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ESTIMATION OF A DYNAMIC AUCTION GAME!

BY MIREIA JOFRE-BONET AND MARTIN PESENDORFER?

This paper proposes an estimation method for a repeated auction game under the
presence of capacity constraints. The estimation strategy is computationally simple as it
does not require solving for the equilibrium of the game. It uses a two stage approach.
In the first stage the distribution of bids conditional on state variables is estimated using
data on bids, bidder characteristics, and contract characteristics. In the second stage,
an expression of the expected sum of future profits based on the distribution of bids is
obtained, and costs are inferred based on the first order condition of optimal bids.

We apply the estimation method to repeated highway construction procurement auc-
tions in the state of California between May 1996 and May 1999. In this market, previ-
ously won uncompleted contracts reduce the probability of winning further contracts.
We quantify the effect of intertemporal constraints on bidders’ costs and on bids. Due
to the intertemporal effect and also to bidder asymmetry, the auction can be inefficient.
Based on the estimates of costs, we quantify efficiency losses.

KEYWORDS: Dynamic oligopoly, auctions, estimation.

1. INTRODUCTION

MOST OF THE LITERATURE on empirical estimation of auctions assumes a
static auction setting. Paarsch (1992), Laffont, Ossard, and Vuong (1995),
Guerre, Perrigne, and Vuong (2000), and others develop an empirical ap-
proach to quantify informational uncertainty in static auction games. Never-
theless, there is little empirical work on dynamic auction games® or dynamic
oligopoly games.*

! An earlier version of the paper was circulated under the title “Bidding Behavior in a Repeated
Procurement Auction.”

2Most of the research was completed while both authors were at Yale University. We are grate-
ful to two referees and an editor for detailed and helpful comments. We thank Dirk Bergemann
and Ariel Pakes for numerous discussions at early stages of the research. We also thank seminar
participants and discussants at Boston University, Brown, Carnegie Mellon, Columbia, Florence,
Georgetown, Harvard, Hebrew University, IAE Barcelona, Michigan, Rochester, UPenn, Yale,
Wharton, the 1999 EEA meetings, the 1999 Econometric Society meetings, a Cowles confer-
ence at Yale, the 2000 NBER IO meetings, and the 1999 CEPR meetings in Toulouse for help-
ful comments. Kenneth Chan and Nancy Epling provided excellent research assistance. Martin
Pesendorfer gratefully acknowledges financial support from NSF Grants SBR-9811134 and SES-
0214222. We are also grateful to the California Department of Transportation for making the
data available to us.

3Laffont and Robert (1999) and Donald, Paarsch, and Robert (2002) analyze finitely repeated
auctions. Laffont and Robert consider a sequence of auctions in which, at each stage, an identical
object is sold. Their model generates complex intra-day dynamics that are applied to data on
eggplant auctions. Donald, Paarsch, and Robert consider a model in which a finite number of
objects are sold in a sequence of ascending-price auctions. They estimate the model using data
on the sales of Siberian timber-export permits.

“Pakes (1994) summarizes the literature on estimation in dynamic games.
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This paper proposes an estimation method for dynamic auction games. The
method is computationally simple as it does not require solving for the equi-
librium strategies of the game. We apply the method to estimate a repeated
first-price bidding game under the presence of capacity constraints.

We observe data on bids, contract characteristics, and bidders’ state vari-
ables. The estimation problem is how to infer privately known costs. We pro-
pose an estimation method that infers costs based on the first order condition
of optimal bids of the repeated bidding game. We assume that observed data
are generated by equilibrium play and estimate the distribution of bids condi-
tional on state variables. Our crucial idea is that the expected discounted sum
of future profits, which enter the first order condition, can be written looking
forward and depending entirely on the distribution of bidders’ bid choices.’ In
particular, the resulting expression of the value function can be written as a
linear equation that can be easily solved numerically. With the value function
at hand, costs are inferred based on the first order condition.

Our approach builds partially on the two stage approach that Elyakime, Laf-
font, Loisel, and Vuong (1994), and Guerre, Perrigne, and Vuong (2000) de-
velop for static models. These papers estimate the distribution of equilibrium
actions based on bid data. In equilibrium, the distribution function estimates
summarize bidders’ beliefs and can be used to infer bidders’ valuations based
on the first order condition of optimal actions. The main contribution of our
paper is to extend the estimation method to dynamic auction games.

In work in progress, Berry and Pakes (2001) consider a related estimation
strategy based on the first order condition of dynamic games. The innovative
feature of their approach is to consider an alternative representation of the
value function in which the expected sum of future profits is replaced with a
weighted sequence of future profit realizations. In dynamic auction games, this
representation is less attractive because profits are not observed and cannot be
expressed indirectly, from observed bids, without knowing the equilibrium bid
functions.

We apply our method to repeated procurement auctions for highway paving
contracts. In this setting, previously won uncompleted contracts may affect the
ability to win further contracts. Two distinct effects may arise: First, since the
duration of highway paving contracts is a number of months, winning a large
contract may commit some of the bidder’s machines and paving resources for
the duration of the contract. Although rental of additional equipment is avail-
able, this may increase total cost. Second, an experience effect may arise, since
supplying services on a large contract may give a bidder the necessary expertise

SA related estimation strategy of the value function is employed by Hotz and Miller (1993).
They approximate the value function with discrete choices using estimates of choice probabili-
ties. Their framework differs from ours in a number of ways: First, they consider a single agent
dynamic decision problem. Second, they restrict their attention to discrete actions. Finally, they
do not model informational constraints.
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to conduct further services. The expertise effect may lower the cost for future
contracts.

The results of our estimation using highway procurement data show that
capacity constraints do affect firms’ bidding strategies. In particular, the cost
of taking on an additional contract is increasing in backlog. The increase in
costs resulting from a larger than average backlog seems to cancel out any
cost-reducing expertise effects, if they exist. Based on the estimates of costs,
we quantify efficiency losses.

Our estimation method requires that bidders completely understand the
auction environment and that our estimates of winning probabilities correctly
measure bidders’ perceived odds of winning. Beyond some general regularity
predictions, we are not able to assess the adequacy of our behavioral assump-
tions. The main reason is that our data do not contain information about bid-
ders’ assessments. In particular, we do not observe bidders’ perceived odds of
winning a contract, nor bidders’ actual contract costs. More detailed informa-
tion about ex post realized outcomes is observed in outer continental shelf auc-
tions studied by Hendricks and Porter (1988) and Porter (1995) among others.
Hendricks and Porter convincingly show that auction models provide accurate
predictions of outcomes and that the behavioral assumptions of game theoretic
models are satisfied.

The paper is organized as follows: Section 2 describes the bidding model.
Section 3 introduces the estimation method. The section addresses several is-
sues: first, how to estimate the distribution of bids conditional on bidders’ state
variables and contract characteristics; second, how to estimate the expected
future discounted payoff of bidders based on estimates of the bid distribution
function; third, how to infer costs using the first order condition of optimal bids
in the repeated game. Finally, conditions are provided under which the bidding
model’s parameters are identified.

Section 4 describes the industry and the data. We examine data on highway
procurement contracts in California. The descriptive data analysis suggests the
presence of capacity constraints. Estimates of the probability of submitting a
bid reveal that bidders with low backlog levels are about twice as likely to sub-
mit a bid than bidders with high backlog levels.

Section 5 presents the estimates of the bidding model. The distribution of
costs exhibits the expected properties of capacity constraints. 1o illustrate the
estimates, we evaluate the estimated bid and cost distributions at sample aver-
age characteristics. The distribution of bids and costs at low backlog values sto-
chastically dominates (in the first order sense) the distribution at high backlog
values. Moreover, increasing the backlog appears to monotonically decrease
the discounted sum of future profits.

Section 6 reports the effect of backlog on the expected price paid by the auc-
tioneer and on the expected auction return to individual bidders. In addition,
we compare the observed outcome to a cost minimizing allocation of contracts.
We conduct experiments to assess the magnitude of efficiency losses. Finally,
Section 7 provides some discussion and concludes.
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2. THE BIDDING MODEL

This section describes the bidding model. We begin with a general descrip-
tion of the game, the sequencing of events in the stage game, and the assump-
tions entering each event. We then describe the law of motion of the state vari-
ables and the payoffs to bidders. We conclude the section with some remarks
on the existence of a value function representation of payoffs and the existence
of Markovian equilibria of the game.

The bidding model that we take to the data has the following features: Time
is discrete with an infinite horizon, t =1, 2, .... There are two types of bidders:
regular and fringe bidders. Fringe bidders have a short life and exit in the pe-
riod they entered.® Regular bidders stay in the game forever. The set of regular
bidders is denoted by {1, ..., n,} and the set of fringe bidders in period ¢ is de-
noted by {n, + 1, ..., n'}. The number of fringe bidders, n’ — n,, may vary over
time and can equal zero.

The stage game: In every period ¢ the buyer offers a single contract for sale.
The sale can be described by the following sequence of events: First, the char-
acteristics of the contract are revealed to all bidders. Second, bidders learn
their costs privately. Third, bidders may submit bids. Fourth, the buyer may
award the contract to the low bidder, or reject all bids. The events in the stage
game have the following features:

The contract characteristics, s, are drawn independently and identically from
the exogenous probability distribution function, Fy(.), with finite support So.
Future contract characteristics are assumed to be unknown to bidders.” The
contract characteristics, s, include the physical attributes of the contract such
as the contract size and duration, as well as the total number of fringe bidders
that are active in the period. We define 7 as the maximum contract duration
of all contracts in S,. Finally, there is a fixed (nonrandom) reserve price of the
seller R’, which is an upper bound on admissible bids.

Costs: Each bidder i learns her cost for the contract, c;, after the contract
characteristics are revealed. The cost is privately known and independently dis-
tributed conditional on state variables. The cost of a regular bidder i is drawn

®We observe a number of bidders that submit a bid only once, or a small number of times.
On the other hand, we observe a number of bidders that submit bids frequently. To account for
this difference, we classify firms into two groups: “Regular” bidders, which are the largest 10
firms in dollar value won and with at least 80 bids submitted; and “Fringe” bidders, which are the
remaining firms.

"In highway procurement auctions future projects are not known to bidders. Only a short pe-
riod in advance do project descriptions become available. The length of the announcement pe-
riod ranges between 4 and 10 weeks. Information on the specification of immediately upcoming
projects could be incorporated into the model by including the information on upcoming con-
tracts as additional state variables. However, due to the added computational burden of addi-
tional state variables, we decided to ignore this feature of the data, and assume that contract
characteristics become known in the period of the letting.
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from the continuous conditional distribution function F(.|sj, si, s* ;) with sup-
port [C(sp, si, s",), C(sp, 55, s°;)], where s; € S;, with S, finite, denotes a vector
of state variables for bidder i and s* ; denotes the vector of other bidders’ state
variables (s{, ..., s, 8, ,..., s').2 We sometimes use the symbol s’ to denote
the vector of all regular bidders’ state variables with s € S and S = x| S; and
write (s¢, s",) to indicate that the state vector is evaluated from bidder i’s per-
spective. Bidder i’s state vector s; includes a list of the sizes of all uncompleted
projects that she has won in the last T periods and the time left to complete
each of them. Specifically, s; records the remaining size in dollars and the num-
ber of days left until completion of each project previously won by bidder .’
We assume that both s) and s’ are observable to all bidders and to the econo-
metrician. We do not consider heterogeneity that is known to the bidders but
not known to the econometrician. The distribution of costs has a continuous
density function f(.|s}, s, s",). Similarly, the cost of a fringe bidder is drawn
from a continuous distribution function Fy(.|s;, s') with associated continuous
density function f;(.|s{, s*) and support [C(s{, s'), R']. The support assumption
ensures that fringe bidders submit a bid."

Bids: Each bidder may submit a bid, b, which is the price at which the bidder
is willing to provide the service. All agents are risk neutral.

The buyer awards the contract to the bidder with the low bid at a price equal
to her bid. Ties are resolved with a flip of a coin. The buyer may decide to reject
all bids if the low bid is marginal. We model the buyer’s rejection decision as a
secret and nonstrategic'! reservation price b’ drawn from the exogenous con-
tinuous distribution function G(.|sy) with support [R(s,), R’] and continuous
probability density function gy(.|s,). Bids above b are rejected. The continuity
of G is a technical assumption. It implies that the seller’s rejection decision is

8 An alternative two step process in which costs are learned is considered in Hendricks, Pinske,
and Porter (2003). Hendricks, Pinske, and Porter assume that bidders decide, initially, whether
to acquire private information or not, and only bidders that decide to acquire information will
potentially participate in the auction. This approach appears reasonable for auction environments
where it can be rather costly to obtain an estimate about value of the item. Our data do not
contain information on information acquisition decisions that would allow us to identify such a
two step model. In addition, the two step approach appears less plausible for highway paving jobs
in which most bidders have a relatively accurate assessment about the opportunity cost of using
their own paving resources. The cost uncertainty in highway bidding arises because the bidder’s
opportunity costs are not known to other bidders.

The list consists of 7 entries, one for each of the last 7 periods. The entry in the /th position in
the list consists of the size and the remaining time until completion of the project won [/ periods
ago. If no contract was won / periods ago, then the entry in position / is empty.

10 Alternatively, the cost distribution of fringe bidders can be modelled as a conditional cost dis-
tribution, conditional on drawing a cost below R’, and taking into account the potential number
of fringe bidders in the period.

The secret reserve price does not affect the model conceptually, as it can be viewed as an-
other bidder with a known bid distribution function. For an analysis of strategic secret reserve
prices, see Elyakime, Laffont, Loisel, and Vuong (1994).
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continuous at the announced reserve price R’. In our application, we assume a
uniform density for g."?

Conditional independence of contract characteristics and cost realizations is
the crucial assumption in the data generating process. It permits us to adopt
the framework of Markov dynamic decision processes. The role of conditional
independence is discussed further in Rust (1994).

The transition function of the state variable, w : So x S x {0, 1,2, ..., max(n")}
— S, is a deterministic function of the contract characteristics, the state vari-
ables, and the identity of the low bidder—where identity 0 indicates that no-
body won the auction (and the seller retained the contract).”® As described
above, the bidders’ state variables include the sizes of all the projects left to do
and the time remaining until their completion. Unfortunately, the data do not
include information on the pattern in which projects are completed over time,
but only the contract scheduled completion date. We assume that, at every
point of time, an equal share of the project is completed and that contracts are
completed as planned.'* Let the ith component of the transition function
consist of the list of the sizes and remaining times of all the project left to do
for bidder i. It can be written as

[_ _ 1 0 7—1
<(z0, ), <—max(ﬂ — )3 max(r! — 1, 0)) )
T; =1
) ifj=i
wi(sﬂasa.]): ! 7—1 ’
'—1,0
<(0, 0), <—max(7’ “LY o maxert — 1, 0)> )
7 =1
otherwise,

where z! denotes the size of the project won by bidder i exactly / periods ago,
and 7! its remaining time until completion. Given the linearity assumption re-
garding the completion of projects, for each project /, the size carried over to
next period, z/!, equals (max(7! —1,0)/7!) - z, and the remaining time until
completion 7/ equals max(7! — 1, 0). If the contract at period ¢ is won by bid-
der i, it is added at the beginning of the list of projects with the initial size and
time until completion taken from the contract’s characteristics (zo, 7) € Sp. If

12 According to conversations with Caltrans, the secret reserve price is an integral feature of our
application. However, it is hardly ever observed. We observe no rejected bids below R’ in our data
(and no bids are exactly equal to R"). Further, 99 percent of winning bids are less than 0.85 - R".
The lack of data makes the estimation of the reserve price distribution function G, difficult.

3Note that the identity of the low bidder can be deduced from the vector of submitted bids.
Thus, an equivalent formulation of the state’s transition function uses the vector of bids by all
bidders (including the seller’s reserve price) instead of the identity of the low bidder.

14Section 8-1.07, “Liquidated Damages,” of the Standard Specifications (1999) of the Depart-
ment of Transportation of California specifies that unjustified delays may come at a high cost to
the contractor. The cost of delays for contracts during our sample period ranges between hun-
dreds of dollars to thousands of dollars per day.
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the contract at period ¢ is not won by bidder i, then a vector (0, 0) is added at
the beginning of the list of projects.

We introduce a common discount factor parameter, 8 € (0, 1), that mea-
sures firms’ patience with regard to future profits.

We consider sequential equilibria and restrict our attention to symmetric
Markovian strategies.”> Markovian strategies do not depend on time and in the
subsequent analysis we omit the time superscript whenever possible. A strategy
for bidder i is a function of bidder i’s cost, the contract’s characteristics, and
her own and her competitors’ states, b(c;, sy, S;, S_;). Let b_; denote a strategy
profile of other bidders.

Payoff of a regular bidder: The discounted sum of future expected payoffs for
bidder i can be written in value function form as

Wi(s, so, ci, b_;) = mbaX[[b — ¢;]Pr(i wins|b, s, si, s_i, b_;)

+ B ZPI'(_] WinS|b, 805 iy S—i» bfi)

j=0

X EO/ I’V,((J) (S(), S, J)a S(/)a cl/'a b—i)

X f(C”S(/J, (J),'(S(], S, ])7 (l)_,‘(S(), s, ]))dC::|,

where Pr(i wins|b, s, s;, s_;, b_;) denotes the probability that bidder i with state
s; wins contract s, given the strategy b_; and the state s_; by other bidders;
E, denotes the expectation operator with respect to the contract character-
istics sp; and j = 0 indicates that nobody won the auction. We assume that
the strategy profile b_; is such that Pr(j wins|b, sy, s;, s_;, b_;) is continuous
in b. Notice that, due to the reserve price rule, any bid exceeding the reserve
price will be rejected. Therefore, without loss of generality, we can assume that
bids exceeding the upper bound of the reserve price distribution equal by, with
by > max(R"), and restrict attention to the compact bid space [0, max(R")]U by.
The assumption of symmetric cost distribution functions conditional on state
variables and symmetric bidding strategies conditional on state variables im-
plies that the value function can be written as

W (si, s_i, 80, ¢i, b_;) = Wi(s, 50, ¢;, b_;) foralli

for some function W (.). For notational convenience, however, we will fre-
quently use the symbol W, to denote the value function W evaluated at the
state (Siy S_i» 805 Cis bfi)'

15See Maskin and Tirole (1994) and Maskin and Tirole (2001) for expositions on Markov per-
fect equilibria.
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Existence of W;(s, sy, c;,b_;) follows from Bhattacharya and Majumdar
(1989). To see this, notice that our assumptions imply that the period payoff
function,

[b — ¢;1Pr(i wins|b, so, s, S_i, b_;),

is continuous in b, ¢;, sy, 5;, and s_;, and bounded by max(R’ — min C((sj, s;,
s'.))). Moreover, the bid space, [0, max(R")] U by, is compact; the state space,
S, and the contract space, Sy, are finite; and the cost space [C (s, s!, " ;), C(s,
st, s* )] is compact. Furthermore, Pr(j wins|b, sy, s;, 5_;, b_;) is continuous in
b, sy, s;, and s_; for all j. Finally, since the state space is finite, F(.|so, s;, S_;)
is weakly continuous in sy, s;, and s_;.!'® Thus, the infinite-horizon dynamic
programming problem of bidder i satisfies the necessary conditions of Theo-
rem 3.2 in Bhattacharya and Majumdar (1989), which guarantees the existence
of a unique solution to the value function, W;(s, sy, ¢;, b_;).

In the subsequent analysis, we sometimes use the ex ante value function,
which is defined as the value function evaluated before contract characteristics
and bidder i’s cost are known. We can write the ex ante value function as

I/i(sa bfi) = EO/ I/Vi(sa So, C, b,i)f(C|S0, Si, S*i)dcy

where E, denotes the expectation operator with respect to contract character-
istics. For expositional simplicity, from now on we suppress the dependence on
the bidding strategies of other bidders in the value function. The above value
function equation leads to the following recursive equation for V;:

(2.1) Vi(s) = Ey |:/ mbax{[b — c]Pr(i wins|b, sy, i, S_;)

+ ﬂ ZPr(] Wins|ba 805 Si» S,l‘)l/i((l)(S(), S, ]))}

j=0
X f(c|s()7 Si, s—i)dC} .

Payoff of a fringe bidder: For a fringe bidder, the ex ante payoff is equal to
the ex ante expected period payoff:

E, |:/ IIlbaX{[b — c]Pr(i fringe wins|b, sy, 5) } f(c|so, s)dc:|.

161f D is a metric space, then P(D) denotes the set of all probability measures on the Borel
sigmafield B(D) of D. A function F on a metric space D, into P(D) is weakly continuous if the
sequence of probability measures F(y,) converge weakly to F(y) when y, — y in D;.
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The role of our earlier assumptions on the behavior of fringe bidders can be
illustrated at this point: Fringe bidders exit in the period they entered and,
therefore, they assign no value to the future. The assumption that the cost of
fringe bidders is contained in the interval [C, R'] guarantees that fringe bidders
find it profitable to submit a bid in the period they enter. In contrast, note that
our model implies that a regular bidder may not submit a bid in a given period.
This may arise either because the cost realization exceeds the upper bound
of the reserve price, or because the cost of being constrained in the future
outweighs the current period gain of winning the contract.

Existence of an equilibrium: Jofre-Bonet and Pesendorfer (1999) establish ex-
istence of an equilibrium in an example with exponential distributed costs. The
example has the feature that bid functions are linear in cost realizations. While
a general existence theorem is beyond the scope of this paper, we briefly out-
line how recent results in the literature may be applied to achieve this goal: The
existence of an equilibrium in the period game for any continuation value fol-
lows from Jackson, Simon, Swinkels, and Zame (2002). They show existence of
a (possibly mixed strategy) equilibrium if payoffs are affine in outcomes, where
an outcome is a (possibly vector valued) function of the submitted bids. In our
case, the outcome consists of a vector of winning probabilities. Furthermore,
they show that under our assumption of independent costs, the equilibrium
bids are strict monotone in costs and a pure strategy equilibrium exists.!”

An equilibrium of our dynamic game requires that the equilibrium payoff in
the period game be consistent with the continuation payoff, which can be veri-
fied using a fixed point theorem. Theorem 2 in Jackson et al. (2002) implies the
upper hemi-continuity of the equilibrium payoff correspondence.'® Unique-
ness in asymmetric first price auctions for a number of environments covering
special cases of our model is shown in Maskin and Riley (1996).! Provided
uniqueness holds, the Brouwer fixed point theorem yields a consistent value
function and thus a dynamic equilibrium. In cases in which the uniqueness
results do not apply, existence of a consistent continuation value can be ob-
tained by introducing an independently and identically distributed public ran-
dom variable. Following Maskin and Tirole (1994), the bidding strategy can be
augmented to be a function of the realization of the public random variable.
Doing so, convexifies the correspondence of equilibrium payoffs. Kakutani’s
fixed point theorem then yields the existence of a consistent value function
and, thus, a dynamic equilibrium.

"Therefore, our restriction to consider the continuous distribution function of low competi-
tors’ bids does not affect the existence question.

18See Lebrun (2002) for a related result in asymmetric first-price auctions.

YThese cases include the general two bidder asymmetric first-price auction and the multiple
bidder asymmetric first-price auction with different support of the cost distribution function and
identical payoff functions. The condition is satisfied if the continuation values only shift the sup-
port of the cost distribution function and if the continuation value in case an opponent wins is
independent of the identity of the winning opponent.
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Bid distribution function: We denote the distribution function of equilibrium
bids of bidder i with state (s, s;, s_;) by G(.|so, s;, S_;), and the associated deriv-
ative at points less than or equal to R by g(.|sy, s;, s_;). We denote the dis-
tribution function of equilibrium bids by a fringe bidder with state (s, s) by
G((.|sy, s) and the associated density function by g(.|so, s). We sometimes sup-
press the f subscript in the distribution function of fringe bids and the 0 sub-
script in the seller’s reserve price distribution. Instead, in an abuse of notation
and in order to simplify the expressions involved, we also write G(.|sy, S;, S_;)
where i takes values 0 and f. Doing so, the probability Pr(i wins|sg, s;, s_;)
can be written as ]_[j 7él.[l — G(blso, s;, s_;)] where the product is taken over
regular bidders, fringe bidders, and the seller. The ex-ante probability of the
event that bidder i wins with a bid less than or equal to b is denoted by
G (b|sy, s), and the associated derivative for b less than or equal to R is given

by [1..[1 = G(Dlso, s, 5-)1g(blso, si, -i)-

3. ESTIMATION METHOD

This section describes the estimation method: Section 3.1 explains the es-
timation approach, which is based on the first order condition of optimally
chosen bids. The first order condition provides an explicit function of the cost
in terms of the submitted bid, the distribution of bids, and the value function.
We show that the value function, which enters the first order condition, can
be represented in the form of a recursive equation involving the equilibrium
bid distribution function. Therefore, with an estimate of the bid distribution
function we can infer costs by using the first order condition of optimal bids.
Section 3.2 establishes a condition under which the distribution function of pri-
vately known costs is identified. Section 3.3 describes in detail our parametric
specification of the bid distribution function.

3.1. Estimation Approach

We observe data on bids, contract characteristics, and bidders’ state vari-
ables. Our goal is to infer privately known costs. We propose a computationally
simple estimation method that does not require solving for the equilibrium bid
functions. The method requires the assumption that observed bids are gener-
ated by equilibrium play and satisfy the first order condition of optimal bids.

Estimation methods based on the first order condition in static games are
well known in the literature. Elyakime, Laffont, Loisel, and Vuong (1994) es-
timate the beliefs about the equilibrium play of agents based on data on bids.
The cost realization is then inferred from the first order condition. We extend
the estimation method to dynamic bidding games.
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First order condition: Let ¢ (.) denote the unobserved cost associated with a
bid, which is a function of the bid, b, the contract characteristics, s, the state
vector, (s;, s_;), and the value function V. Let

g(.180, Si, S_i)

(IS0, Siv 5-) =
(150, i» $_;) 1— G(.|S0, 5iy 1)

denote the hazard function of bids submitted by bidder i when the state equals
(80, Si, 5_;)- The first order condition for optimal bids yields the following equa-
tion (see the Appendix for a more detailed description) for privately known
costs, ¢:

(3'1) ¢(b|S0> Sis S—is h> I/l)
1

:b_
Z#ih(msﬂa S, S,j)
/’l(b|S0, Sj, S,j) . .
+ Vi ,8,0)) =V, sl
B; Z[;éih(b|s0,sl,s_[)[ (@(s0, 5, 1)) (@ (Sg, § ]))]

Equation (3.1) provides an explicit expression of the privately known cost that
involves the bid; the hazard function of bids, /; and, the value function, V.
Equation (3.1) states that the cost equals the bid minus a mark-down. The
mark-down has two parts: The first part accounts for the level of competition
in the current period. The second part accounts for the incremental effect on
the future discounted profit if firm i wins the contract instead of another firm.
The first order condition for fringe bids is of the same form as equation (3.1).
However, fringe bidders assign no value to the future, J; = 0, and the second
term in equation (3.1) vanishes for fringe bids.

The first order condition provides an explicit function of the cost for a sub-
mitted bid, b < R. If a bid is not submitted, b > R, then the monotone relation-
ship (3.1) implies a lower bound for the cost, ¢ > ¢ (R|s, s;, S_;, 1, V;). Notice
that the behavior of function (3.1) at the boundary R differs from the static
first price auction. As in the static model, at R the first mark-down vanishes
due to the secret reserve price and the presence of fringe bidders.”” However,
in the dynamic model the second mark-down remains. Thus, in general a bid
need not equal costs at the reserve price R. The magnitude of the mark-down
at the reserve price depends on the incremental effect on the future discounted
profit if firm i wins the contract instead of another firm.

In order to infer the distribution of costs, we need estimators for the func-
tions appearing in the right-hand side of (3.1). These functions are: the tran-
sition function of the state, the bid hazard function, the secret reserve price
hazard function, the discount factor, and the value function. First, as described

20n 97.5% of contracts at least one fringe bidder is present. As described above, fringe bid-
ders submit a bid less than R.
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before, in our auction model, the transition function of the state is a given
function. Second, an estimator of the bid distribution function, and thus of
the hazard function, can be directly obtained from the data on bids, contract
characteristics, and state variables. We describe the details of our estimator in
Section 3.3. We do not estimate a distribution function for the secret reserve
price due to the lack of data on rejected bids. Instead, we assume a uniform
distribution and examine how sensitive the estimates are to variations in the
support of the secret reserve price distribution function. Third, we choose the
discount factor, and we examine how sensitive the estimates are to variations
in the discount factor. Finally, the definition of the value function is given in
equation (2.1). However, observe that the expression of the value function in
equation (2.1) involves cost variables that are unobserved, and decisions by
multiple agents, which are endogenous. In the next paragraphs, we explain
how we overcome the problems posed by this latter observation and obtain
an approximation of the value function.

The value function: The key idea of our method is to notice and use the
fact that the distribution of equilibrium bids determines the discounted sum of
expected future profits. Thus, there is a representation of the value function
in terms of the distribution of bids only. The following proposition states that
the value function can be represented as a recursive equation involving the bid
distribution function. The proof of Proposition 1 is given in the Appendix.

PROPOSITION 1:

R 1
w/é\ Zﬁéih('m()a Sj> Sfj)

(32) Vi) :Eo{ dGY(.|s0, )

+ ﬂ Z |:Pr(.] WinS|S07 Sis Sfi)
J=0.j#i
R h(Iso, 805 5-0)

+ dGY(.|s ,s)]
b Z[¢ih(.|S0,S1,S,1) |0

X I/i((,l)(S(], s, ]))}

The value function representation in Proposition 1 has two parts: The first
part accounts for bidder i’s current expected profits. The second part accounts
for bidder i’s sum of discounted expected future payoffs. Notice that the terms
in square brackets in (3.2.) can be interpreted as probabilities, as they sum to
one, since

K h('|S05si7S7i)
i Yl Zz;si h(.|s0, 51, 5-1)

Pr(i wins|s, s;, S_;) = dGY(.]sy, $).
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The proof of the proposition is based on two observations: First, we may
write the probability of winning as a function of the distribution of bids by other
bidders, ignoring dependence of other bidders’ bids on cost draws. Thus, each
bidder dynamic game is reduced to a single agent dynamic decision problem
where each bidder maximizes the discounted sum of future payoffs taking as
given the equilibrium bid distribution associated with other bidders. Still, this
single agent dynamic decision problem does involve bidder i’s privately known
costs, which are not observed. Our second observation is that the first order
condition of optimal bids gives an explicit expression of bidder i’s unknown
costs in terms of her equilibrium bids and the equilibrium bids distribution.
Substituting this expression into the value function yields an expression involv-
ing the distribution and the density of equilibrium bids only.

Approximation of the value function: Numerical methods can be used to ap-
proximate the value function based on Proposition 1, which we describe next.
The assumption of a symmetric Markovian strategy space imposes a number
of restrictions on the shape of the value function, which facilitates the approx-
imation. In particular, Pakes (1994) shows that the number of coefficients in a
Jth order polynomial approximation does not increase as the number of bid-
ders increases. The reason is that symmetric Markovian strategies require that
bidders with the same state follow the same bidding strategy. Thus, we can ex-
change the state of two competing bidders without affecting the value of bidder
i’s expected future payoffs. As has been shown by Pakes, in a Jth order poly-
nomial approximation of the value function, the polynomial coefficients asso-
ciated with the state variable of a competitor j, s;, are identical for all j # i,
or, in other words, their identities do not matter. In Section 5, we discuss in
detail the variables entering the value function approximation. In our case, the
dimensionality of the approximation is reduced to a four dimensional problem
for each bidder.

Numerical methods to approximate the value function based on equa-
tion (3.2) are discussed in more detail in Judd (1998). We briefly summa-
rize the method we use: We select a grid of state vectors S = (s',...,s™) by
drawing 50 states from the distribution of observed states. We numerically
solve equation (3.2) for every bidder on this grid. We restrict the range of
the transition function » to S by defining a transition function &(so, s, j) =
{s € 8|s is closest to (s, 5, )}. For every point s € S we calculate the expec-
tations on the right-hand side of equation (3.2). Specifically, we numerically
evaluate the expected current period payoff,

R 1 )
A;(s)=E {/ dGY(.|s ,s)},
’ b Z#,«h('|so,sj,5—j) ’
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and the 1 x m vector of transition probabilities of the events that the states
(s',...,s™) are reached when bidder j wins the contract,

R h(.|sg, Si, S_;) .
/() 0{ b > i hCIs0, 81, 521) (s, 9)

X (Lo pp=stts -+ » Liatsp,s.p=sm)) }

In both expressions, the first expectation is with respect to contract character-
istics. We evaluate the expectation with respect to contract characteristics in
the following way: We select a set of contract characteristics, So, by randomly
drawing 50 contracts from the set of observed contracts. Since contract char-
acteristics are modelled as independent and identical draws from the set So,
we can approximate the expectation with respect to contract characteristics by
using the sample average. We evaluate the expectation with respect to the bid
distribution function by numerical integration using the estimated derivatives
dG% and dGY. The specification of the bid distribution function is described
in the next section. Using the symbol A; for current period payoff and B;; for
the transition probabilities, the value function is given by the equation,

(33)  Vis)=Ais)+B Y By(s)Vi,
J#i

where V; denotes the vector (Vi(s!),...,Vi(s”)). We can rewrite the value
function in matrix notation as: [/ — BB;]V; = A;, where I denotes the
m-dimensional identity matrix, B; denotes the m x m transition matrix given
by [Z#iB,-j(sl), ...,Zj#B,-j(s’")]’, and A; denotes the vector (A;(s)),...,
A;(s™))'. The value function can be expressed as

Vi=[I - BB 'A..

To evaluate the value function for points s € S, possibly outside the grid S, we
approximate the function with a quadratic polynomial.

Estimation of the cost distribution function: With the distribution function of
bids at hand, the parameters of the bidding model can be readily inferred. To
see how we infer the distribution of costs, notice the following: First, there
is a relationship between the distribution function of costs and the distrib-
ution function of bids given by F(clsy, s;, 5_;) = G(b(c, So, Si, S_i)|S0, Si» S_;)-
Second, the inverse of the bid function conditional on state variables, ¢ =
¢ (b|so, s, 5_1), 1s given in equation (3.1). Thus, using these two relationships,
we can specify our estimator of the cost distribution function as

F(C|S05Sia Si):/ dG(-|Sﬂasi7S7i)a

(bl (blso,si,s—)=c}
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for ¢ < ¢ (R(s0)]S0, 8i, 5_;).2! Provided ¢ is invertible, the estimator can be writ-
ten as F(c|sy, s:, 5_;) = G(d'(c|so, 8, S_i)|S0, i, 5_;). Standard errors of esti-
mates are calculated using the delta method.

A nice feature of the auction model is that the discount factor and the dis-
tribution of costs are the only unknown parameters in the model. However,
observe that our estimation method extends to models in which the per period
payoff function may depend on additional parameters. For example, the Hotz
and Miller (1993) estimator can be applied.?

Next, we examine whether the distribution function of costs can be identi-
fied.

3.2. Identification

This subsection addresses the question of under which conditions we can
infer the parameters of our model. There are two related and somewhat op-
posing results in the literature: Guerre, Perrigne, and Vuong (2000) have es-
tablished that, in the static first price auction, the distribution of costs is iden-
tified. On the other hand, Rust (1994) finds that the primitives in a dynamic
decision problem with an unknown per-period payoff function are not identi-
fied. Proposition 2 below establishes that our model lies in between those two
extremes. First, observe that, in our setting, the (nonparametric) identification
problem consists in determining if the two underlying primitives, which are the
distribution of costs F(.|.) and the discount factor B, are identified based on
expressions (3.1) and (3.2), and a sufficient number of observations (b, s§, s*).

We assume that the bid observation b’ is drawn from the distribution func-
tion G(.|s{, 5!, s",), which is continuous and has the derivative g(.|s), s, s*;) on
[b, R]. Furthermore, the distribution function satisfies the property that func-
tion (3.1) is strict monotone for any 8 on [b, R].

PROPOSITION 2: (i) Suppose B is fixed. Then, the cost distribution function
F(.].) is identified on the interval [C(.), ¢(R()|.)]. (ii) The pair (B, F) is not
identified.

The Proposition establishes that the truncated distribution of costs is identi-
fied for a discount factor 8. The truncation occurs at the point where it is not
profitable to submit a bid, that is for costs exceeding ¢ (R(sy)|so, i, s_;). Thus,
in contrast to Rust (1994) we obtain a partially positive answer in our model.
A main reason for the apparently opposing result is that the reward function

2 Guerre, Perrigne, and Vuong (2000) propose an alternative two step estimator.

22Hotz and Miller define an iterative procedure for single agent dynamic decision problems in
which the value function is calculated for a given parameter vector at every step of the iteration.
A method of moments estimator is defined that compares the predicted and observed actions
based on the first order condition. Although Hotz and Miller consider discrete choices, it can
also be applied to continuous choices.
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in our auction model is known, but not known in Rust’s. Part (ii) establishes
that the discount factor and the cost distribution function are not identified
jointly. Thus, the condition in (i) of the Proposition is necessary. The noniden-
tification problem of the discount factor is similar to other dynamic estimation
approaches; see Rust (1994).

3.3. Bid Distribution Functions

So far we have described the estimation procedure to infer costs and ad-
dressed the identification question. What is left to do is to specify our estimator
of the distribution function of bids. This section describes the parametric spec-
ification of the bid distribution function of fringe and regular bidders. In ad-
dition, we discuss the restrictions on parameters implied by the bidding model
and describe how we impose these restrictions on the estimation procedure.

At an early stage of the research, we adopted kernel methods to estimate the
bid distribution functions as proposed by Guerre, Perrigne, and Vuong (2000).
Our estimation results are summarized in Jofre-Bonet and Pesendorfer (2000).
In this earlier work, we found that nonparametric approaches reduce greatly
the number of covariates we could use, which, in our case, limited severely the
ability of the model to capture the richness of the data. For this reason we
decided to adopt a parametric framework.

The bid distribution function is not a primitive of the model. However, Jofre-
Bonet and Pesendorfer (1999) provide the equilibrium mapping from costs
into bids for a particular class of cost distribution functions. In this paper, we
select a parameterization of the bid distribution function of regular bidders
that contains that particular class of cost distribution functions as a special case.
In other words, the example in Jofre-Bonet and Pesendorfer (1999) illustrates
a class of cost distribution functions that satisfies our parametric assumptions.

Density function of regular bidders: We experimented with different specifi-
cations for the density function of bids by regular bidders and we obtained
the best fit with a Weibull density function. Specifically, we define the density
function of a monotone bid transformation as a Weibull density function. The
transformation involves taking the logarithm of one plus the bid, In(b + 1).
The lower endpoint of the Weibull density function is In(6; + 1). In our speci-
fication, the parameters of the density are a function of the state variables and
contract characteristics. By suppressing the parameters’ dependence on these
variables, we can write the density function as

1 [6[nb+1)—1In(6;+ 1))
b+1 0,

( <ln(b+1)—ln(03+1)>91)
X exp| — 0 .
2

g(b10y, 0,, 63) =
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The support of bids for regular bidders is [63, 00).” The parameters of the
distribution function consist of the constant 6,, and two parameters, 6, and 6,
that depend on the state variables as will be explained below.

The density function of bids by fringe bidders is specified as a beta density
function. We can write the density function as:

bl0s. 60, 0= — L (2= “ITOR-b\"T 1
Eri0193: B B/ =P \ R 6, R—6,) B0, 65)

where the distributional parameter 6, is a constant; the distributional parame-
ters, 63, 05, depend on the state variables as will be described below; R denotes
the upper bound on the reserve price; the support of fringe bids is [6;, R]; and,
the function B(6,, 65) denotes the beta function.?

Estimation procedure: The regularity conditions of maximum likelihood need
not hold for auction models as has been shown by Donald and Paarsch (1993).
In our case, a nonregularity arises since one parameter is the boundary of
the support of bids. There is a substantial statistics literature including Smith
(1985, 1994) and Harter and Moore (1965) studying properties of estimation
methods of the support and shape parameters for the Weibull and beta distri-
bution function. Smith (1985) shows that the maximum likelihood estimates of
the parameters are consistent and efficient provided that 6,, 6, > 2.% For the
case 6, 0, < 2, Harter and Moore (1965), and Smith (1985, 1994) describe a
two stage estimation procedure: In the first stage the lower bound is estimated
using the sample minimum. In the second stage the observation involving the
sample minimum is dropped and the shape and scale parameters are estimated
using maximum likelihood. Smith (1994) considers a multi-dimensional lower
bound and proposes a linear program estimator for the lower bound to be used
in the first stage. Smith (1985, 1994) establish that the two stage estimation pro-
cedure is consistent for 6, 6, > 1, and also asymptotically efficient, provided
the density does not vanish too fast at the lower bound, 1 < 6y, 6, < 2. The
above results require that 6; and 6, be one dimensional, and allow 6,, 65, and
05 to be multi-dimensional. The asymptotic results do not readily extend to the
case in which 6, and 6, are multi-dimensional.

We estimate the model using both estimation procedures. Under the two
stage estimation procedure, we found that 6; and 6, exceed 2 when 6; and 6,
are left unrestricted. Therefore, only maximum likelihood is efficient. In the
following sections, we report the estimation results using maximum likelihood
estimation.

Z1n principle, it is possible to estimate different supports of bid distributions for individual bid-
ders. However, we restrict the supports to be identical. The main reason is that, empirically, with
a small data sample, it is difficult to determine whether bidders have indeed different supports or
not.

%B(v, w) = fnl w1 —uw)* 'du.

BFor 6y, 6, < 1, the maximum likelihood estimators may be inconsistent.
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Restrictions on the parameters: As mentioned, some of the distributional pa-
rameters are a function of state variables and contract characteristics. Never-
theless, there are a number of restrictions on the functional form of the pa-
rameters’ dependence on the state variables. First, there are the restrictions
that 6,, 65 > 0, and that 6,, 6, > 2. These restrictions ensure that the condi-
tions for a probability density function are satisfied, that the monotonicity of
the bid hazard functions holds, which is required from the bidding model,* and
that we can apply the asymptotic efficiency result in Smith (1985). Moreover,
we assume that bids are nonnegative. To impose these restrictions, we define
0;=2+expby for j=1,4,and 0; = exp 0, for j =2, 3, 5.

The second restriction is the symmetry of the bidding functions conditional
on state variables. Bidders with the same state follow the same bidding strategy.
Thus, the parameter entering the bid distribution of fringe firms, 6y3(s), 6ys(s),
should not be affected by the order of elements in the vector s. Similarly, the
order of elements in the vector s_; does not matter for parameter 6, either.
We consider the following specification, which incorporates the described con-
ditional symmetry restrictions:

00 (S0, Si» S_i) = Yjo0+ Vi15 + V2 - Z‘I’(Sb 50) + vj3V(si, 80)
=1

for j=2,

00(50, $) = vj0 + Viaso + Via- D W(si,s0) forj=3,5,

=1

where W(s;, so) is a function that denotes the characteristics of a bidder with
state s; on contract sy. In our application the characteristics ¥ include the bid-
der’s distance to the contract location and the bidder’s number of plants within
the region of the contract.

Likelihood function: Finally, in order to estimate the density functions de-
scribed above, we have to take into account that the bid data for regular bid-
ders are censored. We only observe bids that are below the upper bound of
the reserve price, R'. Let o} be a dummy variable that equals one if we ob-
serve a bid by bidder i on contract ¢, and zero otherwise. In an abuse of no-
tation, we abbreviate the dependence of parameters on the state vector with
superscripts, and write the parameter vector for regular bidders as 6" where
6" = (64, 02(s), st, 8" ,), 05(s), s")). Similarly, the parameter vector for fringe
bidders we abbreviate as 6" where 6" denotes (6;(sp, s'), 64, 05(sp), s*)). Doing

%For 6y, 0, < 1, the hazard of bids can be decreasing, which would violate the condition that
equilibrium bids are monotone increasing in costs.
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so, we may write the likelihood of regular and fringe bids conditional on the
initial state s” as

L= ]_[{]_[[g(bﬂe")]" [1- G(R'|6M)] ]_[ gy (16" }
i= Jj=nr+1

where b; is the bid by regular bidder i on contract ¢, and b i 1s the bid by fringe
bidder j on contract . We assume that the initial state s is exogenous. We
maximize the logarithm of the likelihood function. Billingsley (1961) estab-
lishes the asymptotic properties of maximum likelihood estimators for Markov
processes, as the number of auctions 7" goes to infinity. The Markovian struc-
ture of the observed controlled process (s, s, b) follows directly from the as-
sumption that the cost realizations are conditionally independently distributed,
the bid functions are Markovian, and the assumption that the distribution of
contract characteristics is exogenous. A closely related result is Theorem 3.3 in
Rust (1994).

The next section describes the data and the industry. Section 5 reports the
estimation results.

4. THE DATA AND INDUSTRY

In this section, we describe some characteristics of the highway construction
industry with emphasis on California. We present our data and describe the
awarding process for contracts. In addition, we report reduced form evidence
on the effect of previously won and uncompleted contracts on bid submission
and bid level decisions.

4.1. The California Market

According to the 1992 US Census of Construction Industries?’ a total of
$35.3 billion was spent during 1992 on highway and street construction activ-
ities. In California, the total amount spent in highway construction was $2.7
billion, 93% of which was done by 896 establishments located in California.
Transportation costs play an important role in this industry, and, therefore, we
consider California as a market.

The data: Our data consist of California Department of Transportation (Cal-
trans) contract awards for highway and street construction made between De-
cember 1988 and May 1999.% Information on bids is available from May 1st,
1996 through May 31st, 1999. During the latter period, Caltrans advertised

27U.S. Department of Commerce, Economics and Statistics Administration, Bureau of Census,
1992.

2We obtained our data from the California Department of Transportation. The Office of En-
gineers publishes the data on the web: http://www.dot.ca.gov/hq/esc/oelawards/bidsum.
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2,566 projects from which 2,207 were finally awarded, 343 cancelled or post-
poned,” and 16 received no bids.

The bid data contain the following information on every project awarded:
Bid Opening Date; Contract Number; Location; Reservation Price; Number
of Working Days and the Engineers’ Estimate. Additionally, the data provides
the Name, the Address, the Amount of the Bid, and the Rank of the Bid for
each of the bidding firms. In order to obtain a measure of past performance
and maximum capacity of the firms active in our period of analysis, we com-
plement the bid data with the Caltrans Contract Performance database. This
source contains information on contracts awarded between December 1988 to
May 1999. It provides the actual dollar amount received for the contract, the
contract duration, and the identity of the contractor.

The awarding process: Contracts are awarded by the California Department
of Transportation subject to Federal Acquisition Regulations and, therefore,
the process is very similar to other states’ procedures. The process can be de-
scribed in three steps: First, the Caltrans’ Headquarters Office Engineer an-
nounces a project that is going to be let and the invitation to submit bids starts.
This period is called the Advertising period and its length ranges between 4
and 10 weeks, depending on the size or complexity of the project. Occasion-
ally, the Advertising period will be reduced to expedite project scheduling.
Second, potential bidders may collect bid proposals that explain the plans and
specifications of the work required, i.e., the project’s characteristics, terms, and
identification number. Based on the proposal, bidders may submit a sealed bid.
Bidders do not know who else submits a bid. For each bid, Caltrans checks that
the bidding firm is among the firms that are qualified to do business with Cal-
trans.*® Third, on the letting day, the bids received are unsealed and ranked.
The project is awarded to the lowest bidder provided it is below the reserve
price. The reserve price consists of a fixed nonrandom dollar amount (R'),
which is assigned prior to the bidding. Additionally, a secret reserve price can
affect the outcome at the margin. In order to win the project, it is required that
the lowest bidder fulfills certain responsibility criteria. The bid is accepted if all

» According to the Federal Acquisition Regulation, part 14, a contract might be cancelled be-
fore opening if either the project is no longer needed or if the advertised contract characteristics
become obsolete or inadequate and have to be revised. Other reasons to cancel are that all bids
are either unreasonable or collusive or both. Cancellation can also occur if all reasonable bids
belong to bidders that cannot prove to be responsible. Additionally, the awarding agency might
postpone the opening bids if it believes that a large fraction of bids have been delayed in the mail
or other disruptive circumstances interfered in the regular reception of bids.

%Prior to the bidding, potential bidders have to qualify for contractual work for the Depart-
ment of Transportation. In addition, firms are required to deposit a predetermined amount of
funds that have to be available. Receipt of funds clearance, permit issuance, and local agencies
approvals are needed for the bid of a firm to be accepted. A submitted bid can be rejected if either
it fails to conform to the essential requirements of the invitation for bids; or does not conform to
the applicable specifications without having been authorized to do so; or fails to conform to the
delivery schedule or permissible alternates stated in the invitation.
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TABLE 1
DESCRIPTIVE STATISTICS OF SELECTED VARIABLES

Number of Mean Standard Minimum Maximum
Observations Deviation
Number of Bidders 2223 4.63 2.46 0.00 19.00
Estimate® 2223 13.41 1.35 9.47 18.31
(Ranked1°—Estimate)/Estimate 2207 —0.04 0.22 —0.79 3.07
(Ranked2’—Ranked1)/Ranked1 2111 0.09 0.12 0.00 2.62
Backlog® 22230 0.00 1.00 —-3.24 297

4Logarithm of the engineers’ estimate.
bRanked1 and Ranked2 are the winning bid and the bid ranked in second position, respectively.

¢Backlog measures the $ value of previously won uncompleted contracts. It is standardized by subtracting the
bidder specific mean and dividing by the bidder specific standard deviation.

computations and cost imputations are considered correct. After each letting,
a list of all bids and their rankings is announced and made accessible to the
public. The winning firm is awarded the project no more than 30 days after the
letting date.

The highway paving industry has already been studied by a number of au-
thors. Porter and Zona (1993) and Feinstein, Block, and Nold (1985) study
issues of bidder collusion. Bajari (1997) studies asymmetry between bidders.
He estimates a static bidding model based on a numerical calculation of equi-
librium bid functions.

4.2. Descriptive Statistics

Between May 1st of 1996 and May 31st of 1999, the Caltrans awarded 2,207
contracts. The total value of the contracts was $4,661.73 million.

Contracts are offered for sale on a frequent and regular basis. Typically,
there are several letting dates per week. According to our data, the average
duration between letting dates equals 2.96 days. Several contracts may be of-
fered on a given letting date and contracts are offered in 11 distinct regions of
the state.

Table I reports that on average there were 4.63 bidders per contract, ranging
from 0 to 19 bidders across contracts. A total of 10,289 bids were received
for these contracts and 16 contracts received no bids.*! Table II reveals that a

3A total of 1,466 submitted bids, or 12% of all bid observations, violate the reserve price
requirements. We exclude these bids from the analysis. These bids may have been submitted
erroneously. Alternatively, bidders may have expected that the reserve price rule would not be
enforced. According to conversations with Caltrans, it is indeed possible that the reserve price
is altered ex post. Nevertheless, our data do not include information on bids below the reserve
price being rejected, or bids above the reserve price being accepted. The lack of data points that
fall into either of these two categories suggests that the probability of these events is low. In our
analysis we assume that the reserve price rule is binding.



1464 M. JOFRE-BONET AND M. PESENDORFER

TABLE 11
DESCRIPTIVE STATISTICS OF SELECTED VARIABLES BY NUMBER OF BIDDERS

Number of Bidders: All 0 1 2 3 4 5 6 7-8  9-19

# Observations: 2223 16 96 285 393 432 356 237 251 157
Estimate®

Mean 13.41 13.14 13.47 13.49 13.32 13.42 13.55 13.48 13.12

Standard Deviation 1.35 1.04 127 133 129 135 159 147 1.19
(Ranked1®—Estimate)/Estimate

Mean —0.04 0.11 0.03-0.01-0.04 —0.06 —0.09 —0.10 —0.14

Standard Deviation ~ 0.22 0.36 0.29 0.21 0.20 0.19 0.16 0.20 0.16
(Ranked2®—Ranked1)/Ranked1

Mean 0.09 0.14 0.11 0.09 0.08 0.06 0.07 0.06

Standard Deviation 0.12 0.11 0.19 0.10 0.09 0.06 0.07 0.07

4Logarithm of the engineers’ estimate.
bRanked1 and Ranked?2 are the winning bid and the bid ranked in second position, respectively.

total of 96 contracts received one bid, 285 contracts received two, 393 contracts
received three bidders, and so on.

Table II illustrates that in highway procurement competition informational
asymmetries may be important. As the number of bidders increases, the rel-
ative difference between the low bid and the Caltrans estimate falls. The low
bid is 11% above the estimate when there is one bidder, and the low bid falls
to 14% below the estimate when there are nine or more bidders.

Money left on the table measures the difference between the low and second
lowest bid. As expected, the difference declines as the number of bidders in-
creases. However, it does not approach zero. When there are nine or more
bidders, the money left on the table is about 6% of the low bid, which suggests
that the magnitude of informational asymmetries may be quite large.

Fringe and regular bidders: In total, more than 500 bidders submit a bid at
least once. Most of these bidders submit a bid only once, or only on a few
occasions. For these bidders, the number of bid observations are too few to
make inferences about their behavior in a repeated game setting. We classify
these bidders as fringe bidders. On the other hand, there is a small number of
bidders that submit bids regularly and win a substantial fraction of contracts.
With “regular” bidders we denote the set of the largest 10 firms in dollar value
won that submit a bid at least 80 times during the sample period.* The num-
ber of regular bidders per contract ranges from 0 to 4 and has an average of
0.53. Regular bidders win 25% of the total dollar value awarded and 17% of all
contracts. For these 10 regular bidders, we supplement the data with informa-
tion on the locations of their plants. Then, for each firm, we create a variable

3The estimation results and, in particular, the effect of backlog, remain very similar as we vary
the definition of regular bidders.
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called distance that measures the distance between the contract location and
the firm’s closest plant.

4.3. The Effect of Backlog

During our sample period, the average contract duration is 156 days. We de-
fine backlog as the amount of work measured in dollars that is left to do from
previously won projects. The backlog variable is constructed in the following
way: For every contract previously won, we calculate the amount of work mea-
sured in dollars that is left to do by taking the initial size of the contract and
multiplying it by the fraction of time that is left until the project’s completion
date. For contracts that finished prior to the end of the sample period, we use
the actual completion date of the contract. For contracts that did not finish
by the end of the sample period, we use the planned completion date. Based
on this calculation, we determine the total amount of work measured in dol-
lars that is left to do at any given point in time. We standardize the backlog
variable by subtracting the bidder specific mean (calculated using daily obser-
vations) and dividing this difference by the bidder specific standard deviation.
The resulting backlog variable is a number that is comparable across bidders.*
There is substantial variation in the backlog variable. On average on about
10% of the observations a regular bidder has almost no capacity committed at
the letting day, while on about 5% of the observations, the firm is about two
standard deviations above its average backlog.

The effect of backlog in a simple dynamic bidding game is described in Jofre-
Bonet and Pesendorfer (1999). Using a theoretical model, they examine the
case in which bidders with above average backlog levels, or capacity con-
strained bidders, have a higher cost, in the sense of first order stochastic domi-
nance, than unconstrained bidders. A prediction from the bidding model is that
constrained bidders bid less frequently and higher than unconstrained bidders.
Alternatively, there may be benefits to performing several contracts simultane-
ously, which we may call expertise effect. Suppose the expertise effect lowers
the cost of additional projects in the sense of first order stochastic dominance.
In this latter case, a prediction of the bidding model is that bidders with high
backlog bid more frequently and lower than bidders with low backlog. Next, we
assess the presence of these opposing intertemporal effects by using a reduced
form analysis.

3We experimented with different definitions of the backlog variable. In particular, we also
used a variable that measures the total backlog from previously won uncompleted contracts di-
vided by the maximum dollar amount won during the sample period. The estimation results were
very similar. We prefer the described specification because we do not have an accurate estimate
of the maximum capacity. We also experimented with regional backlog variables. The regional
effects appear less important perhaps because capacity and resources can be moved. Therefore,
we report the results of the analysis when only the aggregate backlog level is used.
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Reduced form estimates: Table 111 reports nine columns of estimation results
for regular bidders. The first three columns report probit estimates of the de-
cision to submit a bid. The fourth to sixth column report Tobit estimates of
the bid level decision. The seventh to ninth column report Heckman estimates
of the bid level decision. We observe bids only if they are below the reserve
price. To apply the Tobit and Heckman analysis we consider a transformation
of the bid. The dependent variable equals the reserve price minus the bid and
is divided by the engineers’ estimate. The dependent variable is negative if
the bid is not observed, and it is positive if the bid is below the reserve price.
Explanatory variables include contract specific characteristics, such as the esti-
mate and the number of working days, and bidder specific characteristics such
as the firm’s size, measured as the number of plants in the region, the distance
of the bidder’s closest plant to the project location, and the bidder’s backlog.
For each regression, we report three sets of estimates: without any firm specific
dummy variables, with a set of firm specific fixed effects, and with a set of firm
specific backlog variables.

Backlog has a significant effect in all specifications. The sign of the coeffi-
cients suggests the presence of capacity constraints. The magnitude of the ef-
fect is substantial. An examination of the coefficients reveals that, on average,
a constrained bidder is 50% less likely to submit a bid than an unconstrained
bidder. An increase of the backlog from —1 to 1 increases the bid level between
2.5% and 7.6%.*

Asymmetries between bidders accounted for by observable variables are im-
portant. In addition to capacity effects, asymmetries between bidders due to
location and size have significant effects. Distance to the project decreases the
probability of submitting a bid and increases the bid level. The size of the bid-
der, measured by the number of plants within the region, increases the proba-
bility of submitting a bid. The effect of size on the bid level decision is negative
in the Tobit model and not significant in the Heckman model.

Bidder heterogeneity not captured by our observables is also present. Firm
specific fixed effects are included in columns two, five, and eight. In all three
specifications we can reject the null of no significant firm fixed effects.> A pos-
sible explanation is that the paving technology between firms differs beyond
what our measures of firm size, backlog, and location capture. Ideally, we
would like to have additional variables measuring firm heterogeneity.

Bidder heterogeneity not captured by our observables may account for part
of the backlog effect, which could bias our estimates. We test whether the co-
efficient of the backlog variable changes as we introduce firm specific fixed

3Note that if a firm’s backlog changes from —1 to +1, its committed capacity increases from
one standard deviation below its average value to one standard deviation above it.

3Under the null the test statistic is a chi-squared random variable with nine degrees of free-
dom in the probit and it equals 366.75. In the Heckman model the test statistic is a chi-squared
random variable with 18 degrees of freedom and it equals 388.12. For the Tobit model we con-
structed an F-test. The test statistic equals 35.35 with (9, 22215) degrees of freedom.



TABLE III
BID SUBSMISSION AND BID LEVEL DECISIONS

Estimation Method: Probit? Tobit? Heckman?
Dependent Variable: Bid Submission (R—Bid)/Estimate® (R—Bid)/Estimate?
Number of Observations: 22230 22230 22230 22230 22230 22230 22230 22230 22230
Chi-square: 1605.65 1984.17 1677.77 1518.99 1883.42 1589.23 420.41 444.64 420.44
Degrees of Freedom: 6 15 15 6 15 15 6 15 15
Log Likelihood: —4281.26 —4092.39 —4245.60 —3765.05 —3582.84 —3729.93 —3404.46 —3394.35 —3366.71
Variable
Constant —2.8485 -3.169 —2.864 —1.1654 —1.2511 —1.1644 0.3093 0.2734 0.3207
(0.173) (0.184) (0.174) (0.089) (0.091) (0.089) (0.072) (0.076) (0.073)
Estimate 0.2905 0.3024 0.2902 0.1235 0.1220 0.1250 0.0040 0.0038 0.0032
(0.015) (0.016) (0.015) (0.008) (0.008) (0.008) (0.006) (0.007) (0.007)
Working Days —0.3176 —0.3234 —0.3270 —0.1498 —0.1446 —0.1537 —0.0533 —0.0540 —0.0527
(0.022) (0.023) (0.023) (0.011) (0.011) (0.011) (0.008) (0.009) (0.008)
Nbid-Fringe —0.1835 —0.1913 —0.1885 —0.0882 —0.0875 —0.0905 —0.0613 —0.0599 —0.0624
(0.027) (0.027) (0.027) (0.013) (0.013) (0.013) (0.007) (0.008) (0.008)
Distance —0.5193 —0.4805 —0.5238 —0.2536 —0.2240 —0.2543 —0.1196 —0.0978 —0.1188
(0.023) (0.024) (0.023) (0.012) (0.012) (0.012) (0.008) (0.009) (0.009)
# Plants 0.1807 0.0513 0.1786 0.0638 0.0078 0.0632 —0.0051 —0.0193 —0.0052
within Region (0.051) (0.054) (0.052) (0.025) (0.024) (0.024) (0.014) (0.015) (0.015)
Backlog —0.0835 —0.0856 —0.1079 —0.0383 —0.0372 —0.0528 —0.0127 —0.0127 —0.0162
(0.015) (0.015) (0.053) (0.007) (0.007) (0.025) (0.004) (0.005) (0.017)
Firm_2 0.6784 0.2985 0.1204
(0.061) (0.029) (0.019)
Firm_3 —0.0338 —0.0081 —0.0223
(0.073) (0.034) (0.024)
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TABLE III
(CONTINUED)

Estimation Method: Probit?® Tobit? Heckman?
Dependent Variable: Bid Submission (R—Bid)/Estimate® (R—Bid)/Estimate?
Number of Observations: 22230 22230 22230 22230 22230 22230 22230 22230 22230
Chi-square: 1605.65 1984.17 1677.77 1518.99 1883.42 1589.23 420.41 444.64 420.44
Degrees of Freedom: 6 15 15 6 15 15 6 15 15
Log Likelihood: —4281.26 —4092.39 —4245.60 —3765.05 —3582.84 —3729.93 —3404.46 —3394.35 —3366.71
Variable
Firm_4 0.1499 0.0649 0.0011

(0.074) (0.034) (0.022)
Firm_5 —0.0325 —0.0133 —0.0097

(0.073) (0.033) (0.023)
Firm_6 —0.1885 —0.0976 —0.0458

(0.076) (0.035) (0.023)
Firm_7 0.2011 0.0969 0.0054

(0.072) (0.033) (0.022)
Firm_8 —0.0515 —0.0212 —0.0357

(0.073) (0.034) (0.023)
Firm_9 —0.2070 —0.0893 —0.0372

(0.077) (0.035) (0.023)
Firm_10 0.2277 0.1297 0.0742

(0.069) (0.031) (0.021)
Backlog_2 0.0345 0.0214 0.0065

(0.072) (0.034) (0.022)
Backlog_3 —0.0239 0.0033 0.0015
(0.063) (0.030) (0.019)
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TABLE III

(CONTINUED)
Estimation Method: Probit? Tobit? Heckman?
Dependent Variable: Bid Submission (R—Bid)/Estimate (R—Bid)/Estimate
Number of Observations: 22230 22230 22230 22230 22230 22230 22230 22230 22230
Chi-square: 1605.65 1984.17 1677.717 1518.99 1883.42 1589.23 420.41 444.64 420.44
Degrees of Freedom: 6 15 15 6 15 15 6 15 15
Log Likelihood: —4281.26 —4092.39 —4245.60 —3765.05 —3582.84 —3729.93 —3404.46 —3394.35 —3366.71
Variable
Backlog_4 —0.0637 —0.0338 —0.0258
(0.078) (0.037) (0.024)
Backlog_5 0.3193 0.1530 0.0591
(0.070) (0.034) (0.023)
Backlog_6 0.0495 0.0256 —0.0072
(0.016) (0.034) (0.024)
Backlog_7 0.0970 0.0458 0.0128
(0.074) (0.035) (0.023)
Backlog_8 —0.2357 —0.1117 —0.0344
(0.075) (0.036) (0.024)
Backlog_9 0.0546 0.0261 0.0018
(0.071) (0.034) (0.024)
Backlog_10 —0.0195 —0.0075 —0.0096
(0.071) (0.030) (0.022)
Mills Ratio 0.2342 0.2233 0.2319
(0.011) (0.011) (0.011)

4 All variables except Backlog are in logarithm. The numbers in parenthesis are standard deviations.
b (R—Bid)/Estimate denotes the logarithm of the variable (Reserve price minus the Bid) over the engineers’ Estimate plus one.
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effects. As is evident in Table III, the coefficients do not change significantly.
Thus, excluding unobserved firm heterogeneity does not affect the estimates
of the backlog effect.

As described in Section 2, our model requires that bidders behave symmet-
rically conditional on observables. We can test this assumption by including a
set of backlog and bidder identity interaction terms. We report these results
in columns three, six, and nine of Table III. We find that the interaction terms
are not significant for the majority of firms. An examination of individual co-
efficients reveals that 21 out of 27 coefficients are not significantly different
from zero. Although we can reject the null of no significant firm specific back-
log effects for all firms jointly in all three columns,* we cannot reject the null
that firm specific backlog effects are zero for eight of the ten firms in all three
specifications.”” The backlog variable has the same effect for eight of ten bid-
ders. The effect differs for two firms: One exception occurs for firm five, where
the sign of the backlog effect is reversed. The other exception occurs for firm
eight, where the effect of backlog is of larger magnitude. Overall, we interpret
this evidence as partially supportive of our assumption of symmetric behavior
conditional on observables.

The estimates in Table I1I provide preliminary support for our dynamic bid-
ding model in at least three ways: First, capacity constraints appear important.
Second, bidders’ additional state variables, location, and size, are important.
Third, a test of identical backlog effects cannot be rejected for the majority of
bidders.

5. ESTIMATION RESULTS

This section discusses the estimates of the econometric model. Section 5.1
reports the estimates of the bid distribution functions. We discuss how well the
estimates predict the data. We then illustrate the predicted effect of selected
variables. Section 5.2 discusses the estimates of the value function. Section 5.3
discusses the estimates of the bidding function and inferred costs. The esti-
mates suggest that the effect of the backlog variable is in accordance with the
expected effect under the presence of capacity constraints. Moreover, the ef-
fect is substantial, suggesting that capacity constraints play an important role
in highway bidding.

3Under the null, the test statistic is a chi-squared random variable with nine degrees of free-
dom in the probit and it equals 70.99. In the Heckman model, the test statistic is a chi-squared
random variable with 18 degrees of freedom and it equals 74.0. For the Tobit model, we con-
structed an F-test. The test statistic equals 7.42 with (9, 22215) degrees of freedom.

3"Under the null, the test statistic is a chi-squared random variable with seven degrees of free-
dom in the probit and it equals 7.48. The test statistic is a chi-squared random variable with 14
degrees of freedom in the Heckman model and it equals 10.78. For the Tobit model, we construct
an F-test. The test statistic equals 0.95 with (7, 22215) degrees of freedom.
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5.1. Estimates of the Bid Distribution Functions

The parameter estimates are reported in Table IV. Columns one, two, and
three report the parameter estimates for regular bids, for fringe bids, and for
the lower bound respectively. Columns four, five, and six report the second
set of parameter estimates, which include additionally a set of firm identity
and backlog interaction variables. The variables entering Table IV are bidders’
characteristics and contract characteristics. Bidders’ characteristics include the
standardized backlog from previously won uncompleted projects, the distance
between the closest plant of the bidder to the contract location, and the num-
ber of plants within the region of the contract. The contract characteristics
include the engineers’ estimated cost of the project, the number of working
days, the reserve price, and the number of fringe bids. Some fringe bids and a
small number of regular bids are (substantially) below the engineer’s estimate.
We believe that these bids represent erroneous bids by inexperienced bidders,
or coding errors and we omit bid observations that are more than 15% be-
low the engineer’s estimate.*® Keeping the bid outliers in the data reduces the
lower bound estimate, which amplifies the per period payoff estimates, the
value function estimates, and also the effect of the backlog variable on the cost
estimates. Thus, to the extent that our data selection rule may influence our
estimates, our results provide a conservative assessment of the backlog effect.

As mentioned earlier, we also estimated the bid distribution functions using
the consistent but less efficient two stage approach described in Smith (1985).
The point estimates are qualitatively similar to the results reported here and
are reported in Jofre-Bonet and Pesendorfer (1999).

Goodness of fit: As a measure of the goodness of fit of the model, we ran-
domly draw bids from the estimated distribution of bids and compare them to
the observed bids. To account for contract heterogeneity, we normalize bids
by dividing them by the reserve price. The estimates predict well the observed
distribution of fringe bids. We draw 10,000 fringe bids. On average, the pre-
dicted fringe bid equals 78.01% of the reserve price with a standard deviation
of 11.71%. The observed fringe bid equals 77.72% of the reserve price with a
standard deviation of 11.53%. The difference between the two means is not
significant.

The predicted probability of observing a regular bid equals 5.97%. In the
data, the probability of observing a regular bid equals 5.96%. The difference
between the two numbers is not significant. Conditional on observing a regular
bid, the mean predicted bid equals 82.36% of the reserve price with a standard
deviation of 12.02%. The observed regular bid equals 79.03% with a standard
deviation of 10.40%. We can reject the null hypotheses of equal mean and
we reject the null of equal variance. Conditional on observing a regular bid,

31n total we omit 25 regular bids and 273 fringe bids. Low bids occur mostly for small contracts
and low regular bids do not arise on contracts with engineer’s estimates exceeding $1,000,000.



TABLE IV
PARAMETER ESTIMATES OF THE BID DISTRIBUTIONS

Data:

Regular and Fringe Bids

Regular and Fringe Bids

Number of Observations: 30,873 30,873
Log Likelihood: —1,467.46 —1,500.82
Variables Regular Bids Fringe Bids Lower Bound Regular Bids Fringe Bids ~ Lower Bound
0, —13.1688 —13.1721
(22.689) (14.779)
04 —1.3354 —1.3357
(0.155) (0.154)
Constant 5.6934 1.8821 —0.8228 5.6997 1.8820 —0.8228
(0.193) (0.170) (0.019) (0.193) (0.151) (0.022)
Ln Estimate —0.3739 —0.0014 1.0541 —0.3767 —0.0014 1.0541
(0.015) (0.011) (0.001) (0.015) (0.006) (0.001)
Ln Working Days 0.2765 —0.0283 —0.0049 0.2813 —0.0283 —0.0049
(0.021) (0.018) (0.002) (0.021) (0.019) (0.002)
Estimate/Reserve_Price —2.8037 —2.5396 —0.0188 —2.7803 —2.5395 —0.0188
(0.200) (0.158) (0.013) (0.200) (0.158) (0.013)
Nbid-Fringe 0.025 0.0049 0.0011 0.0258 0.0049 0.0011
(0.006) (0.008) (0.001) (0.007) (0.006) (0.001)
Distance 0.0559 0.0562
(0.003) (0.003)
# of Plants within the Region —0.3144 —0.3159
(0.026) (0.027)
Backlog 0.0721 0.0803
(0.015) (0.016)
Sum_Distance 0.0015 0.0002 —0.0004 0.0015 0.0002 —0.0004
(0.001) (0.001) (0.000) (0.001) (0.001) (0.000)
Sum_# of Plants within the Region 0.1242 —0.0262 —0.0129 0.1271 —0.0262 —0.0129
(0.012) (0.013) (0.002) (0.012) (0.014) (0.002)
Sum_Backlog 0.0108 0.0278 —0.0022 0.0128 0.0277 —0.0022
(0.006) (0.007) (0.001) (0.006) (0.007) (0.001)
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TABLE IV
(CONTINUED)

Data:

Regular and Fringe Bids

Regular and Fringe Bids

Number of Observations: 30,873 30,873
Log Likelihood: —1,467.46 —1,500.82
Variables Regular Bids Fringe Bids Lower Bound Regular Bids Fringe Bids Lower Bound
Backlog_Firm_1 —0.0497

(0.045)
Backlog_Firm_2 0.0530

(0.035)
Backlog_Firm_3 0.0274

(0.026)
Backlog_Firm_4 0.0777

(0.059)
Backlog_Firm 5 —0.2561

(0.045)
Backlog_Firm_6 —0.0416

(0.056)
Backlog Firm 7 —0.0526

(0.046)
Backlog_Firm 8 0.2264

(0.050)
Backlog_Firm 9 —0.0375

(0.028)
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the predicted bid, on average, is higher and has a higher standard deviation.
A closer inspection of the distribution of regular bids conditional on observing
a regular bid reveals that the difference between the predicted and observed
distribution is attributable to a small fall in the number of bid observations
close to the reserve price. Indeed, a closer fit is obtained when we estimate the
bids’ distribution function as a product of a Weibull and a Beta distribution
functions, instead of the Weibull distribution function that we use. When us-
ing the Weibull-Beta alternative specification, we obtain that, conditional on
observing a regular bid, the resulting predicted mean bid equals 78.81% of the
reserve price with a standard deviation of 9.81%. For this specification, the ob-
served mean is not significantly different from the predicted mean. The reason
for the improvement is that the estimated parameters for the Beta density per-
mit a fall in density close to the reserve price, which improves the fit. But the
Weibull-Beta specification violates the monotonicity assumption of the hazard
function, which is required by the bidding model. Thus, we decided to impose
the monotonicity condition in the estimation and report the estimates obtained
using the Weibull distribution function.*

The effect of individual variables can be illustrated by evaluating their effect
on the probability of submitting a bid at sample average values of explanatory
variables. In general, the predicted effect confirms the intuition: The probabil-
ity of submitting a bid decreases monotonically in backlog, which is consistent
with the notion of capacity constraints. An increase in the number of compet-
ing fringe firms has a negative effect on the bid submission decision. Distance
affects the probability of bid submission negatively, and the number of plants
in the region has a positive effect.

Backlog: For regular bidders, the backlog variable enters in the scale parame-
ter 6,. Our assumption of symmetric bidding behavior conditional on observ-
ables requires that backlog have the same effect across bidders. We can test
this assumption using our second set of estimates reported in columns four,

¥The fall in the number of bid observations close to the reserve price has at least two explana-
tions: First, bidders do not fully understand the announced reserve price R'. As described before,
about 12% of all bid observations violate the reserve price requirement, which indicates that at
least some bidders did not interpret the reserve price rule correctly. In general, the reserve price
rule is complicated, varying with contract size and equaling a fixed dollar amount and a certain
percentage (typically 10%) above the contract’s budget. Additionally, a change in the reserve
price rule occurred in the middle of the sample period. Second, as described before, Caltrans can
use a secret reserve price in addition to the announced reserve price rule, by rejecting bids (below
the reserve price) that are deemed too high. The data do not substantiate the importance of the
secret reserve price rule, as there are no observed bids below the reserve price that were rejected.
However, the lack of data may reflect that the support of the secret reserve price distribution
is small and that most winning bids are substantially below the reserve price. Both explanations
can account for the fall in observations close to the reserve price. Unfortunately, the data are not
rich enough to explore these explanations further. For these reasons, we decided to impose the
monotonicity requirement in the estimation and to assume that the support of the secret reserve
price distribution is small, R equals R, ignoring the role of the secret reserve price.
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FIGURE 1.—Bid distribution function.

five, and six in Table IV. This second set of coefficients was estimated including
additionally a set of bidder identity and backlog interaction variables. We find
that differences in the backlog effect between bidders are not significant for the
majority of bidders, reinforcing our earlier evidence in Table III. An examina-
tion of bidder identity and backlog interaction variables reveals that for seven
cases out of nine, the bidder specific backlog coefficients are not significantly
different from zero. The two significant effects are for firms five and eight. The
null of jointly no bidder specific backlog effects is rejected. The test statistic is
a chi-squared random variable with nine degrees of freedom and equals 66.72.
However, taking only those seven firms with backlog effects not significantly
different for zero, the null of jointly no significant backlog effects cannot be
rejected. The test statistic is a chi-squared random variable with seven degrees
of freedom and equals 7.88.

The effect of the backlog variable on the bid distribution of regular bidders is
illustrated in Figure 1. It shows the bid distribution function between the lower
bound of bids and the reserve price, evaluated at sample average values of state
variables. Two bid distribution functions are reported: The solid function as-
sumes a backlog equal to —2 (unconstrained bids) and the dashed function as-
sumes a backlog equal to 2 (constrained bids). The dotted lines represent 90%
confidence intervals. The confidence interval in Figure 1 (and all subsequent
estimates’ standard errors) are calculated using the delta method. The figure
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illustrates that the distribution of constrained bids stochastically dominates, in
the first order sense, the distribution of unconstrained bids. On average, un-
constrained bidders are about twice as likely to submit a bid than constrained
bidders. This finding confirms the importance of capacity constraints.

5.2. Estimates of the Value Function

The arguments of the value function are the bidders’ state variables. Each
bidder’s state consists of a three dimensional vector consisting of the bidder’s
backlog, plant locations, and number of plants in all regions.

We approximate a value function for each bidder i separately. Doing so al-
lows us to ignore bidder i’s plant locations as an argument entering the value
function. The reason is that bidder i’s plant locations do not change over time
and their level effect is accounted for in the per period payoff function. For
the same reason we can ignore bidder i’s size measure (number of plants in
the region) as an argument in the value function. Thus, the only bidder i’s
state variable that remains in bidder #’s value function approximation is bidder
i’s backlog. Similarly, competitors’ plant locations and number of plants do not
change over time and their direct effect on the value function is accounted for
by estimating a value function for each bidder separately.

To simplify the dimensionality of the value function approximation further,
we make use of the symmetry property. As explained in Section 3, symmetry
implies that the coefficients associated with competitors’ state variables in a
polynomial approximation of the value function will be identical. However,
imposing the symmetry restriction requires that we explicitly take into account
the indirect effect manifested in the interaction terms involving backlog and
the competitor’s distances to the contract location and size within the region,
which does change from period to period after the contract is realized. To
account for this indirect effect, we include the average distance to contracts
and the average number of plants per region interacted with backlog for every
competitor as an additional variable in the value function. These averages are
calculated by using the observed information. We assume that these variables
adequately measure the distribution of distances and the distribution of the
number of plants per region.

The variables entering the value function are bidder i’s backlog and three
variables for each competitor consisting of the competitor’s backlog, the com-
petitor’s backlog interacted with average distance, and the competitor’s back-
log interacted with average number of plants per region.

The approximation of the value function for bidder 3, is depicted in Figure 2.
We arbitrarily select bidder 3, who is the third largest bidder in dollar value
won. We assume the projects are equally spaced over time and since our data
contain on average 709 projects per year this assumption implies that a project



DYNAMIC AUCTION GAME 1477

34

30 |

VALUE (in million $)

26 -

22 -

14 1 L 1 1 L 1 1 1 L 1 L L L 1 1 J
-1.6 -1.2 -0.8 -0.4 -0.0 0.4 0.8 1.2 1.6

BACKLOG

FIGURE 2.—Value function.

is offered for sale about every 12 hours.*’ We impose an annual discount factor
of 0.80. We chose the 99th percentile of the distribution of winning bids as the
lower endpoint of the support of the reserve price distribution. This percentile
amounts to 0.85 - R’. In the figure the competitors’ state variables are fixed
at their sample averages. The plot illustrates the discounted expected future
profit of bidder 3 by varying the backlog variable of bidder 3 between —1.6
and 1.6. The dotted lines depict the 90% confidence interval calculated using
the delta method.*!

The average discounted sum of payoffs for bidder 3 equals $25 million.
Other regular bidders’ discounted sum of payoffs ranges between $7 million
and $73 million. The assumed annual discount factor of 0.8 is a conservative
measure for the effect of the future. Increasing the annual discount factor from
0.8 to 0.9 increases the discounted sum of payoffs by a factor of 2, approx-
imately. The lower bound of the secret reserve price distribution affects the
calculated value function as well. Increasing the lower bound from 0.85 - R’ to

40To permit randomness in the timing of projects, a shorter period length could be used and it
could be assumed that with a certain probability no project is offered for sale.

#To calculate the derivative of the value function with respect to the parameter vector, we
take the derivative in equation (3.3), which yields V; = A; + B3 BV + B B;V;. We nu-
merically calculate the derivatives 4; and Bj; and the derivative of V; is then given by I} =

(4 +BY. BV1/[1 — BY. Byl. l
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0.9 - R’ shifts the value function up by $1.3 million on average. The shift ranges
between $1.1 million and $1.45 million across backlog levels. The accuracy of
the computations depends on the fineness of the selected grid of states. Dou-
bling the number of state points, from 50 to 100, alters the value function of
bidder 3 by a very small amount only. The difference between the value func-
tion based on 50 and based on 100 states equals at most 3.4% of its value, or
$840,000. Additionally, the accuracy of the computations depends on the se-

lected random sample of contracts Sp. To assess its importance we calculate a

sample average value function obtained by drawing ten times the set Sy from
the set of observed contracts instead of drawing it once only. By repeatedly

drawing S, the value function of bidder 3 shifts by $1.64 million on average.
The shift ranges between $1.41 million and $1.75 million across the backlog
range.

The effect of backlog on the value function in Figure 2 is negative, which is
in accordance with the expected effect under capacity constraints. In Figure 2,
backlog reduces the value function in total by about 35%. Value function es-
timates for other bidders are of different magnitude, but in general of similar
shape. An exception is bidder 4 for which the value function increases initially
and then decreases as backlog increases. To illustrate the backlog effect for
the average bidder, we regress the value functions of bidders evaluated at the
50 states on a set of bidder specific dummy variables and the state variables.
To capture possible nonlinearities, we include both linear and quadratic coef-
ficients of variables. We find that the predicted value function is about 39%
higher if backlog equals —2 than if backlog equals 2, it is about 30% higher if
backlog equals —1 than if backlog equals 2, and about 20% higher if backlog
equals 0 than if backlog equals 2.

5.3. Estimates of Costs

First, we illustrate the equilibrium bid functions. Then, we describe mark-
ups and cost estimates.

The equilibrium bid function for bidder 3 is illustrated in Figure 3. The bid
function is estimated using equation (3.1). The bid function is plotted by fixing
the state variables at sample average values for bidder 3 and varying the cost. In
addition to the bid function, the 45 degree line is reported. As is evident in the
figure, the bid increases with the cost. In addition, the distance between the bid
and the cost decreases as the cost increases. However, as the cost increases the
bid does not approach the 45 degree line. The reason is the mark-up attribut-
able to the negative effect on the future discounted profits if firm i wins the
contract instead of another firm. The bid function is of similar shape for other
contract characteristics and state variables. In some instances, the difference
between bids and costs is large in magnitude at the lower end of the support
of bids, which can result in a negative cost. We find negative costs implausible
and set the cost to zero whenever the inferred cost would be negative.
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FIGURE 3.—Bid function.

The mark-up denotes the difference between the bid and the cost of a bidder.
In the figure, the mark-up is the distance between the bid and the 45 degree
line. An examination of all observed bids by bidder 3 reveals that the median
estimated mark-up for this bidder equals 26.0% of the bid. The mean mark-up
is higher and equals 35.6% of the bid. The estimated mark-up differs across
bidders. The median mark-up across all observed regular bids equals 32.6%
and the mean mark-up equals 40.3%. Although the magnitude of the mark-up
may appear large, it appears in accordance with descriptive evidence in Table I
and Table II. The difference between the lowest and second lowest bid is, on
average, 9% of the value of the bid.

A substantial portion of the mark-up of regular bidders is attributable to the
loss in future discounted value due to limited capacity. This loss reflects the
cost of winning today versus winning later. We can measure this loss based on
equation (3.1), which decomposes the mark-up into two parts: The first part
reflects contemporaneous competition. The second part measures the loss in
value of winning today versus winning later. For bidder 3, on average, across all
observed bids, 64.2% of the mark-up is attributable to the second part, which
is the option value of winning today versus winning later. The number varies
across bidders. Across all regular bidders 55.9% of the mark-up is attributable
to the second part.



1480 M. JOFRE-BONET AND M. PESENDORFER

0.05 ¢
BACKLOG = =2
907 Confidence Interval
0.04 - 907 Confidence Interval
o — BACKLOG = 2
o © 907 Confidence Interval
© 907 Confidence Interval
0.03

0.02
-
—
-
—_

0.01
0.00 Lo . L ! L )

200 250 300 350 400 450

COST (in 1000 $)

FIGURE 4.—Cost distribution function.

The mark-up estimates depend on the assumed discount factor. As we in-
crease the annual discount factor, from 0.8 to 0.9, the following changes take
place: For bidder 3 the median estimated mark-up becomes 44.5% of the bid
and the mean mark-up increases to 51.1% of the bid. The median mark-up
across all observed regular bids becomes 45.9% and the mean mark-up equals
50.6%. Finally, when the discount factor is 0.9, the option value for bidder i
accounts for about 74.5% of the mark-up, and across all regular bidders for
about 69.8%.

Cost estimates: Figure 4 depicts the distribution function of costs for bidder 3.
Distribution functions are reported for two values of backlog and holding other
state variables at sample average values. The backlog values are —2 and 2. The
dotted lines represent 90% confidence intervals, which are calculated using
the delta method. The estimated cost distribution functions are truncated at
the point at which the equilibrium bid corresponding to the cost equals the re-
serve price and are reported for a common range of costs. Figure 4 documents
that the cost distribution of the constrained bidder stochastically dominates in
the first order sense the cost distribution of the unconstrained bidder. On aver-
age, the probability that the cost is below a certain threshold is more than twice
when the bidder is unconstrained than when the bidder is constrained. Similar
to our earlier evidence in Table IV, we find that cost realization depends not
only on the bidder’s own state variables, but also on other bidders’ state vari-
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ables. A possible explanation is that shortages of paving workers or shortages
of paving equipment caused by high backlog levels of bidders can increase the
contract costs for all bidders.

6. THE EFFECT OF BACKLOG AND INEFFICIENCIES

This section reports three applications of the estimates: First, we measure
the benefits to the auctioneer of increasing capacity of all bidders simultane-
ously. Second, we measure the short run benefits of individual bidders of an
increase in their capacity. Third, we determine to what extent the auction rule
does not select the low cost bidder due to the presence of capacity constraints
and bidder asymmetries. We quantify the magnitude of resulting inefficiencies.

6.1. Price Effect

We have shown that individual regular bids, costs, and future profits depend
on the backlog level. Next, we report the hypothetical effect on the price paid
for the service by the auctioneer as the backlog level of all regular bidders
is increased simultaneously. We may interpret the effect as the benefit to the
auctioneer of an increase in capacity of all bidders. We report the price effect
for a hypothetical contract on which the fringe bidders are absent. Due to the
absence of fringe bidders, the price equals the low regular bid, which is the low
bid submitted from the set of regular bids. The reason why we select a contract
on which the fringe bidders are absent is that their dependence on backlog was
not modeled, as fringe bidders’ backlog level is not observed in our data.

To compute the price effect we conduct the following exercise: We select
a contract with an engineers’ cost estimate equal to the sample average. For
each regular firm, we randomly draw a bid from the bid distribution under
the assumption that all firms’ backlog equals —2. Then, we calculate the price
that equals the low bid from this set of regular bids. Similarly, we randomly
draw bids from the bid distributions of regular bidders under the assumption
that their backlog equals 2. Then, we determine this draw’s low regular bid.
We repeat this sampling procedure to obtain 1,000 observations. Finally, we
compare the distribution of prices between both cases.

The price effect is substantial. When backlog of all regular bidders equals
—2, the average price equals $539,845. When backlog equals 2, the average
price increases to $657,016. The difference in the mean is significant and equals
about 18% of the average at the —2 backlog level. The shift in backlog from 2
to —2 is achievable with a 114% increase in regular bidders’ capacity.

We repeat the above calculations for backlog levels equal to —1 and 1. The
difference in the average of the price between backlogs of —1 and +1 is signif-
icant and equals about 12% of the average price at a backlog of —1. The shift
in backlog from 1 to —1 is achievable with a 57% increase in regular bidders’
capacity. We also conducted the experiment for other engineers’ cost estimates
with similar results.
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We can conclude that the benefits to the auctioneer of an increase in avail-
able bidder capacity is substantial. Next we examine the effect of available ca-
pacity on bidders’ returns.

6.2. Period Returns

We illustrate the effect of available capacity on the ex ante expected period
return of an individual regular bidder. The benefits of an additional unit of
capacity is an important part in the equation that determines the optimal ca-
pacity choice as a function of the returns to capacity and the cost of investing in
capacity. The cost of additional capacity in the highway paving industry is dif-
ficult to measure and we do not attempt to quantify it. However, our estimates
permit us to assess the short run bidder returns due to a reduction in backlog
and holding total bidder capacity fixed. We calculate the ex ante expected pe-
riod bidder return before contract characteristics and costs are observed. We
emphasize that the exercise looks at one auction only. The long run effect of
backlog on bidders’ returns was illustrated earlier in the discussion of the value
function estimates in Section 5.2 and exemplified in Figure 2.

The period returns are defined as the first expression on the right-hand side
in equation (2.1). Due to our conditional symmetry assumption, variations in
period returns are entirely determined by variations in the state variables. To
assess bidder specific returns, we take a sample of 50 draws from the observed
distribution of states for each regular bidder and we obtain the short run bidder
return corresponding to each one of the 50 states, for each regular bidder. Our
calculations indicate that regular bidders expect to receive $16,200 per contract
on average, but there is substantial variation in ex ante expected returns for
individual regular bidders ranging between $790 and $45,900 across bidders.

The effect of available capacity on ex ante expected returns can be illustrated
by regressing these ex ante period returns on a set of bidder specific dummy
variables and the state variables. To capture possible nonlinearities we include
both linear and quadratic coefficients of the state variables. Using the esti-
mated backlog coefficient, we conduct counterfactual predictions by varying
the backlog level, while holding the other variables constant at sample aver-
age.

We find that the ex ante expected period payoffs are about 95% higher if
backlog equals —2 than if the backlog equals 2, they are about 56% higher
if backlog equals —1 than if the backlog equals 2, they are about 26% higher
when backlog equals 0 than if the backlog equals 2, and they are about 8%
higher when backlog equals 1 than if the backlog equals 2. If we compare the
effects to our earlier results on the value function, we can conclude that the
effect of capacity is of larger magnitude in the short run than in the long run.

The illustration shows that available capacity is important in the bidders cal-
culus of bidding.
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6.3. Inefficiencies

Next, we assess the magnitude of the inefficiencies. Notice, that due to the
presence of intertemporal effects and due to bidder heterogeneity, a first-price
auction need not select the efficient firm. The bidder with the lowest bid need
not be the bidder with the lowest cost. The reason is that constrained (or
smaller) bidders may bid more aggressively than unconstrained (or larger) bid-
ders. The strategic bid shading can imply that a constrained firm wins although
it did not have the lowest cost.

To assess the magnitude of inefficiencies at auction ¢, we conduct the follow-
ing experiment: We select the firm that minimizes costs at auction ¢ and take
as given that the first-price auction is used at auction ¢ + 1 and onwards. This
selection rule gives us a lower bound on the efficiency loss.*? To assess which
firm to select, we take into account contemporary and future costs. Contem-
porary costs are those implied by the observed bids. The discounted sum of
expected future costs, /¢, is approximated using the estimates reported in Sec-
tion 5. Specifically, the discounted sum of expected future costs can be written
as

Ve(s) =E, {f (., 5,85)dG (.|, )

+B ZPr(j wins|sg, )V (@ (8o, S, j)) {5

j=0

where G)(.|5, s) denotes the distribution function of the winning bid on con-
tract s, with state s. We evaluate I’ numerically in the same way as the value
function. The low cost firm is the firm j that minimizes ¢; + BV “(w (5o, $, j)).
Table V reports the frequency and the inefficiencies’ dollar amounts associ-
ated with the experiments. We perform the experiment for all observed con-
tract characteristics, except contracts that we omitted in the estimation of the
bid distribution functions due to suspiciously low bids, and using the observed
bid data. Inefficiencies are reported as a fraction of the initial engineers’ es-
timate. On 32% of all experiments, an inefficient bidder is selected. We de-
compose the efficiency loss into contemporary and future cost effects. We find
that the inefficiency arises because a lower cost firm could have been chosen
in auction ¢. The effect on future costs is negligible. The average efficiency loss
across experiments amounts to 13% of the engineers’ estimate. In dollar value,
this amounts to $305,500 per experiment, on average. In addition to the over-
all results, Table V reports efficiency losses for a range of selected engineers’

“2The full cost minimizing problem is a dynamic decision problem involving ten state variables,
one backlog variable for each regular bidder. This problem is too complex for the computing
techniques available.
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TABLE V
ESTIMATES OF EFFICIENCY LOSSES

Range of Engineers’ Estimate (in $ 1,000)

Variable [0,100]  (100,400]  (400,1000]  (1000,5000]  (5000,.] Overall
All Contracts:
Number of Contracts 49 893 525 545 184 2196
Prob of an Inefficiency 0.02 0.52 0.17 0.24 0.11 0.32
Average Efficiency Loss® 0.04 0.08 0.14 0.17 0.19 0.13
Contract Won by a Regular Bidder:
Number of Contracts 1 90 94 147 42 374
Prob of an Inefficiency 0.00 0.20 0.55 0.38 0.27 0.36
Average Efficiency Loss® 0.36 0.29 0.29 0.22 0.24 0.25
Contract Won by a Fringe Bidder:
Number of Contracts 48 803 431 398 142 1822
Prob of an Inefficiency 0.02 0.56 0.08 0.19 0.06 0.31
Average Efficiency Loss® 0.04 0.06 0.11 0.15 0.18 0.10

aEfficiency losses are reported as a fraction of the engineers’ estimate.

estimate values. In general, inefficiencies arise for small and large contracts.
Nevertheless, inefficiencies, measured in percent of engineers’ estimate, are of
larger magnitude for larger contracts. Table V also reports efficiency losses for
two subsets of the data: contracts won by regular bidders and contracts won by
fringe bidders. Table V illustrates that the probability of inefficiencies is about
the same if a contract is won by a regular bidder than when it is won by a fringe
bidder.

7. CONCLUSIONS

This paper proposes an estimation method for a repeated auction game un-
der the presence of capacity constraints and bidder asymmetry. We apply the
method to highway procurement auctions in California. We characterize costs
as a function of state variables and illustrate the bidding equilibrium. The data
suggests the presence of capacity constraints. Bidders that have a large frac-
tion of their capacity committed have, on average, higher costs than bidders
with little capacity committed. We find that when all bidders are capacity con-
strained, the resulting price paid by the auctioneer is about 18% higher than
when all regular bidders are unconstrained. Moreover, an individual bidder
expects to receive about twice as much from an auction in which the bidder is
unconstrained than from an auction in which the bidder is constrained.

There are at least two policy implications from our analysis: First, scheduling
and timing of contracts offered for sale influences the final price. Thus, opti-
mal scheduling taking the endogeneity of capacity choices into account may
save costs. Second, due to intertemporal constraints and bidder heterogeneity,
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an inefficient firm may be chosen. Our experiments indicate that inefficien-
cies may arise on about 32% of all contracts and they may amount to 13% of
the expected contract size. Our estimates suggest that auction rules that cope
better with intertemporal effects and bidder asymmetry could be a cost saving
alternative.

There are two shortcomings of our estimation method: First, our estima-
tion method relies on the assumptions that bidders completely understand the
auction environment and that our estimates of winning probabilities correctly
capture bidders’ perceived winning odds. While we feel that these assumptions
are reasonable in our context, we emphasize that our data are too limited to
test the adequacy of these assumptions beyond some regularity conditions that
our data do satisfy. It may be fruitful to assess the accuracy of the models’ pre-
dictions with data on independent and reliable information on the perceived
winning odds and bidders’ cost estimates. Second, our estimation method does
not identify the discount factor. The nonidentification problem of the discount
factor is similar to other dynamic estimation approaches; see Rust (1994).
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APPENDIX
The appendix contains the proofs to all propositions in the text as well as an auxiliary result.

SECTION 3.1—EQUATION (3.1): The probability that bidder i assigns to the event that bidder
J wins the contract when bidder i bids b, can be written as

b
/ g(x1s0, 85, 5_;) l_[[l — G(xls, 81, s-1)]dx.
b

& I#,]

The first order condition of equilibrium bids by a regular bidder is given by

(A31)  [b—cl- Y ]l —Gblso, 51, s-)lI—gblso, 55 s- )1+ [ [[1 = G(blso, s, 5-)]
J#LI#L] J#i

+ BVi(@(s0,5,0) Y [ [11 = Gblso, 51, s-)1—g(Blso, 55, 5-))]

JA AL

+B_[gblso, sjs-) [ [11 = G(blso, 51, 5-01- Viw (50, 5, )] = 0.

J# I,
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We can rearrange this expression by dividing by [],_;[1 — G(b|sy, s, s—1)]. This yields

—g(blso, 55, 5_;) . —g(blso, 55, 5_;)
A3.2 b—c]- —= 4+ 14+ 8V S0, S, 1 —_—
( ) [ ] 12#1: 1—G(b|S(J,Sj,S_j) B (w( 0 ))]2#; 1—G(b‘SU,Sj,S_j)

g(b‘so;sj;s—j) .
- AL Rt EANY 74 ,8, 1)) =0.
+B§1_G(bl%,sﬁ&ﬂ (@ (50,5, /)

The hazard function,

8(.1s0, 8, 5-;)
h . 30 0—j) = T S .~
R B TR
can be substituted into this equation. This substitution yields equation (3.1).
The first order condition for optimal bids by a fringe bidder is obtained in an analogous way.
In particular, evaluating (A3.2) at V; = 0 gives the corresponding first order condition of a fringe
bidder.

PROOF OF PROPOSITION 1: To establish the claim in the proposition, we show that the value
function, defined in equation (2.1), has a representation in terms of the distribution of bids. There
are two steps involved: First, we make use of the first order condition of optimal bids. This con-
dition provides us with an explicit expression of the cost in terms of bids and the value function.
Second, we change the range of integration from the cost space to the bid space. The resulting
equation (3.2) characterizes the value function as an infinite sum.

Note that the probability that bidder i assigns to the event that bidder j wins the con-
tract when bidder i bids b, Pr(j wins|b, sy, s;, s_;), can be written as: fbh 8(xlso, 8j,5_;) ]_[l#i’j[l -
G(x|so, 81, 5—1)]dx. In an abuse of notation, we denote by b(c) the equilibrium bid by bidder i
on contract s, if the state is s. We can substitute the first order condition for optimal bids, equa-
tion (3.1), into the value function, equation (2.1). Notice that we can use the first order condition
only for costs such that the equilibrium bid is below the reserve price. If the equilibrium bid equals
or exceeds the reserve price, then the bid is rejected and the current period payoff equals zero.
We account for this distinction explicitly by including an indicator function 1, that equals one if
event A is true and equals zero otherwise. Doing so yields

Vis) = E / 1= B h(b(O)lso, 855 s-NWVilw (s, 5, 1)) = Vil (50, 5, ))]
e 3t HB (150, 5 57)

x Pr(i wins|b(c), o, Si» S—i) Liper<rispy + 0+ Lip(e)>Reso))
+ B Y Pr(j wins|b(c), su, 5i» s_) Vil (50, 5, j))} - fclso, s, s_,-)dC}.
j=0

Note that the expression [ 8 Z;':U Pr(j wins|b(c), si, s_)Vi(w (80, S, ) f(clSo, S, s_;)dc is the ex
ante expected value of 8 Z?:U Pr(j wins|sg, s;, s_))Vi(®@ (5, 8, j)), and that the term involving bids
above the reserve price, 0 - Ljpc)>r(s);> vanishes. Furthermore, the expression

2 i OO0, 575 5 Vil (s0, 5, D)
>z h(b(E)s0, 555 5-))

reduces to V;(w (s, s, i)) and cancels with the second term involving V;(w (sy, s, 7)). By making
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these changes, we can write the value function as

_ 14 B3 h(b(O)lso, 575 5 pVilw (0, 5, 1))
Vi(s) = EO{/[ > iz H(B(O)s0, 75 5-7) i|

x Pr(i wins|b(c), so, 5i, 5_;) - l(b(c)fR(Su))f(Cls(Js Si, S_)dc

+8 ZPr(j wins|so, 5i, s_)Vi(@ (S0, 5, J)) }
J#i

Next consider a change of variable of integration from c to b. Notice that

db(c)
dc

db= dc.

Let b~! denote the inverse function of the equilibrium bid function. By assumption the inverse
bidding function exists for bids below the reserve price. The inverse bidding function allows us to
write the distribution function of cost in terms of the distribution functions of bids. Specifically,
F(b='(b)|sy, si, s_;) = G(b|so, si, s_;). Taking the partial derivative yields a relationship between
the density of costs and bids:

ab=1(b)
b

F(b71(b)lso, 51, 5-5) - =g(Dlso, si, s_i).

Also, notice that

ab~l(b) 1
db  db(c)/dc’

Finally, the probability that bidder i wins can be written as Pr(i wins|b, so, si, s-;) = [[;4,[1 —
G(blso, s;, 5-j)]. Applying the change of variables in the above equation yields

R Tkl — G(Dlso, Sk, 5-1)]
h(b|50,5j,5—/‘)

Vi(s) :E(J{ g(blso, i, s_))db

b Z J#i

R . NV .
+B/; |:Z h(b‘s[),s],s—]) Vl(w(so’s,]))i|H[l_G(bsu,Sk,S_k)]

pr Y1z (Dlso, s1,51) e

x g(blso, i, s_i)db

+B Y Pr(j wins|so, si, s_)Vi(w (50, 5, ])) }
J#i

Observe that the expression in the second and third lines of the value function can be rewritten,
by taking the sum ) .; outside, multiplying the expression by

ji
1 —G(blso, si, 5-i) g(b‘so;sj;s—j)
1—G(blsy, si, 5_i) g(blso, sj,5-)’

and rearranging terms, as

R h(blsy, i, _i)
=" 1|11 - G(blsy, si,5_1)]1- g(blsg, s;, s_;)db
ﬁ;|:/}:(x) > i h(blso, 51, 5-) E (blso, s1,5-1)1 - g(blso, sj, S—;)

x Vi(w (50,5, )))-
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Finally, observe that ]_[1#[1 — G(blso, 51, 5-1)18(blso, 5}, s_;) is the derivative of the probabil-
ity that a bid of bidder j is the low bid, dG(b|sy, s), which yields the expression (3.2) in the
proposition. Q.E.D.

PROOF OF PROPOSITION 2: (i) Fix B. Suppose there are two cost distribution functions F(.|.)
and F,(.|.) such that both distributions lead to the same bid distribution function G(.|.) on the
interval [b(sg, s*), R']. By strict monotonicity of (3.1) we have

Ci(sh, st 8" ) = ¢(Q(s{), sIsp, s, 55, B, G).

Thus the lower end point of the support is the same for F;(.|.) and F,(.|.). Further monotonicity
implies that

-1
Fi(Cls(t), S;, sii) = G(d) (Cls(t), S;, Sii, ,B, G)ls(t), S;, sii)'

It follows that F; = F, on the interval [C(.), ¢ (R'|.)].

(ii) Pick By, B,, with B; # B,. By the argument given in (i) there is a unique distribution func-
tion Fy(.|.) for B; that leads to the bid distribution function G(.|.) and a distribution function
F,(.].) for B, that leads to the bid distribution function G(.|.). Therefore, (B, F1) and (B,, F>)
lead to the same bid distribution function and are observationally equivalent. Q.E.D.
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