reconstruction (see [11] and
references therein), one makes the assumption that the scene is Lambertian and the
radiance is nowhere constant in order to establish local correspondence and then
recovers a dense three-dimensional structure of the scene. Among all, there is a
small body of literature on variational stereo [12, 14, 16], pioneered by Faugeras
and Keriven’s work [12]. They pose the problem in a variational framework, where
the cost functional corresponds to a global matching score. In a sense, our work
can be interpreted as extending the approach in [12] to regions, where the radiance
is too smooth to establish local correspondences. In shape carving [18], the same
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assumptions are used to recover a representation of shape (the largest shape that is
photometrically consistent with the image data) as well as photometry. We use a
different assumption, namely that the radiance and shape are smooth, to recover a
different representation (the smoothest shape that is photometrically consistent with
the data in a variational sense) as well as photometry. Therefore, our algorithm can
be interpreted as performing space carving in a variational framework, minimizing
the effect of noise. Note, however, that once a voxel is deleted by the carving
procedure, it can never be retrieved. In this sense, shape carving is uni-directional.
Our algorithm, on the other hand, is bi-directional, in that surfaces are allowed to
evolve inward and outward. Finally, there is a relationship between our reconstruc-
tion method and the literature on shape from silhouettes [7], although the latter is
based on local correspondence between occluding boundaries. In a sense, this work
can be interpreted as a region-based method to reconstruct shape from silhouettes.

The material in this paper is tightly related to a wealth of contributions in the
field of region-based segmentation, starting from Mumford and Shah’s pioneering
work [19], and including [6, 22, 28, 29]. This line of work stands to complement
local edge-based segmentation methods such as [2, 3, 8, 15, 24, 25]. There are also
algorithms that combine both features [4, 5].

In the direction of combining region-based segmentation and shape recon-
struction, this paper continues the work of Yezzi and Soatto [27].

Since we would like to also give details about the numerical implementation,
this paper has a close relation to the field of level set methods, introduced by Osher
and Sethian [20].

1.2. Outline of This Paper

The rest of this paper is organized as follows: In Sec. 2, we will discuss the
energy model proposed in [27] for joint image segmentation and shape reconstruc-
tion. We will formulate the problem in a variational framework and discuss a way
to minimize the energy functional using partial differential equations (PDEs). In
Sec. 3, we further elaborate on the implementation of these PDEs in the level set
framework. We report our experimental results on synthetic datasets and real data-
sets in Sec. 4 and conclude this paper with a discussion of our algorithm in Sec. 5.

2. STEREOSCOPIC SEGMENTATION

We consider the problem of recovering the three-dimensional shape of a
given scene from a set of two-dimensional images taken from multiple calibrated
cameras. We assume that the scene is composed of a number of smooth, closed
surfaces supporting smooth Lambertian radiance functions (or dense textures with
spatially smooth statistics) and the background, which happens to occupy the
entire field of view (the ‘‘blue sky’’ assumption) and supports a different radiance
function. Under these assumptions, a subset of discontinuities (or texture dis-
continuities) in images correspond to occluding boundaries. These assumptions
make the image segmentation problem well-posed, although not general. In fact,
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‘‘true’’ segmentation in this context corresponds in a one-to-one fashion to the
shape of the surfaces in the scene. Based on these assumptions, one can set up a
cost functional to minimize the variations within each image region, where the free
parameters are not the boundaries in the image themselves, but the shape of the
surfaces in space whose occluding contours happen to project onto such bound-
aries.

2.1. A Variational Framework

We consider S to be a smooth surface in R3 with generic local coordinates
(u, v) ¥ R2. Let dA be its Euclidean area element, i.e., dA=||Su × Sv || du dv. The
norm || · || we use here is the standard Euclidean norm. We denote with X=
[X, Y, Z]T the coordinates of a generic point on S with respect to a fixed inertial
reference frame. We assume that we can measure n images: Ii, i=1, 2,..., n. All the
images are fully calibrated, i.e., all the intrinsic and extrinsic parameters of the
cameras are given. Let Wi … R2 be the domain of the image Ii with area element
dWi. We will use X i=[Xi, Yi, Zi]T to represent X in the ‘‘camera coordinates’’ with
respect to the ith camera. The camera projection is modeled as an ideal perspec-
tive projection: p i: R3

Q Wi; X W x i, where x i=[xi, yi]T=[Xi/Zi, Yi/Zi]T. We
describe the background B (‘‘blue sky’’) as a sphere with angular coordinates
G=(h, g) ¥ R2 that may be related in a one-to-one manner with the coordinates x i

of each image domain Wi through the mapping Gi (i.e., G=Gi(x i)). We assume
that the background supports a radiance function g: B Q R and the surface sup-
ports another radiance function f: S Q R. We define the region R i to be p i(S) … Wi

and denote its complement by Rc
i . Although the perspective projection p i is not one-

to-one (and therefore not invertible), the operation of back-projecting a point x i

from R i onto the surface S still makes sense in the following way: For a given
surface S, we trace the ray starting from the i th camera center and passing
through x i, find its first intersection with S, and define the intersection point as the
back-projection of x i onto S. Therefore, we will make a slight abuse of notation
and denote this back-projection by p−1

i : R i Q S; x i W X. Please refer to Table I for
quick references to the notations used in this paper.

In order to infer the shape of S, we impose a cost on the discrepancy between
the projection of the model foreground and background radiances via the model
surface and the actual measurements. Such a cost, E, depends upon the surface S as
well as upon the radiances of the surface f and of the background g: E=E(f, g, S).
We will then adjust the shape of the model surface and radiances to match the
measured images. Since the unknowns (surface S and radiances f, g) live in infinite-
dimensional spaces, we need to impose regularization. In particular, we can leverage
on our assumption that the radiances are smooth. However, this is still not enough,
for the estimated surface could converge to a very irregular shape to match image
noise and fine details. Therefore, we impose a geometric prior on shape (smooth-
ness). These are the three main ingredients in our approach: a data fidelity term
Edata(f, g, S) that measures the discrepancy between the measured images and the
images predicted by the model, a smoothness term for the estimated radiances
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Table I. Quick Reference to the Notation

Variables Descriptions

S the surface of interest
(u, v) ¥ R2 generic local coordinates for S
B the background surface
(h, g) ¥ R2 the angular coordinates for B
f: S Q R the radiance function of the surface S
g: B Q R the radiance function of the background B
X=[X, Y, Z]T the coordinates of a generic point on S
X i=[Xi, Yi, Zi]T X with respect to the reference frame of the i th camera
N the inward unit normal to S
Ni N with respect to the reference frame of the ith camera
Wi the domain of the image Ii

x i=[xi, yi]T the coordinates of a point in Wi

p i: S Q Wi the projection transformation of the ith camera
Gi: Wi Q B the coordinate transformation from Wi to B
R i=p i(S) the projection of the surface S in the ith image
Rc

i =Wi 0p i(S) the projection of the background B in the ith image

Esmooth(f, g, S) and a geometric prior Egeom(S). We consider the composite cost
functional to be a weighted average of these three terms:

E(f, g, S)=Edata(f, g, S)+aEgeom(S)+bEsmooth(f, g, S). (2.1)

where a, b ¥ R+. In particular, the geometric prior is given by:

Egeom=F
S

dA=area(S), (2.2)

while smoothness is imposed by a cost on the quadratic variations of the functions f
and g on S:

Esmooth=F
S

||NSf ||2 dA+F
B

||NGg||2 dG, (2.3)

where NS denotes the intrinsic gradient on the manifold S (the exact definition is
given in Appendix A.) and NG denotes the intrinsic gradient on B. Finally, the data
fidelity term may be measured in the sense of L2 in the image domain by

Edata= C
n

i=1
F

Ri

(f(p−1
i (x i)) − Ii(x i))2 dWi+ C

n

i=1
F

Rc
i

(g(Gi(x i)) − Ii(x i))2 dWi. (2.4)

To facilitate the computation of the variation with respect to S, we express
these integrals over the surface S. We start by introducing the characteristic func-
tions qi(X) into the integrand. Here qi(X)=1 if X is visible from the ith camera
and qi(X)=0 if X is not visible from the ith camera, i.e., X is occluded by other
points on S with respect to the ith camera. We may express Edata as follows:
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Edata= C
n

i=1

1F
Wi

r2
i (x i) dWi+F

Ri

((f(p−1
i (x i)) − Ii(x i))2 − r2

i (x i)) dWi
2

= C
n

i=1

1F
Wi

r2
i (x i) dWi+F

p
− 1
i (Ri)

(r̃2
i (X) − r2

i (p i(X))) si(X, N) dA2

= C
n

i=1

1F
Wi

r2
i (x i) dWi+F

S
qi(X)(r̃2

i (X) − r2
i (p i(X))) si(X, N) dA2 (2.5)

where r̃i(X)=f(X) − Ii(p i(X)) and ri(x i)=g(Gi(x i)) − Ii(x i). We use the fact that
the area measure dWi of the image is related to the area measure dA of the surface
by dWi=(X i · Ni)/Z3

i dA, where N is the inward unit normal to S, and Ni is N with
respect to the coordinates of the i th camera. si(X, N) is a shorthand notation to
(X i · Ni)/Z3

i .
Combining all three terms, we have the global cost functional as follows:

E(f, g, S)= C
n

i=1

1F
Wi

r2
i (x i) dWi+F

S
qi(X)(r̃2

i (X) − r2
i (p i(X))) si(X, N) dA2

+a F
S

dA+b 1F
S

||NSf ||2 dA+F
B

||Ng||2 dG2 . (2.6)

The model (2.6) was first proposed by Yezzi and Soatto in [27]. However,
experimentally they only evaluated a simplified cost functional in which both
radiance functions f and g were taken to be constant:

Econstant=Edata+Egeom

= C
n

i=1

1F
Wi

+2
i (x i) dWi+F

S
qi(X)(+̃2

i (X) − +2
i (p i(X))) si(X, N) dA2+a F

S
dA

(2.7)

where +̃i(X)=f − Ii(p i(X)) and +i(x i)=g − Ii(x i). f and g are constant over S and
B respectively. This simplification corresponds to giving infinite weight to the
smoothness term Esmooth, i.e., b=.. It is related to the approach of Chan and Vese
in [6] who considered a piecewise constant version of the Mumford–Shah func-
tional for image segmentation. In this paper, we consider the full energy
model (2.6).

2.2. Gradient Descent Flows

We use an iterative procedure to find the surface S and the radiances f and g
that minimize the functional (2.6). In particular, we start from an initial surface S,
compute the optimal radiances f and g, update S according to the gradient descent
flow which is shown to minimize E(f, g, S), and then repeat the whole procedure
again. To fully carry out this procedure, we need to solve the following two
problems: given f and g, find the gradient descent flow for S; given S, compute the
optimal f and g.
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In order to address the first problem, we need to find the gradient descent flow
for each component of the energy with respect to the variation of S. The gradient
descent flow for Egeom is simply the mean curvature flow, which minimizes the
surface area:

St=2HN, (2.8)

where H is the mean curvature defined with respect to the inward normal N. We
keep 2 in the flow to make sure the overall flow is correctly weighted with respect to
the weights in the functional (2.6).

The flow to minimize Edata can be obtained by computing its first variation.
The formula was derived in [27]:

St=1 C
n

i=1

1
Z3

i

((f − g)(f+g − 2Ii)(Niqi · X i)+2qi(Ii − f)(Nif · X i))2 N, (2.9)

where Ni denotes the intrinsic gradient with respect to X i (recall that X i is the
representation of a point using the camera coordinates associated with the ith
camera). We remark that the first term in the data flow involves the gradient of the
characteristic function qi and is therefore non-zero only on the portions of S which
project onto the boundary of the region R i. As such, this term may be directly
associated with a curve evolution equation for the boundary of the region R i within
the domain Wi of the image Ii. The second term, on the other hand, may be non-
zero over the entire patch p−1

i (R i) of S.
The evolution equation for the smoothness term needs some attention. First we

notice that >B ||NGg||2 dG does not depend on S. Thus we only need to compute the
variation of >S ||NSf ||2 dA with respect to S. In the appendix, we show that the gra-
dient descent flow for the energy >S ||NSf ||2 dA is given by:

St=2(II(NSf × N) − ||NSf ||2 H) N, (2.10)

where II(t) denotes the second fundamental form of a tangent vector t with respect
to the inward normal. Note that NSf × N is a tangent vector since it is perpendicular
to N. The meaning of this flow becomes more clear when it is expressed in the level
set framework (see Sec. 3.4). Essentially it is a combination a heat flow along one
direction and a backward heat flow along another direction, both of which are in
the tangent plane.

We may now write down the complete gradient flow for E=Edata+
aEgeom+bEsmooth as

St=1 C
n

i=1

1
Z3

i

((f − g)(f+g − 2Ii)(Niqi · X i)+2qi(Ii − f)(Nif · X i))

+2aH+2b(II(NSf × N) − ||NSf ||2 H)2 N. (2.11)

A particularly nice feature of flow (2.11) (which is shared by the standard Mumford–
Shah formulation for direct image segmentation) is that it depends only on the
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image values, not on the image gradients. This factor makes the algorithm less sen-
sitive to image noise when compared to other variational approaches for stereo
(therefore less likely to cause the flow to become ‘‘trapped’’ in local minima).

2.3. Estimating the Scene Radiances

Once an estimate of the surface S is available, we need to find the optimal
radiances f and g minimizing our energy functional E(f, g, S). The minimizers f and
g satisfy the Euler–Lagrange equations:

b DSf= C
n

i=1
qi(f − Ii) si, (2.12)

b DGg= C
n

i=1
q̂i(g − Ii), (2.13)

where DS denotes the Laplace–Beltrami operator on the surface S, DG denotes the
Laplacian on the background B with respect to its spherical coordinates G, and
q̂i(G) denotes a characteristic function for the background B where q̂i(G)=1 if
G−1

i (G) ¥ Rc
i and q̂i(G)=0 otherwise.

We solve these two elliptic PDEs by performing gradient descent using the
following PDEs:

“f
“t

=b DSf − C
n

i=1
qi(f − Ii) si, (2.14)

“g
“t

=b DGg − C
n

i=1
q̂i(g − Ii). (2.15)

The steady-state solutions to Eqs. (2.14), (2.15) will be the solutions of Eqs. (2.12),
(2.13) respectively.

3. IMPLEMENTATION

The level set method is first introduced by Osher and Sethian in [20] as a
numerical device to evolve interfaces. In the level set formulation, hyper-surfaces
(for instance curves in two dimensions and surfaces in three dimensions) are repre-
sented implicitly as the zeros of a Lipschitz continuous function, often defined on a
uniform Cartesian grid. With the robust numerical methods for Hamilton–Jacobi
equations, see e.g., [10, 21, 23], the level set method handles topological changes of
the surfaces during the evolution automatically, without performing any extra pro-
cedure (which is needed in explicit representations such as triangulations and
splines). Furthermore, with the level set formulation, important geometrical quan-
tities of the surfaces, such as the normals and curvatures, can be easily and accura-
tely computed using finite difference schemes. These are the essential features
needed for implementing Eqs. (2.11), (2.14), and (2.15).
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3.1. Level Set Implementation

In this section we outline the level set implementation of flow (2.11). To sim-
plify the notation, we may first re-write (2.11) as St=FN, where F denotes a
general speed function and N is the inward unit normal to S. In our case,

F= C
n

i=1

1
Z3

i

((f − g)(f+g − 2Ii)(Niqi · X i)+2qi(Ii − f)(Nif · X i))

+2aH+2b(II(NSf × N) − ||NSf ||2 H). (3.1)

The level set implementation of any geometric flow begins by embedding the initial
interface S(X, 0) as the zero level set of a scalar function k0(X). We choose k0(X)
to have the property that it is positive outside S, negative inside S and zero on S.
k0(X) is then taken to be the initial condition for a function over time k(X, t):

k0: R3
Q R, k: R3 × R+

Q R, k(X, 0)=k0(X). (3.2)

The key point is that we continue to embed the interface as the zero level set of k

for all times. Thus, we have:

k0(S(X, 0))=0, (3.3)

k(S(X, t), t)=0. (3.4)

Differentiating (3.4) with respect to t therefore yields kt+NkTSt=0, where Nk is
the gradient of k with respect to the spatial coordinates: Nk=[kx, ky, kz]T. Finally
noting that the inward normal of S can be computed based on k as N=
−Nk/||Nk||, we have

kt=F ||Nk||. (3.5)

3.2. Second Fundamental Form

To compute the speed function F, we need to find a way to compute the
second fundamental form for a given tangent vector in the level set framework.
Expressing Eq. (3.4) with local coordinates (u, v), we have: k(S(u, v), t)=0. Taking
twice the derivatives with respect to u and v, we obtain:

˛kuu=ST
u N2kSu+NkTSuu=0

kuv=ST
u N2kSv+NkTSuv=0

kvv=ST
v N2kSv+NkTSvv=0

where N2k denotes the Hessian matrix of k with respect to the spatial coordinates:

N2k=rkxx kxy kxz

kyx kyy kyz

kzx kzy kzz

s .
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Now, recalling that the expression for the inward normal and that the coefficients
e, f, g of the second fundamental form are given by e=ON, SuuP, f=ON, SuvP,
and g=ON, SvvP, we obtain the following expressions:

e=
1

||Nk||
ST

u N2kSu, f=
1

||Nk||
ST

u N2kSv, g=
1

||Nk||
ST

v N2kSv.

Since Su and Sv form a basis for the tangent space, we may conclude that the second
fundamental form for any tangent vector t can be computed as:

II: TXS Q R t W II(t)=
1

||Nk||
tT N2kt, (3.6)

where TXS is the tangent plane of S at the point X. We wish to make two remarks:
First this form only makes sense for vectors in the tangent space. Second it is com-
puted based upon the inward normal. In order to infer other second-order quanti-
ties of S, such as the mean and Gaussian curvatures, we can project the transfor-
mation (3.6) onto the space of 3 × 3 real symmetric matrices, and it becomes

II=
1

||Nk||
P +

N N2kP +
N, (3.7)

where P +
V is the projection onto the orthogonal complement of the direction

V ¥ R3, V ] 0 and is given by:

P +
V =I −

VVT

||V||2 . (3.8)

As a 3 × 3 real symmetric matrix, II has the properties that 0 is one eigenvalue and
N is the corresponding eigenvector. The principal curvatures (denoted as o1 and o2)
are the other two eigenvalues, and the corresponding eigenvectors are the principal
directions. Therefore, the mean curvature, defined as the average of the two prin-
cipal curvatures, can be computed as follows:

H=
o1+o2

2
=

1
2

trace(II)=
1
2

N ·1 Nk

||Nk||
2 . (3.9)

We remark that 1
2 differentiates H from its usual definition in the level set frame-

work, where the mean curvature is defined as the sum of the two principal curva-
tures.

Therefore, the flow (2.11) can be written in the level set framework as:

kt=1 C
n

i=1

1
Z3

i

((f − g)(f+g − 2Ii)(Niqi · X i)+2qi(Ii − f)(Nif · X i))2 ||Nk||

+
2b

||Nk||2 (NSf × Nk)T N2 k(NSf × Nk) − b ||NSf ||2 N ·1 Nk

||Nk||
2 ||Nk||

+aN ·1 Nk

||Nk||
2 ||Nk||. (3.10)
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Note that Eq. (3.10) is a geometric PDE, i.e., it is homogeneous of degree one in
Nk. This guarantees that our level set equation is invariant to the embedding func-
tion. We refer the reader to [9] for more theoretical aspects of this type of PDEs.

The numerical implementation of Eq. (3.10) goes as follows: The first term
involving ||Nk|| is discretized by Godunov’s scheme for Hamilton–Jacobi Equations,
see e.g., [20, 21] for details. The rest of the terms involving the spatial derivatives
are discretized by standard compact central differencing. Time stepping is done by
simple forward Euler method. Since Eq. (3.10) involves second order quantities, the
CFL condition is Dt=c1 Dx2 where Dt is the time increment and Dx is the size of
grid. c1 will depend on the speed function.

3.3. Radiance Estimation

In addition to being able to evolve the surface S, we need a numerical device
to track the optimal radiances f and g defined on S. This amounts to solving
Eqs. (2.14) and (2.15) on a moving manifold. In [1], Bertalmio et al. proposed a
framework for solving PDEs on static manifolds, which are represented by level set
functions. Their idea is to implicitly represent the static surface using the level set
function, and solve the equations defined on the surface in a fixed Cartesian coor-
dinate system using this new embedding function. We shall use this framework to
find the optimal f and g based on the current estimate of S. The overall algorithm
will go in an alternating fashion: evolve S, estimate f and g, and then repeat. Since
both steps decrease the global cost functional, the algorithm converges.

For the current estimate of S, the method of finding the optimal radiances f
and g goes in two steps: first extend the function, which is originally defined on the
manifold, into the whole space7; second solve the original PDE in space, instead on

7 If one is using a narrow-band level set implementation, then this extension only needs to be done in
the band where the computation occurs.

the manifold. One possibility for doing the first step is to extend the function con-
stant along the normal to the manifold. It is equivalent to solving the following
PDE:

Nf · N=0 . Nf · Nk=0. (3.11)

Recall that f, the radiance function, is a scalar function defined on S. After adding
a time variable, we can numerically seek the solution to Eq. (3.11) by iteratively
searching for the steady state of the following PDE:

“f
“t

+sign(k)(Nf · Nk)=0. (3.12)

For the second step, Bertalmio et al. derived expressions for isotropic and ani-
sotropic diffusions on manifolds. In the case of isotropic diffusion “f

“t=DSf, which is
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related with our problem, they obtained that the Laplace–Beltrami operator DSf can
be computed using finite differencing as follows:

DSf=
1

||Nk||
N · (P +

Nk Nf ||Nk||). (3.13)

Equation (3.13) can be further simplified as follows:

DSf=
1

||Nk||
N · (P +

Nk Nf ||Nk||)

=
1

||Nk||
N ·1 Nf ||Nk|| − Nf T Nk

Nk

||Nk||
2

=Df+
Nf T N2k Nk

||Nk||2 − N 1 Nk

||Nk||
2 Nf T Nk

||Nk||
−

NkT N2f Nk

||Nk||2 −
Nf T N2k Nk

||Nk||2

=Df − N 1 Nk

||Nk||
2 Nf T Nk

||Nk||
−

NkT N2f Nk

||Nk||2

=N · (P +
Nk Nf) (3.14)

where N2f is the Hessian matrix of f with respect to the spatial coordinates.
N · (P +

Nk Nf) is the expression for the Laplace–Beltrami operator that Bertalmio et
al. found when the surface S is defined by its signed distance function. Indeed it is
true for any embedding function and leads to a simpler finite difference scheme for
implementation.

We may now implement Eq. (2.14) as

“f
“t

=b 1Df − N 1 Nk

||Nk||
2 Nf T Nk

||Nk||
−

NkT N2f Nk

||Nk||2
2+ C

n

i=1
qi(f − Ii) si. (3.15)

Equation (2.15) can be implemented similarly. Observing the simple expression for
DSf we use compact central differencing on all the spatial derivatives of f and k, and
forward Euler for time. The CFL condition for Eq. (3.15) is that Dt=c2 Dx2 and c2

will depend on the curvature of the manifold S and b.

3.4. Tuning of Parameters

Note that NSf, NSf × N, and N are orthogonal to each other. If we define N +
S f

to be NSf × N, N +
S f to be N

+
S f

||N +
S f ||

, and NSf to be NS f
||NS f || , then N +

S f , NSf and N form an

orthonormal frame for R3. We can thus re-write the terms regarding to the
smoothness energy in Eq. (3.10) as:
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2b

||Nk||2 (NSf × Nk)T N2k NSf × Nk − b ||NSf ||2 N ·1 Nk

||Nk||
2 ||Nk||

=2b ||NSf ||2 “
2k

“
2 N +

S f
− b ||NSf ||2 1Df −

NkT N2k Nk

||Nk||2
2

=b ||NSf ||2 12
“

2 k

“
2 N +

S f
−1 “

2 k

“
2 N +

S f
+

“
2k

“
2 NSf

+
“

2k

“
2N

−
“

2k

“
2N

22

=b ||NSf ||2 1 “
2k

“
2 N +

S f
−

“
2k

“
2 NSf

2 . (3.16)

The flow for the smoothness term is a combination of a heat flow along the direc-
tion of NSf × N and a backward heat flow along the direction of NSf. Therefore, this
flow is not stable in the latter direction. However, we can make the flow for the
overall cost functional stable, by overweighting the unstable part from the geomet-
ric part. The requirement is:

a \ b max
S

||NSf ||2. (3.17)

Equation (3.17) is the stability condition. We may choose a and b based on this
condition. Since b controls the allowed variations for both radiances, we should
choose b with respect to the variations present in the scene. For large variations, we
shall use small b and for small variations, we shall use large b. Once b is chosen,
a is chosen to satisfy (3.17).

3.5. Visibility

At each step, in order to compute the speed function, we need to compute qi.
It is equivalent to the problem of determining which part of the surface is visible
from a given view point (the camera center in our case). This is a classical problem
in Computer Graphics. A typical approach to this problem is the so-called ray
tracing. The idea is to start from each point in the domain of interest, shoot a ray
towards the view point, and check the number of times this ray hits the surface.
Unfortunately this intuitive algorithm turns out to be computationally expensive.
Let N be the number of points needed to resolve a one dimensional object. The
overall complexity of this approach is then O(N4). Indeed, it is possible to solve the
visibility problem efficiently in the level set framework.

In the rest of this section, we describe an implementation of the implicit ray
tracing technique that is originally reported in [26]. This is a one-pass algorithm
that finds the line of sight for a given configuration of implicit surfaces in an
incremental way. In our implementation described below, the complexity is O(N3)
with a very small constant. However, it can be made much faster by skipping
through large regions using multi-resolution techniques [26].

We assume that our surface S is defined as the zeros of the level set function k

in a closed domain W: S … W … R3 and the position of the view point is v. We are
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going to compute another level set function f, which tells us the portions of W that
are visible from the view point. More precisely, W+ q {X ¥ W : f(X) \ 0} will be the
regions visible from v, and the desired characteristic function can be written as the
composition of the Heaviside function and f: q=H(f). Of course, all of these
functions and quantities are defined on a uniform Cartesian grid in a rectangular
domain Wd. We will use the conventional indexing scheme to enumerate the grid
nodes in W; i.e., X i, j, k=X ll+Dx(i, j, k), where X ll denotes the lower left corner
of Wd, and Dx denotes the mesh size. With this notation at hand, we define a voxel
to be the cube with vertices {X i+p, j+q, k+r: p, q, r ¥ {0, 1}} … Wd for some (i, j, k).

A key part of this visibility algorithm is to organize all the points in W in a
special order so that the causality of sight is not violated. This is done by ordering
the grid points into the queue Q described in the Appendix of [26]. We will
describe this queue later in this section.

At each grid point X in the queue, we first find the voxel containing X. From
this voxel, we find the face F that intersects the line segment L joining v and X.
(Here we think of L as an open line segment, not containing either v or X.) This
face is called the upwind face. If L intersects F at a point, we call this intersection XŒ.
If L lies in F, the problem is reduced to a two dimensional problem, and XŒ is the
intersection of L and an edge of F.

In the case where L intersects F at a point, we perform a bilinear interpolation
to approximate the value of f at XŒ: f(XŒ). Note that this interpolation is feasible
because the values of f on all the neighboring grid points around XŒ (including XŒ

if XŒ happens to be a grid point as well) have been computed, due to the special
ordering.

Finally, we update the value of f(X) by:

f(X)=min(k(X), f(XŒ)). (3.18)

Thus we are passing visibility information along the ray emanating from the view
point and the minimum is applied to fix the position of the obstructions. Note that
if X satisfies k(X) < 0, then f(X) will be less than zero in the end, meaning X is not
visible. So even if f(XŒ) is positive, it will not make f(X) positive.

As mentioned above, the interpolation procedure is made possible by the
special ordering of the grid points. We now provide one example of such ordering
for completeness of our exposition. In the following pseudo-code, (v1, v2, v3)
denotes the grid index of the view point v, and Q is the queue of interest. m is the
index of Q. The grid is bounded by 0 and nx in the X direction, 0 and ny in the Y
direction and 0 and nz in the Z direction.

m=0;
for(s1=-1;s1 < =1;s1+=2)
for(s2=-1;s2 < =1;s2+=2)
for(s3=-1;s3 < =1;s3+=2)
for(i=v1;(s1 < 0?i > =0:i < =nx);i+=s1)
for(j=v2;(s2 < 0?j > =0:j < =ny);j+=s2)
for(k=v3;(s3 < 0?k > =0:k < =nz);k+=s3)
Q[m++]=(i,j,k);
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This is called the sweeping sequence in [26]. Using multiple directions (here
parameterized by s1, s2, and s3) of sweeping is simply to propagate visibility
information in all directions of the rays emanating from the visible point as quickly
as possible. If the sweeping direction were always the same, then information would
propagate quickly over rays pointing generally in that direction, however, other
directions would suffer. Thus we use several sweeping directions to cover all the
possible directions of the rays.

The algorithm thus reads:

for (each X in the queue Q) do
Find the upwind face F and XŒ ¥ F;
Compute f(XŒ);
Update f(X) :=min(k(X), f(XŒ));

end

We direct readers to [26] for more details on the implicit ray tracing.

3.6. Projecting e-Neighborhoods of the Tangent Plane

Given a point X0 on the surface, we need to determine its projection on the
image and then get the intensity value at that point. Since interpolation is necessary
to obtain the intensity value, one has to know the interpolation region. The
problem of determining the size of the interpolation region is directly related to the
overall robustness of the algorithm to image noise. Imagine that the three-dimen-
sional grid one uses is very coarse, and he/she also chooses a small interpolation
region. Then the resulting algorithm will be very sensitive to image noise.

The way we approach the problem is to start from the image domain. We pose
the following question: given the point X0 with the projection x0, and E > 0 what is
the neighborhood of x0 whose back-projections onto S are within the e-neigh-
borhood of X0. We answer this question by approximating the surface S locally
around X0 using the tangent plane passing through X0. The tangent plane satisfies
the following equation:

N · X=N · X0. (3.19)

Let (u, v) be the projection of X in image domain, the tangent plane may then be
parameterized via the image coordinates (u, v) as follows:

X(u, v)=
N · X0

N · (u, v, 1)
(u, v, 1). (3.20)

Let (u0, v0) be the projection of X0, then we may write

(u, v, 1)=
X0

Z0
+D where D=(u − u0, v − v0, 0)
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which, when plugged into (3.20), gives the following expression for the tangent
plane in terms of D:

X(u, v)=
N · X0

N · (X0+Z0D)
(X0+Z0D). (3.21)

Now, based upon this local approximation of S by its tangent plane through X0, we
may test whether the back-projection of a point (u, v) in a neighborhood of (u0, v0)
is within an E-neighborhood of X0 by checking if ||X(u, v) − X0 || < E.

4. EXPERIMENTS

In this section, we report the experimental results of the proposed algorithm
conducted on synthetic and real datasets. In Fig. 1 we show 4 out of 24 views of a
synthetic scene that contains two spheres as the foreground. Both spheres have
smooth radiances ranging from dark to white and the background has a constant
radiance, whose value (gray) is right in the middle of the radiances of the spheres.
This scene would represent a big challenge to traditional correspondence-based
stereo algorithms, because the radiances are too smooth. It also cannot be solved by

Fig. 1. The two-sphere dataset (4 out of 24 views). Both spheres have smooth radiances ranging
from dark to white, and the background has a constant radiance, whose value (gray) is right in the
middle of the radiances of the spheres.

282 Jin, Yezzi, Tsai, Cheng, and Soatto



Fig. 2. The final reconstructed surface obtained with the algorithm based on the model (2.7). The
algorithm captures the dark parts of the scene. This corresponds to a foreground radiance and a
background radiance with the largest difference.

Fig. 3. Top row: rendered surface evolving from a long bar to the final solid model. Bottom two
rows: the modeled images of the scene at the corresponding times from two selected views. They are
obtained by projecting the current estimated radiances of the surfaces and the background onto the
selected view.

Fig. 4. Selected views of the final reconstructed surface. These images are not obtained using
texture-mapping from one or more images in the original dataset. They are obtained using the final
estimation of the radiance functions for the surface and the background. The intensity value of the
background is set to be 127. (The image intensities range from 0 to 255.) Note that even some parts
of the radiances of both spheres are the same as that of the background. The final reconstructed
models are still round and smooth. This is due to the geometric prior on the shape and smoothness
prior on the radiance.
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approximating both radiances as constants, because it violates completely the con-
stant radiance assumption. This is verified by our experimental evaluation. For
comparison purpose, we first run the algorithm based on the simplified model (2.7)
on this dataset. In Fig. 2 we show the final reconstructed surface. The initial surface
is a long bar that contains both spheres. Due to the simplification in the model, the
algorithm with constancy assumption can only capture the dark parts of the scene,
which corresponds to the largest difference between the foreground radiance and
the background radiance. Then we run the algorithm based on the full model (2.6)
on the same dataset. In Fig. 3 we show the surface evolving from the same initial
surface to a final solid model. In Fig. 4 we show the final reconstructed surface
from various vantage points. We remark that these images are not obtained by
texture-mapping using one or more images from the original dataset. Instead they
are obtained by projecting the estimated radiance functions f and g onto the
selected view. Note that even some parts of the radiances of both spheres are the
same of the radiance of the background. The algorithm can still keep the shape
round and smooth, thanks to the geometric prior on the shape and the smoothness
prior on the radiance.

In Fig. 5 we show 4 out of 16 views of another synthetic scene whose fore-
ground is composed of five objects: two spheres, one cube, one cylinder, and one
cone. The data is obtained as follows: we first build a graphical model of the scene
and then render all the views using OpenGL. All five objects have distinct albedos,

Fig. 5. 4 out of 16 views of a scene, which contains five objects: two spheres, one cube, one cylin-
der and one cone. They all have distinct albedos, but constant within each object. However due the
light condition, the radiances of all the objects are not constant, but smooth. The background is
corrupted with white Gaussian noise.
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Fig. 6. The final reconstructed surface obtained with the algorithm based on the model (2.7). The
algorithm captures the two white spheres where the radiances of the foreground and background
have the largest difference.

Fig. 7. Top row: the rendered surface during evolution. Notice that that the initial surface neither
contains nor is contained by the final surfaces. Bottom two rows: the modeled images of the scene at
the corresponding times from two selected views. They are obtained by projecting the current esti-
mation of the radiances of the surfaces and the background onto the selected views.

Fig. 8. Selected views of the final reconstructed surface. The surface is rendered using the final
estimation of the radiance function. The intensity value of the background is set to 127. Notice that
two sides of the both spheres are flattened. That is due to the insufficient data and the geometric
prior: first the data is ambiguous for round spheres and flattened spheres; second the geometric prior
will give a unique result with the minimal surface area, which is the flattened spheres.
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Fig. 9. The ‘‘watering can’’ sequence and the initial surface. In order to capture the surface, it is
necessary that the initial surface intersects with the true surface. One way to guarantee this is to start
with a number of small surfaces, two in this case.

but constant within each object. However, due to the lighting condition (there are
two point light sources in the scene), the radiance of each object is not constant, but
smooth. The background is corrupted with white Gaussian noise. In Fig. 6 we show
the results of the algorithm based on the simplified model (2.7). The initial surface
shape is an ellipsoid that neither contains nor is contained by the scene objects. This
algorithm only captures the two spheres which also corresponds to the largest dif-
ference between the foreground and background radiances. In Figs. 7 and 8 we
show the results obtained by running the algorithm based on the full energy
model (2.6). Figure 7 contains rendered views of the surface evolution and the
modeled images (obtained using the estimated radiance functions) from two
selected viewpoints. Figure 8 contains the final reconstructed surface rendered from
a few vantage points. These images are, again, rendered by projecting the estimated
radiances.

In Fig. 9 we show an image from a dataset which contains 31 views of a
watering can, together with the initial surface. Due to the lighting condition, the
watering can exhibits variations in the radiance. In particular, the bottom part is
darker than the top part. Observing that the radiance is nearly constant, we start
the estimation process from the model (2.7) and then switch to our full model (2.6)
in the end. In Fig. 10 we show the rendered surface evolving from two ellipsoids to
the final model. The final estimated shape is shown Fig. 11 from a few viewpoints.

Fig. 10. Rendered surface during evolution for the watering can.
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Fig. 11. The final estimated surface shown from several viewpoints. The images are obtained with
the final estimation of the radiance functions of the watering can and the background. One can see
that the bottom part of the watering can is darker than the top. It is due to the shading caused by
the lighting condition in the original data. Although the base is not visible from any camera, our
algorithm can give a unique radiance, which is smooth and consistent with the rest part of the
watering can. Note that in order to perceive better the difference in the radiance, we have linearly
mapped the radiance from 80–180 to 0–255.

In Fig. 12 we show 4 out of 33 images from another dataset which contains a
statue of a skater. The radiance value of the background is within the range of the
radiance value of the statue. In particular, the top head of the skater is brighter
than the background, while some other parts are darker. The model (2.7) fails to
capture shape of the statue, because the assumptions are violated. The results are
reported in Fig. 13. We show the results based on the model (2.6) in Fig. 14. The
final estimated shape is shown in Fig. 15 from a few viewpoints.

5. DISCUSSION

We have presented an iterative algorithm to estimate the shape and radiance of
a Lambertian scene from a number of calibrated images. The radiance of both
foreground and background are assumed to be smooth functions and the shape is
also smooth. We formulate the problem in a variational framework where we esti-
mate all the unknowns (shape and radiances) by minimizing a global cost func-
tional. This algorithm is an extension of the one proposed by Yezzi and Soatto
[27], in which they only consider constant radiance. We discuss the detailed
implementation, which has been carried out in the level set framework.
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Fig. 12. 4 out of total 31 views of a statue of skater.

Fig. 13. The final reconstructed surface obtained with the algorithm based on the model (2.7).

Fig. 14. Rendered surfaces during evolution.
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Fig. 15. The final estimated surface shown from several viewpoints. The statue is ‘‘textured’’ with
the final estimated radiance and then fed into a shading renderer. Note that in order to perceive
better the difference in the radiance, we have linearly mapped the radiance from 50–235 to 0–255.

APPENDIX A. GRADIENT DESCENT FLOW FOR >S ||NS f ||2 dA

To the end of computing the gradient descent flow, we must first express this
integral using a fixed parameterization (u, v), which is independent of S itself. We
will further assume in this computation that S may be covered by a single coordi-
nate patch. This seems like a very restrictive assumption to start, but in the end, the
resulting PDE will have a completely local expression which does not depend on
this global assumption. Throughout our computation, we will always omit purely
tangential terms whenever they appear inside an inner product with the shape
variation St, because they will not change the shape of S. And we use Tg to denote
any tangential term.

Let M be the matrix of the first fundamental form coefficients, i.e.,

M=rE F

F G
s (E=Su · Su, F=Su · Sv, G=Sv · Sv)

with respect to the local coordinates (u, v). NSf is the intrinsic gradient of f on the
manifold S defined as follows:

NSf=[Su, Sv] M−1 r fu

fv

s (A.1)
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and

||NSf ||2=7[Su, Sv] M−1 5fu

fv

6 , [Su, Sv] M−1 5fu

fv

68

=75fu

fv

6 , M−1[Su, Sv]T [Su, Sv] M−1 5fu

fv

68

=75fu

fv

6 , M−1 5fu

fv

68=
f2

uG − 2fufvF+f2
v E

EG − F2 (A.2)

||NSf ||2 is so-called the first differential parameter of Beltrami [17]. We can now
rewrite the integral expression for >S ||NSf ||2 dA as

F
S

||NSf ||2 dA=FF
f2

uG − 2fufvF+f2
v E

`EG − F2
du dv.

Note that for the sake of simplicity, we have omitted the integration domain for u
and v. The first variation of the integral with respect to time can be computed as
follows:

“

“t
F

S
||NSf ||2 dA=FF

“

“t
1 f2

uG − 2fufvF+f2
v E

`EG − F2
2 du dv

=FF 1 f2
uGt − 2fufvFt+f2

v Et

`EG − F2

−
1
2

f2
uG − 2fufvF+f2

v E

( `EG − F2 )3
(EtG+EGt − 2FFt)2 du dv

=FF 1 f2
uGt − 2fufvFt+f2

v Et

`EG − F2
−

1
2

||Nsf ||2 EtG+EGt − 2FFt

`EG − F2
2 du dv

=FF 12f2
uOSv, SvtP− 2fufv(OSu, SvtP+OSv, SutP)+2f2

vOSu, SutP

`EG − F2

+||Nsf ||2 O2HN+Tg, StP) du dv

=− 2 FF 1 f2
uOSvv, StP− 2fufvOSuv, StP+f2

vOSuu, StP

`EG − F2

+||Nsf ||2 O2HN, StP+OTg, StP) du dv

=− 2 FF 7St,
f2

ug − 2fufv f+f2
v e

EG − F2 − ||Nsf ||2 HN+Tg
8 `EG − F2 du dv

=− 2 F
S

7St, 1 f2
ug − 2fufv f+f2

v e
EG − F2 − ||Nsf ||2 H2 N8 dA.
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Recall that e, f, and g are the second fundamental form coefficients for the coor-
dinates (u, v). If we let

St=2 1 f2
ug − 2fufv f+f2

v e
EG − F2 − ||Nsf ||2 H2 N, (A.3)

“

“t >S ||NSf ||2 dA [ 0. Therefore (A.3) minimizes >S ||NSf ||2 dA.

We may further simplify the first term: f2
ug − 2fu fvf+f2

v e

EG − F2 , by noting the following:

NSf × N=1[Su, Sv] M−1 5fu

fv

62× N

=
Gfu − Ffv

EG − F2 (Su × N)+
− Ffu+Efv

EG − F2 (Sv × N)

=
1

EG − F2
1 (Gfu − Ffv)[Su, Sv] M−1 5 0

`EG − F2
6

+(−Ffu+Efv)[Su, Sv] M−1 5− `EG − F2

0
62

=
1

`EG − F2
[Su, Sv] M−1 5Ffu − Efv

Gfu − Ffv

6

=
1

`EG − F2
[Su, Sv] M−1M 5− fv

fu

6

=[Su, Sv]
1

`EG − F2
5− fv

fu

6 . (A.4)

Therefore the second fundamental form of NSf × N:

II(NSf × N)=
1

`EG − F2
[− fv fu] 5 e

f
f
g
6 1

`EG − F2
5− fv

fu

6=
f2

ug − 2fufv f+f2
v e

EG − F2 .

We may thus re-write (A.3) as:

St=2(II(NSf × N) − ||NSf ||2 H) N. (A.5)
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