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Abstract .  The problem of estimating the common mean ~ of k indepen- 
dent and univariate inverse Gaussian populations IG(#, Ai), i = 1 , . . . ,  k with 
unknown and unequal A's is considered. The difficulty with the maximum like- 
lihood estimator of ]~ is pointed out, and a natural estimator/5 of/~ along the 
lines of Graybill and Deal is proposed. Various finite sample properties and 
some decision-theoretic properties of ~ are discussed. 
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1. Introduction 

Although the importance of an inverse Gaussian distribution as a mathemati- 
cal model for analyzing positively skewed data emerged from the pioneering work 
of Tweedi (1957a, 1957b), it received an enormous amount of attention since the 
publication of the review article of Folks and Chhikara (1978). Useful applications 
of the inverse Gaussian distributions have been demonstrated in the works of Shep- 
pard (1962), Hasofer (1964), Lancaster (1972), Banerjee and Bhattacharya (1976) 
and Whitmore (1979, 1986a, 1986b). We refer to the recent book by Chhikara 
and Folks (1989) for various properties and applications of the inverse Gaussian 
distribution. 

An inverse Gaussian distribution has striking similarities with and provocative 
departures from a normal distribution. For example, if X -,  I G ( # ,  A), where 
1~ = E ( X )  and #3/A  --- V ( X ) ,  and X 1 , . . . ,  X~ are iid ~ X, then X and U, where 
)( = n -1 ~-~X~ and U -- ~-~(Xi -1 - ~7-1), are jointly minimal sufficient for # and 
.~, complete and also independent. Moreover, X I G ( # ,  n)~) and AU 2 
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These results are analogous to those for a normal distribution. However, unlike in 
the normal case, in general an arbitrary linear combination ~ a iX i  does not follow 
an inverse Gaussian distribution, and while # and A easily admit UMVUE's, the 
variance #3 /A  does not (Korwar (1980), Iwase and Seto (1983)). This is a point of 
departure from the normal model. For some other similarities with and departures 
from the normal case, we refer to Letac et al. (1985), Pandey and Malik (1988), 
Bravo and MacGibbon (1988), Pal and Sinha (1989) and Hsieh et al. (1990). 

In this paper we consider the problem of estimation of the common mean # 
of several inverse Gaussian populations with unknown and unequal variances. It 
should be noted that the analogous problem of the estimation of common mean 
of several univariate normal populations with unknown and unequal variances has 
been extensively studied in the literature (Graybill and Deal (1959), Brown and 
Cohen (1974), Khatri and Shah (1974), Bhattacharya (1980) and Nair (1986)). 

Let { X i j ,  j = 1, 2 , . . . ,  h i}  be an iid sample from an inverse Gaussian dis- 
tribution I G ( p ,  Ai), i = 1, 2 , . . . ,  k where # > 0 is an unknown common mean 
and A1,. . . ,  Ak > 0 are unknown and unequal. For the estimation of common 
mean p when A's are known, it can be easily shown that  ti = }-~.¢if(i is the 
UMVUE of # where ¢i = n i A i / Y ~ n j A j ,  i = 1, 2 , . . . ,  k. We study this prob- 
lem for the case of unknown A's. The set of mutually independent statistics 
{(X~, U~), i = 1, 2 , . . . ,  k} are jointly minimal sufficient, where 

Zi  ~- 1 E x i j '  Si = E ( X i - j l  . X / ~ - I ) ,  
rt i 

J J 

i - - 1 , . . . , k .  

As noted before, f i i  IG(# ,  ni,~i) , .~igi 2 "~ Xu~, ui = ni - 1, i = 1, 2 , . . . ,  k. 
The joint distribution of Jf  = (21, -~2, . . . ,  Xk) and U = (U1, U2, . . . ,  Uk) is not 
complete, and thus it does not permit the existence of a UMVUE of ~t. 

In Section 2 we discuss estimation of p by the method of maximum likelihood, 
and point out some difficulties with this method. In Section 3 we consider the 
unbiased estimator/5 = ~ q~i)?i, where 

¢i = ¢i(U1, . . .  , Uk) ---- oliUi-1/ ~ c t jU;  1, 
J 

~ i = n i ( n i  - 1), i = l , . . . , k .  

This estimator is similar to the one proposed by GraybiU and Deal (1959) for 
the estimation of a common mean of k normal populations. We refer to ~ as 
the Graybill-Deal type estimator of # and give two alternative expressions for its 
variance, one in the form of an infinite series (as in the normal case given by Khatri 
and Shah (1974) and Nair (1986)) and the other as a finite linear combination of 
incomplete beta integrals. The latter is more convenient for actual computation of 
the variance using the standard subroutines for integration. An unbiased estimator 
of the variance of ~ based on )( and U for the case k > 3 is also proposed. A 
difficulty for k = 2 is pointed out. 

Certain necessary and sufficient conditions on the k sample sizes nl ,  n2,. • • , r t k  

which guarantee that/5 has a smaller variance than each of J~i, i = 1, 2 , . . . ,  k, are 
given in Section 4. In Section 5 we investigate some decision-theoretic properties 
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of t5 under squared error loss, and establish its admissibility within a suitable 
class. The inadmissibility of ]5 under some a pr ior i  information about A1,. . . ,  Ak 
is pointed out in Section 6. 

2. Maximum likelihood estimation of it 

The maximum likelihood estimator of it is obtained by maximizing the likeli- 
hood function with respect to #, A1,. •., Ak. Direct maxmization of the likelihood 
function yields 

(2.1) fi _ ~-~i=1 n i x i A i  Ai = ni  k ' i = 1 , .  k. 
~-~=1 n~Ai ui + ni2i ( ~  1 )  2, " 

thus resulting in the following equation for ft: 

k 2 -3 k 2 -2 
E nixi Z nixi 

(2.2) u . ; ,2~  2 = it ^2-2  " 
i=1 ~t~ ~i ~- ~iZi( 2i --~)2 i=1 ltiit xi "~ niZi('Xi- ~)2 

In general, the above leads to an equation involving (2k - 1)-th degree poly- 
nomial in fi, and hence, computation of the MLE of it is quite complicated. For 
k = 2, (2.2) yields the following cubic equation in ~: 

(2.3) g(ft) -- aft 3 - b/52 + cft - d = 0 

where 

a = nln2(nlxl + n222) + 5:15:2(n12u2 + n2ul ) ,  

b = 2nln2XlX2(n1 + n2) + r t l r t2(nl :~ + n2x22) + x122(n1221u2 + n225:2Ul), 

c = n l n 2 x l x 2 ( n l  + n2)(~21 + 22)  + n t n 2 2 1 2 2 ( n 1 2 1  + n222), 

d = + n2).  

It is not difficult to verify that for 21 < 22, g(21) < 0 and g(22) > 0 while for 
21 > 22, g(21) > 0 and g(22) < 0. Hence the above equation has at least one root 
between 21 and 22. A sufficient condition for the uniqueness of the root of (2.3) 
is b 2 - 3ac  < 0 (see Uspenski (1948), pp. 86-87). Note that this condition holds 
with probability one as nl or n2 --* oo. 

Once/2 is obtained from (2.2), the MLE's of A~'s are easily obtained from (2.1). 
^ 

Let 0 = (p, A1,. . . ,  Ak) and 0 be the MLE of 0. It is straightforward to derive the 
information matrix I(O) and thus conclude that the asymptotic covariance matrix 
of 0 is given by 

(2.4) I-1(0) = diag k , , " " ,  
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Here /5, A1, . . . ,  Ak are all mutual ly  independent.  Moreover, the MLE of tt has 
the same asymptot ic  variance as tha t  of the es t imator  in (2.1) with Ai's assumed 
known. A be t te r  limiting distr ibution of ~t compared to the normal approximation 
can be obtained by adhering to the fact that  as n~ -~ c~, 

k k E =I ni),i21 ni  .f:i E i----1 ----+ 0 a.s .  
k k ^ 

Since E ~ - I  niAif~i / k ~-~i=1 niAi has an exact IG distr ibution with parameters  
(/Z~ k ~-~=i n~A~), the limiting distr ibution of ft can be approximated by IG(#, 

k E,=l 
3. GraybilI-Deal type unbiased estimator of # and its variance 

k It is easy to verify tha t  when the parameters  Ms are known, ft = E i _ - I  n i ) ~ i x i  / 
k ~=1 niAi is the U M V U E  of #. It is also the MLE of tt (see (2.1)). Moreover/5 is 

a complete sufficient statistic for #, and B ~ IG #, ~i=1 ni /~i  • In what  follows, 

when the Ms are unknown, we can replace them by their suitable est imators  and 
consider the resultant /5. Writing Ai = 1/a~, i = 1, 2,. . . ,  k, and noting that  
Ui ~ cr 2-i X(n~-I),2 i = 1, 2 , . . .  , k, we propose the pooled es t imator /5  of # given by 

{ I_1 (3.1) / 5 = { ~ n i ( n i - l ) X i }  ~ n j ( n j - l )  
i=1 Uii j=l  Uj 

= 

Vi i= i  V 

with a~ = ni(ni - 1), i = 1, 2 , . . . ,  k. 
Using the fact tha t  )( i 's  and U~'s are independent  for all i = 1, 2 , . . . ,  k, it 

follows upon using a s tandard  conditional argument  tha t  E[/5] = # and 

(3.2) Var(/5) = Var{E(/5 I U I , . . . ,  Uk)} + g{Var(/5 [ U I , . . . ,  Uk)} 

= ] ~t3E Eik=l 2 2 2 

In the case k -- 2, the variance of/5 can be expressed as an explicit function 
of the parameters  #, ¢2 = 1/Ai, and the sample size ni, i = 1, 2, as in the case 
of two normal populat ions (see Khatr i  and Shah (1974) and Nair (1986) and one 
gets 

(3.3) Var(/5) = ~ 1  (i + 1)(1 - p)i - 2  
B ( ~Ttl~- , 2 2 ) 

+ p- 2ml ( i =  + 1)(1 - 
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Here mi = ni - 1, i = 1, 2, p = (nlmlA1)-ln2m2A2, and the expansion is valid 
for 0 < p < 1. A similar expansion obtains for p > 1. 

An alternative expression for Var(/~), as a weighted finite sum of incomplete 
be ta  integrals which may be more convenient for actual computation,  can be de- 
rived when hi, for i = 1, 2, is an integer of the form 2ki + 3 for some positive 
integer ki. It  can be easily shown under the same conditions, i.e., 0 < p _< 1, tha t  

(3.4) V a r ( f i ) -  
p3 pk2 - 1 

nlAl(1 - p)kl+k2-1B(kl + 1, k2 + 1) 

( ( ) 
j=o kl + 1 j=o J 

where 

Ij = ( -1 )  k2-j+2 yj-2(1 - y)kl+k2+2-Jdy. 

A similar integral representation of the variance of/5 exists for p > 1. 
We now proceed to obtain an unbiased est imator of Vat(/2) for k > 3. Noting 

tha t  E[)(i] = #, i = 1, 2 , . . . ,  k and tha t  ) ( 1 , . . . ,  Xk are independent,  it follows 
tha t  an unbiased est imator of #3 based on ) ( 1 , . . . ,  Xk is given by 

i<j<l 

Now an independent unbiased est imator of 

(3.6) O=E 
k 

E i = I  ~2(72/niU? 

can be obtained following the ideas of Sinha (1985). This is based on an application 
of a powerful identi ty for the chi-square distribution (see Haft (1979)). 

Towards this end we write 

(3.7) 
k 2 

O= a:E 
i=l ~i 

and seek a function ~ i ( U l , . . . ,  Uk) such tha t  

(3.s) 
2 2 

= E , i = 1 , 2 , . . . ,  k. 
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(3.9) 
1 }/ 

i<j<l i=1 ~ - ~ ( U 1 ,  • • 
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Clearly then an unbiased estimator of Var(]~), given in (3.2), is provided by 

• , gk)}. 
From Sinha (1985), it follows that 

(3.10) ~i(U1,..., Uk) ---- E al 
l=O 

where 

(3.11) 

with 

Al_i)u:(l+l)2l(l + 1)! 

al = (ni + 1)[t](ni + A(_i)Ui) 1+2 

nj 
(n+l)[I]=((n+l)(nl3)-----"l for O . ' ( n + 2 / - 1 )  

It is interesting to observe that the above unbiased estimate of the variance 
of ~ is always positive. Moreover, for computational purposes, if one uses 

(3.12) 
-I 

with kO~(m) = ~2~(m)(Ut,..., Uk) = E?_.~ 1 al then it again follows from Sinha 
(1985) that 

i=t nT+l " 

Hence, for moderately large values of the hi'S, using m as low as 2 or 3 one 
would get a good approximation to the unbiased estimator of the variance. 

For k -- 2, the above argument cannot be used because we do not readily have 
an unbiased estimator of #3 based on just )71 and X2. However, noting that 

E ( X 1 - 2 2 )  2 =# 3  ( 1 

one can write Var(~) as 

(3.13) 

+ ~ \ n l  n2 /  
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An unbiased estimator of Var(fi) can therefore be obtained once we have de- 
rived functions tYi(U1, U2), i = 1, 2 such that 

k nl n2 / 

Unfortunately, however, it turns out that such ~i 's  do not exist. This is primarily 
a2.2 and V2 because, based on two independent chi-square variables V1 ~ l Xml 

a22X,~2, there does not exist an unbiased estimator of a~/ (a~  + a22). A nearly 
unbiased estimator of the above expression is obtained by replacing the factor 
(cr21/nl)(a21/nl + a22/n2) -1 by some constant 5, 0 < 5 < 1. We therefore propose 

{ 8(c?/U1) + (1 - 5)(a2/U2) ) (  ) 

(3.15) Var(/5) = (Xl - -  -~2) 2 .El2_ 10ti/Ui.2 

as an approximate unbiased estimator of Var(/5). Typically, if nl = n2, 5 = 1/2 
may be a reasonable choice. 

4. Necessary and sufficient conditions under which/5 is better than Xi for all i 

The following general result essentially follows from Norwood and Hinkelmann 
(1977). Let Y1,.-. ,  Yk, 1/1, V2,. . . ,  Vk be independent random variables where Yi's 
have a common mean # and Var(Yi) -- CT~ for some constant c > 0. Furthermore, 

2 Xm~, i = 1 , . . . ,  k. It is well known that when Ti'S are known, the best 
linear unbiased estimator of # is given by 

- 1  

For unknown Ti'S, we consider a natural estimator of # given by 

Clearly the estimator/2 is unbiased for tt. We now seek conditions under which/5 
has a smaller variance compared to each Yi, i -- 1 , . . . ,  k. This is contained in the 
following theorem. 

THEOREM 4.1. The es t imator  ft is better than any Yi in the sense that 
Var(/5) < m -2, i = 1, 2 , . . . ,  k, i f  either (a) mi  > 9, i = 1, 2 , . . . ,  k or (b) mi  = 9 
for  some i and m j  > 17, j = 1, 2 , . . . ,  k; j ¢ i. 

Taking Y~ = f f i ,  m i  = h i -  1, c = # 3  T.2, = 1 / (n iA i ) ,  Vi = U i / m i n i ,  
i = 1 , . . . ,  k, and applying the above theorem, it follows that for estimating the 
common mean # of k inverse Gaussian populations/5 is better than the individual 
sample means if and only if either ni >_ 10 for all i or ni = 10 for some i and 
nj ~ 18 for j ¢ i. 
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5. Decision-theoretic properties of/~ 

In this section we discuss some decision-theoretic properties of t~ under the 
squared error loss function L(5, #) = (5 - #)2. Towards this end we first consider 
a meaningful class of estimators of # of the form 

k 

(5.1) /5~ = E X i ¢ i ( U i , . . . ,  Uk) 
i=1 

where ¢ i (Ui , . . . ,  Uk)'s are nonnegative real-valued functions of U1, . . . ,  Uk, sat- 
isfying k ~ = 1  ¢~(U1,... ,  Uk) = 1 with probability one. Clearly, any estimator of 
the form ;5~ such that E{¢ i (U i , . . . ,  Uk)} < c~, i = 1 , . . . ,  k, is unbiased for p. 
Moreover, using independence of .~i's and Ui's and the conditional argument as 
in (3.2), it follows that 

(5.2) risk of ~ = E tt3 ~2(Ul,.. •, Uk)/niAi • 

Now if we choose a prior density of the form hi(#)h2(Ai, . .  •, Ak), the Bayes risk 
of/~¢ can be written as 

(5.3) )}] Bayes risk of t~¢ = [E(#3)] E E ¢2(U1,. . . ,  Uk)/niAi 
\i----1 

where the innermost expectation is with respect to the U(s for fixed A1,. . . ,  Ak, 
and the second expectation is with respect to the A's under h2(A1,.. . ,  Ak). As- 
suming that E(#  3) < oo and E(A~ -1) < oo, i = 1, 2 , . . . ,  k, it follows by Fubini's 
theorem that the unique Bayes estimator of p is given by 

k 

(5.4)  ~Bayes ~--- E Zi¢iBayes(Ul'"" Uk) 
i = l  

where 

(5.5) { 1 ~A, \ / -./I/{ ~ I }',u(i/n, Aj) ¢iBayes(Vl,..., Uk)= ~:o.vil/nili ~ ' 
j--1 

i = l , . . . , k  

and E~lv(. ) above denotes expectation with respect to the posterior distribution 
of A = (A1,.. . ,  Ak), given U --- ( U 1 , . . .  , Uk). 

The equation (5.4) provides a class of admissible estimators of # in the class 
~¢. The treatment here is similar to Zacks (1966) for the normal distribution. 
It is not difficult to show that the Graybill-Deal type unbiased estimator ~ is a 
generalized Bayes estimator since it results from a choice of the prior of the form 
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h2(A)c~I-I~=l A~ -U2-1 and hi(#) satisfying E(#  3) < oo. Unfortunately, however, 
such a density of A is improper and the admissibility of/5 does not readily follow. 
On the other hand, if we restrict our attention to a subclass of/5o of the type 

(5.6) = \ u k  " '  ] '  
i=1 

it follows from Sinha and Mouqadem (1982) that for k -- 2,/5 is admissible within 
this class. It may be noted that the normality of )(~'s in Sinha and Mouqadem 
(1982) is not crucial for this purpose in view of the representation (5.2) and the 
same distribution of Ui's in the inverse Gaussian case as in the normal case. 

We now turn our attention to a discussion of equivariant estimators of #. Un- 
like in the normal case, in the context of several inverse Gaussian distributions, an 
estimator f~(X1,... ,  Xk; U1, . . . ,  Uk) is scale equivariant if f~(.) is scale preserving, 
i.e. /~(.) satisfies 

(5.7) #  2k; U1 
• - - 7 ° . ° ,  - -  

o~ 
vk)  = xk; ul,..., uk), 

for all a > 0. A characterization of fL(.) subject to (5.7) is provided by 

(5.8) #(xl , . . . ,  2k; 
k 

UI , . . . ,  Uk) = ~-~fi: i¢i(R1,. . . ,  Rk-1; T1 , . . . ,  Tk) 
i = l  

where P~ -- X j X k ,  i = 1 , . . . ,  k - 1, Ti = )~iUi, i - 1 , . . . ,  k, and ¢i(.)'s are 
real-valued functions adding up to one. 

It may be noted that the estimators/5¢ described in (5.1) are equivariant if 
and only if ¢1,- - . ,  Ck are scale invariant, i.e., ¢'s depend on the U's only through 
the ratios UjUj 's .  In general an equivariant estimator of # is not unbiased unless 
it is of the form/5o. See Hirano and Iwase (1989a, 1989b) and Zacks (1970) for 
some related results. 

An attempt to derive the Bayes equivariant estimator of # in general under 
a prior distribution of # and A1,. . . ,  Ak has been unsuccessful even for k = 2. 
This is because although the conditional moments of )(1 and )~2, given T1, T2 and 
R1, can be explicitly computed involving Bessel functions of the second kind, the 
computation of the expectations of the resultant expressions with respect to any 
meaningful prior turns out to be a formidable task. 

6. Inadmissibi l i ty of 

In this section we mention the inadmissibility of/5 under squared error loss 
when some a priori information about A's is available by actually constructing an 
improved estimator of #. Details are omitted since the technique is similar to what 
Sinha (1979) used in the case of normal population. Without loss of generality let 
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us assume that A1/Aio >_ co for some i0 >_ 2, and consider estimators of # of the 
form 

'I '(21,..., Zk, gl , . . . ,  Uk) = 21 (k)k 
1 - '5-'~ ¢ j + E Cj)(j =/5¢ (say) 

j=2  j----2 

where 

= ( ¢ 1 , . . . ,  Ck),  

k 

¢1 = 1 - ¢5 - ¢ 5 ( u ) ,  

5=2 

j - - 2 , . . . , k .  

It then follows from Sinha (1979) that/5¢. ,  where ¢* = (¢~, . . . ,  ¢~) with ¢; = 
Cj for j # io and ¢io = min{¢io, (1 + conl /no)- l} ,  provides uniform improvement 
over /5¢ provided the conditions ~i#io ¢i _> 0 and ¢io > (1 + conl/no) -1 hold 
with a positive probability. This would in turn imply that one can improve upon 
/5 since it corresponds to/5~o with G0 = ( e ra , . . . ,  ¢ok) where 

¢oi -- c~iU1 1 -~- 2 °LjUl/°L1Uj 
Og l U i 

j=2 

i = 1 , . . . ,  k. The improved estimator is given by/5¢; because ¢0i's do satisfy the 
above condition with a positive probability. It should be noted that /5¢; can be 
interpreted as a testimator. 
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