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ESTIMATION OF A FUNCTION WITH DISCONTINUITIES
VIA LOCAL POLYNOMIAL FIT WITH AN ADAPTIVE

WINDOW CHOICE

BY V. G. SPOKOINY

Weierstrass Institute for Applied Analysis and Stochastics

We propose a method of adaptive estimation of a regression function
which is near optimal in the classical sense of the mean integrated error.
At the same time, the estimator is shown to be very sensitive to disconti-
nuities or change-points of the underlying function f or its derivatives.
For instance, in the case of a jump of a regression function, beyond the

Ž . �1intervals of length in order n log n around change-points the quality
of estimation is essentially the same as if locations of jumps were known.
The method is fully adaptive and no assumptions are imposed on the
design, number and size of jumps. The results are formulated in a
nonasymptotic way and can therefore be applied for an arbitrary sample
size.

1. Introduction. Change-point analysis, which includes sudden, local-
ized changes typically occurring in economics, medicine and the physical

Ž .sciences, has recently found increasing interest; see Muller 1992 for some¨
examples and discussion of the problem.

Let data Y , X , i � 1, . . . , n obey the regression modeli i

1.1 Y � f X � � , i � 1, . . . , n ,Ž . Ž .i i i

where X � R1, i � 1, . . . , n, are given design points and � are individuali i
independent random errors. We consider the case of a nonparametrically
described regression function f possibly having jumps or jumps of deriva-
tives. The goal is to recover the function f but we pay special attention also
to change-point analysis.

In the regression nonparametric analysis of a function with change-points,
one may highlight two different directions. The first approach deals with a
generally smooth curve allowing a finite number of change-points. Further,
the analysis may focus either on estimation of locations and magnitudes of

Ž . Ž . Ž .jumps, as in Korostelev 1987 , Yin 1988 , Wang 1995 , or on estimating the
function itself. In the last case, some pilot near-optimal estimates of locations
of change-points are still required as a technical step in the estimation
procedure. Having estimated all the locations of change-points, the function
itself can be estimated separately on each interval between every two neigh-
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Ž . Ž . Ž .bor change-points; see Muller 1992 , Wu and Chu 1993 , Oudshoorn 1995 .¨
Ž .The most remarkable fact here, due to Korostelev 1987 , is that the location

of a single jump of a given magnitude can be estimated with the rate n�1

where n is the number of observations. This result can be generalized to the
situation when the jump size is unknown or to the case of a jump of some

� Ž .�derivative of the function f Muller 1992 and even to the case when a finite¨
unknown number of change-points of different order are incorporated in the

� Ž . Ž .�model Yin 1988 , Oudshoorn 1995 . As a price for this kind of adaptation,
the rate of estimating the locations of jumps is worse by some logarithmic
factor. The location of a jump of the kth derivative can be estimated with the
rate n�1�Ž2 k�1. multiplied again by some log factor. However, this rate is still
much better than in estimating the corresponding derivative of the regression
function, and such procedures lead to asymptotically optimal estimation of a

� Ž .�regression function with change-points Oudshoorn 1995 .
Another approach to this problem is connected with the concept of spatially

adaptive estimation. The problem of adaptive and spatially adaptive nonpara-
Ž .metric estimation is now well developed; see Nemirovski 1985 , Donoho,

Ž .Johnstone, Kerkyacharian and Picard 1994 , Lepski, Mammen and Spokoiny
Ž . Ž . Ž .1997 , Delyon and Juditski 1996 , Goldenshluger and Nemirovski 1994 ,

Ž .Lepski and Spokoiny 1997 , among others. A variety of different adaptive
methods can now be applied to estimation of a function with inhomogeneous
smoothness characteristics: nonlinear wavelet procedures, kernel estimators
with a variable bandwidth, local polynomials with a variable window and so
on. In the context of spatially adaptive nonparametric estimation, change-
points or, more generally, cusps in the curve can be viewed as a sort of
inhomogeneous behavior of the estimated function. One may therefore apply

Ž .the same procedures for instance nonlinear wavelet estimators and the
analysis focuses on the quality of estimation when change-points are incorpo-
rated in the model. Under this approach, the main intention is to estimate

Ž .the regression function not locations of change-points . It is shown in Hall
Ž . Ž .and Patil 1995 and Hall, Kerkyacharian and Picard 1996 that wavelet-

based estimators provide the same rate of estimation even if a growing
number of jumps is allowed. On the other side, this approach delivers very
poor qualitative information about presence, number and location of change-
points. Moreover, the criteria based on mean integrated errors are not very
sensitive to local quality of estimation; having obtained the optimal rate in
global estimation, we get relatively poor quality of estimation in small
vicinities of change-points.

The aim of the present paper is to propose a method which simultaneously
adapts to inhomogeneous smoothness of the estimated curve and which is
sensitive to discontinuities of the curve or its derivatives. Similarly to Gold-

Ž .enshluger and Nemirovski 1994 , we apply the local polynomial estimator
with a pointwise adaptive choice of the approximating window. The main

Ždifference with that paper is that we allow not necessarily symmetric around
.the point of interest windows. Namely, we search for a maximal window

Žcontaining the point of estimation in which the function f is ‘‘smooth.’’ This
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.can be understood in the sense that it is well approximated by polynomials.
Such a procedure selects a window without change-points automatically.

The benefit of this approach is that it is very general in nature and is not
specific for estimating a function with change-points, but it provides very
sensitive change-point analysis. One may therefore expect that this method
can be extended to the case of multidimensional regression or applied to
image denoising where the quality of estimation near the boundary of images

Ž .is of special importance; see Korostelev and Tsybakov 1994 .
The paper is organized as follows. In Section 2 we present the procedure,

Section 3 contains the results describing the quality of this procedure. In
Section 4 we specify the general results to the case of equidistant design. We
show in particular that the locations of jumps can be estimated with the rate
n�1 log n and that this rate is optimal if more than one jump is allowed. The
proofs are mostly deferred to Section 5.

1.1. The model assumptions. Throughout the paper, we consider model
Ž .1.1 . We proceed with a fixed nonrandom design which is not supposed to be
equidistant or regular. Note also that the case of a random design X , . . . , X1 n
can be considered as well. Then all the analysis is to be done conditionally on
the X ’s.i

With respect to the errors � , i � 1, . . . , n, we suppose that they are i.i.d.i
Ž 2 . 2NN 0, � random variables with a given variance � . These assumptions

allow us to simplify our exposition and to illustrate the main ideas more
clearly. Note, however, that the assumption of normality can be relaxed to the
assumption that the errors � are independent with a bounded exponentiali
moment. Moreover, the variance � 2 of the errors � , which is typicallyi
unknown, can be easily estimated by data; see Section 2.5.

2. Estimation procedure.

2.1. Preliminaries. The idea of the proposed method is quite simple and
natural. We assume that the function f is well approximated by a polynomial

Ž .P �� x in some neighborhood U of the point of interest x , where � is the� 0 0
vector of coefficients of this polynomial. We try to find by data the maximal

Ž .interval window with this property over the prescribed class UU of intervals.
For this, for each interval U from UU containing x , we construct an estimator0
ˆ � 4� of � from the observations Y , X : X � U and then calculate the residualsi i i

Ž .� � Y � P X � x . Next we test the hypothesis that the residuals � �ˆi i � i 0 i
Ž .� X corresponding to the interval U can be treated as a pure noise. Finally,i i

Žthe procedure selects the maximal interval in the length or in the number of
.design points inside for which this hypothesis is not rejected. We show that

this method provides both a spatial adaptive estimation in the sense of mean
integrated losses and a high sensitivity to change-points of f.

2.2. The family of windows. Let an integer number m be fixed. First we
introduce the family UU of intervals containing x . This family can be defined0
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in different ways. One possible choice is to consider all intervals with the
edges at design points containing at least m design points,

2.1 UU � X , X : X � x � X , i� � i 	 m .Ž . � 4Ž i. Ž i�. Ž i. 0 Ž i�.

Here X � ��� � X is the ordered sequence of design points. This choice isŽ1. Žn.
Žtheoretically possible and it allows very precise estimation see Section 4

.below , but it leads to a serious computational effort because the number of
considered intervals is of order n2. The cardinality of UU and hence the
computational difficulties can be reduced in the following way. We first select

� 4 � 4two sets of points AA � a : a � x and AA � a : a 	 x which both con-l l l 0 r r r 0
tain essentially fewer than n points. Then we set

� �2.2 UU � U � a , a : a � AA , a � AA , N 	 m .� 4Ž . l r l l r r U

We present one possible example of such sets but there are many possibilities
here.

EXAMPLE 2.1. Let X � ��� � X be the ordered sequence of designŽ1. Žn.
points. Suppose for simplicity that x coincides with one of them, say X .0 Žk .
Let us fix a constant a � 1. We define the sequence of indices k � 0 and0

� j � � �k � a for j 	 1, where c means the integer part of c. Then we setj

AA � X , j � 0, 1, 2, . . . : k � k ,� 4l Žk�k . jj

AA � X , j � 0, 1, 2, . . . : k � n � k .� 4r Žk�k . jj

Ž .Evidently the cardinality of AA and of AA is at most 1 � log n and hence thel r a
2 '� Ž . �cardinality of UU is at most 1 � log n . For applications, the choice a � 2a

can be recommended.
Given U � UU, set N for the number of the points X falling in U,U i

� 4N � � X : X � U .U i i

By definition, it holds N 	 m for each U � UU.U

2.3. Local polynomial estimation. Now we construct a polynomial P of
Ž Ž ..2degree m � 1 which minimizes the sum Ý Y � P X over U. For this wei i

apply the standard least squares method. Let � denote a column vector in
m Ž .T Ž .R , � � � , . . . , � and let P z be the polynomial with the coefficients0 m�1 �

m� 1 ˆŽ .� , P z � � � � z � ��� �� z . Define � by the least squares method� 0 1 m�1 U

2
�̂ � arginf Y � P X � x .Ž .Ž .ÝU i � i 0

� U

� 4Here Ý means summation over the index set i: X � U .U i
ˆFor an explicit representation of � , it is useful to introduce matrixU

Ž .knotation. Let � be the m � N -matrix with elements s � X � x ,U U k , i i 0
k � 0, 1, . . . , m � 1, and let Y be the N -column vector with elements YU U i

ˆwhere only indices i with X � U are considered. Then the vector � satisfiesi U
the normal equation

T ˆ2.3 � � � � � Y .Ž . U U U U U
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�1 T ˆIf the matrix D � N � � is nonsingular, then � can be defined byU U U U U

�1Tˆ2.4 � � � � � Y .Ž . Ž .U U U U U

Ž T .�1Otherwise we can use the same representation, understanding � � asU U
a pseudoinverse matrix.

ˆThe vector � provides nonparametric estimators of the function f and itsU
derivatives at x . Namely, we use the values of the approximating polyno-0
mial P and its derivatives at x for estimating f and its derivatives. Thus,�̂ 0U

ˆ Žk . ˆ ˆŽ . Ž .k!� is the estimator of f x . In particular, f x � � is the estima-U, k 0 U 0 U, 0
Ž .tor of f x .0

Ž .The residuals � at points X � U are defined by Y � P X � x ; thatˆU, i i i � i 0U

is,
m� 1ˆ ˆ ˆ� � Y � � � � X � x � ��� �� X � x .Ž . Ž .U , i i U , 0 U , 1 i 0 U , m�1 i 0

Using matrix notation, we get
�1T T Tˆ2.5 � � Y � � � � Y � � � � � Y � Y � 	 Y .Ž . Ž .U U U U U U U U U U U U U

T Ž T .�1 NUNote that 	 � � � � � is the projector in the space R on theU U U U U
Žlinear subspace generated by polynomials of degree m � 1. Here we identify

Ž Ž . . .each polynomial P with the vector P X , X � U .i i

2.4. A data-driven choice of an optimal window. Our adaptation method
is based on the analysis of the residuals � . We introduce another familyU, i

Ž .VV U of intervals V; each of them is a subinterval of U. As previously for the
� 4 Ž .family UU, we require that N � � X � V 	 m for all V � VV U . Also weV i

Ž .require that V � U 
 U� � VV U for each U� � UU. Note that we do not
Ž .require that each V from VV U contains x .0

A reasonable way to define this family is as follows:

� 4VV U � V � U � U� or V � U 
 U�: U� � UU , N 	 m .Ž . V

Ž .If the set UU is of the form 2.2 , then we obviously have

� �2.6 VV U � V � a , a : a , a � AA � AA , V 
 U, N 	 m .� 4Ž . Ž . � � � � l r V

Ž .Below we need some upper estimate of the cardinality of VV U in the form

2.7 �VV U � N 
Ž . Ž . U

Ž .with some 
 � 0. In the case of the ‘‘maximal’’ set UU from 2.1 , and with
Ž . Ž . Ž .VV U from 2.6 , the bound 2.7 is easily met with 
 � 4. For the set UU from

Ž . Ž . Ž .Example 2.1 and for VV U due to 2.6 , the cardinality of VV U is obviously
� Ž .�2 Ž .bounded by 1 � log n and therefore 2.7 is met with a very small 
 , if na

is sufficiently large.
Ž .For each V � VV U and for every k � 0, 1, . . . , m � 1, set

1 k2.8 T � X � x � ,Ž . Ž .ÝU , V , k i 0 U , i
� d N' V , 2 k V V
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where
1 k2.9 d � X � x , k � 0, 1, . . . , 2m.Ž . Ž .ÝV , k i 0NV V

Define now

� �� � 1 max T � t log N ,'U , V U , V , k Už /
0�k�m�1

where
' 't � 2 � m 2 
 � p .Ž .Ž .

The parameter p means the norm in which we measure losses of estimation.
Typically, p � 2.

Ž .We say that U is rejected if � � 1 at least for one V � VV U , that is, ifU, V
� � 1 whereU

� �� � sup � � 1 sup max T � t log N .'U U , V U , V , k Už /0�k�m�1Ž . Ž .V�VV U V�VV U

Ž .Here 1 A means the indicator function of an event A.
The adaptive procedure selects, among all nonrejected U from UU, one

which maximizes N ,U

2.10 U* � argmax N : � � 0 for all V � VV U� 4Ž . Ž .U U , V
U�UU

and
ˆ ˆ ˆ2.11 f x � f x � � .Ž . Ž . Ž .0 U * 0 U * , 0

For technical reasons, we need to bound the considered class of functions.
Namely, we suppose that the function f is bounded in the absolute value by

Ž̂ .some known constant f . Accordingly we truncate the estimate f x from0 0
ˆŽ . Ž .2.11 ; that is, we apply the estimate �f � f x � f .0 0 0

2.5. The case of an unknown variance � 2. If the variance � 2 of errors � i
is unknown then, as usual in nonparametric regression, some pilot estimator
� 2 can be plugged in place of � 2. Following Gasser, Sroka and Jennen-ˆ

Ž . Ž .Steinmetz 1986 or Buckley, Eagleson and Silverman 1988 , we set
n�11 22� � Y � Y ,ˆ Ž .Ý Ž i�1. Ž i.2 n � 1Ž . i�1

where Y is the observation at X and X � X � ��� � X is theŽ i. Ž i. Ž1. Ž2. Žn.
ordered sequence of the design points.

Ž .Next we define the test statistics T by 2.8 with � in place of � .ˆU, V , k
Further we proceed as previously.

3. Main results. In this section we describe some properties of the
proposed estimation procedure. We distinguish between two extreme cases:

Ž .either the function f is regular smooth near the point of interest x or this0
function has a jump in the nearest vicinity of this point.
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To formulate the results, we introduce an important characteristic of the
function f , which describes the accuracy of approximation of f by polynomi-

Ž .als. Given U � UU, define � f byU

� �� f � inf sup f x � P x � x ,Ž . Ž . Ž .U 0
P�PP x�Um

Ž .where PP is the set of all polynomials of degree m � 1. Obviously, � f �m U �

Ž . � Ž .�� f if U� � U. It is well known see, e.g., Triebel 1992 that if the functionU
Ž .f belongs to a Holder ball H �, L with the Holder exponent � and the¨ ¨

Lipschitz constant L and if m is the maximal integer smaller than �, then it
� �holds for each U of the form U � x � h, x � h ,0 0

� f � Lh ��m!.Ž .U

3.1. The regular case. Now we consider the case when the function f is
regular near the point of interest x in the sense that there is some window0

Ž .U from UU containing x and such that � f is small.0 U
Ž .The first result claims that if � f is small enough then the probability ofU

rejecting U is very small.

PROPOSITION 3.1. Let U � UU be such that
1�22 �13.1 � f � C � N log N ,Ž . Ž . Ž .U 1 U U

where
'C � 2 
 � p .Ž .1

Then
P � � 1 � mN�p .Ž .f U U

Motivated by this result, we denote by UU� the subset of UU whose elements
Ž .U obey 3.1 ,

3.2 UU�� U � UU : �2 f � 2� 2 
 � p N�1 log N .Ž . Ž . Ž .� 4U U U

An interesting feature of the above result is that no assumptions were
made about the design on U except that it contains at least m design points.
For the next statement, as usual for local polynomial estimation, we intro-
duce some condition on the design. Given U � UU, denote by G the m � m-U
matrix with elements g � d � d d , k, k� � 0, 1, . . . , m �'U, k , k � U, k�k � U , 2 k U , 2 k �

Ž .1; see 2.9 . It is convenient to use the following matrix notation. Let 
 beU
the diagonal matrix with diagonal elements d�1�2,U, 2 k


 � diag 1, d�1�2 , . . . , d�1�2 .Ž .U U , 2 U , 2 m�2

Then
3.3 G � 
 D 
 .Ž . U U U U

Our condition on the design means that the matrix G is invertible and weU
� �1 � �1measure the quality of the design in U by the norm G of the matrix G ,U U

� �1 � � �1 �G � sup G w .U U
d � �w�R : w �1
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Ž � � � � 2 2 2 .Here w means the Euclidean norm of a vector w, i.e., w � w � ��� �w .1 d
Ž .It can easily be seen that for the case of a regular e.g., equidistant design,

� �1 �this value G is bounded by some constant depending on m only.U
Now we state the result about the quality of estimation in the regular case.

To begin, we introduce the class of ‘‘symmetric’’ windows. Let us fix some
� �positive d . We say that some window U � x � h , x � h from UU be-0 0 1 0 2

Ž . � � � �longs to the class UU d if, for U � x � h , x , U � x , x � h , its 0 1 0 1 0 2 0 0 2
holds

1�2 � N �N � 2,U U1 2

� �1 � �1G � d , j � 1, 2.U 0j

The first condition here justifies the notion of a ‘‘symmetric window’’ for
Ž .U � UU d .s 0

� Ž . �THEOREM 3.1. Suppose that f x � f . Let, for some d � 0, there be a0 0 0
� � Ž . Ž .window U � x � h , x � h from UU d satisfying also 3.1 , that is,0 1 0 2 s 0

� Ž .U � UU 
 UU d . Thens 0

p�2 pp 2 �1 �p�2ˆ� �E f x � f x � C � N log n � m 2 f N ,Ž . Ž . Ž .Ž .f 0 0 4 U 0 U

where
2�2C � 3d 2C � C � C pŽ .4 0 1 2

2�2 ' '� 3d m � 2 � 2 m 2 
 � p � C p ,Ž . Ž .Ž .0

3.4Ž .

Ž .and C p � 2.

DISCUSSION 3.1. The previous result prompts the following definition of
the ‘‘optimal symmetric’’ window U :f

U � argmax N : U � UU�
 UU d .� 4Ž .f U s 0

ˆ Ž .In fact, the variance of the local polynomial estimate f x is equal toU 0
2 �1 Ž .Const. � N , and the bias of this estimate can be bounded by � f ; see theU U

2 Ž .proof of Proposition 5.2 in Section 5. Therefore, the inequality � f �U
Const. � 2N�1 log N can be regarded as a sort of balance relation betweenU U
the bias and the variance of this estimate adapted to the problem of pointwise

Ž .adaptive estimation; compare Lepski and Spokoiny 1997 . This justifies the
definition of an ‘‘optimal’’ window as the maximal one for which the bias is
still less than the standard deviation of the stochastic component multiplied
by some log factor.

The statement of Theorem 3.1 shows that the adaptive procedure provides
accuracy of estimation of the same order as if the ‘‘optimal symmetric’’

ˆwindow U were known and if we just apply the corresponding estimator f .f Uf

Note also that the result of the theorem is valid for an arbitrary positive
d . Having chosen a very small d , we get very mild conditions on the0 0
regularity of the design within a window U from UU. But at the same time, the
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obtained upper bound of the risk of estimator is proportional to d�2 and it0
becomes very large for small d .0

3.2. Estimation near a change-point. Now we are interested in the qual-
ity of estimation of the function f at point x , supposing that there is a0
change-point with a location x near x . We understand that the function fcp 0
has a change-point at x in the sense that there are two small intervals Vcp 1
and V , the first one on the left of x and the second one on the right of x ,2 cp cp
such that the function f can be well approximated by polynomials on V and1
on V but the coefficients of these polynomials are essentially different.2

First, we show that any window U containing both V and V will be1 2
rejected with a probability close to 1.

Ž .PROPOSITION 3.2. Let U � UU and let there be V , V � VV U , such that1 2

�1 � � 2 23.5 N f X � P X � x � � , j � 1, 2,Ž . Ž . Ž .ÝV i � i 0 Vj V jj
Vj

where � , � are vectors of coefficients and � , � are some positive con-V V V V1 2 1 2

stants. If, for some k � 0, . . . , m � 1,

� �3.6 � � � 	 b � bŽ . V , k V , k V , k V , k1 2 1 2

with
�1�2 �1 �1�2� �3.7 b � d G C � N log N � � ,Ž . 'V , k V , 2 k V 3 V U V

where V equals V or V and1 2

'' ' '3.8 C � C � 2 p � 2 p � m � 2 m 2 
 � p ,Ž . Ž .Ž .3 2

then
3.9 P � � 0 � N�p .Ž . Ž .f U U

Now we are in a position to state the result about the quality of estimation
near a change-point. For this we have to be more definitive with our proce-
dure. We assume that the set UU is defined as above in Section 2 by two sets of
end-points AA and AA ,l r

� �UU � U � a , a : a � AA , a � AA , N 	 m .� 4l r l l r r U

Ž . Ž .Let also AA � AA � AA and let, for each U � UU, the set VV U be due to 2.6 ;l r
that is,

� �VV U � V � a , a : a , a � AA, V 
 U, N 	 m .� 4Ž . � � � � V

Similarly to the above, we suppose that two small intervals V and V , one1 2
from the left and another from the right of the change-point x , are fixed socp
that the conditions of Proposition 3.2 are fulfilled. Without loss of generality,
we suppose that V and V are as close as possible to x . We denote also by1 2 cp
V the interval between V and V . This interval contains x and it is small if1 2 cp
the set AA is dense near this point.
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The result stated below describes the quality of estimation at a point x0
which lies beyond V , V, V . To be more definitive, let us assume that the1 2
point x lies to the right of V . As previously, we suppose that there is some0 2
U � UU� containing x . But now this window cannot be ‘‘symmetric’’ around0
x because of the change-point at x ; it has to be from the right of this point.0 cp
Let U be the smallest interval containing V and x . We treat the fact that1 1 0
x is near x by supposing that N � �N with some small positive �. The0 cp U U1

considered situation is illustrated in Figure 1.

THEOREM 3.2. Let the function f be bounded by f . Let V , V , V, U and U0 1 2 1
be introduced above and

3.10 N � �N .Ž . U U1

Let then vectors � , � be such thatV V1 2

�1 � � 2 2N f X � P X � x � � , j � 1, 2,Ž . Ž .ÝV i � i 0 Vj V jj
Vj

and also, for some d � 0, it holds that0

� �1 � �1G � dU � 0

Ž .for every U� � UU such that U� 
 U and N 	 1 � � N . Next, let for someU � U
k � 0, 1, . . . , m � 1,

� �� � � 	 b � b ,V , k V , k V , k V , k1 2 1 2

Ž .where b and b are defined in 3.7 . ThenV , k V , k1 2

ˆ p� �E f x � f xŽ . Ž .0 0

p�2 p�1 2 �1 �p�2� 1 � � C � N log N � m � 1 2 f N ,Ž . Ž . Ž .4 U U 0 U

where C is as in Theorem 3.1.4

FIG. 1.
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DISCUSSION 3.2. The result of the theorem can be treated in the following
way. If we knew the location x of the change-point, then by estimating thecp
function f at the point x near x , we would select a one-sided window0 cp

Ž .satisfying the relation 3.2 ; see Discussion 3.1. Now we proceed adaptively
and the procedure provides essentially the same rate of estimation as if the
location x and the optimal one-sided window U were known.cp

4. The case of an equidistant design. We specialize below the general
results from Section 3 to the case of an equidistant design with the aim of
comparing our results with those in the literature. We consider the regression

Ž . � �model 1.1 with n the design points X � i�n within the interval 0, 1 . Notei
that all the results given below for the equidistant design, can be generalized
to the case of an arbitrary design which is regular in some local neighborhood
of the point of interest x .0

Ž .We examine our procedure with the ‘‘maximal’’ set UU from 2.1 . Note
however that the family of windows from Example 2.1 can be considered as
well; see Discussion 4.3.

First we notice that for the regular equidistant design, there exists a
constant d � 0 depending on m only and such that for every interval U with0
N 	 m, it holds thatU

� �1 � �1G 	 d ,U 0

Ž .where the matrix G is defined in 3.3 . In particular, for d � 2, this boundU
holds with d � 1�4.0

We begin by reformulating the statement of Theorem 3.1 for windows U of
� �the form U � x � h, x � h with h � k�n, k � m, m � 1, . . . , n. Obviously0 0

� �N 	 nh � 1 and N � 2nh � 1 if U � 0, 1 .U U

� Ž . � �THEOREM 4.1. Let f x � 1 and let h be such that for U � x � h,0 0
� � �x � h 
 0, 1 ,0

1�2�1 �14.1 � f � C � h n log n ,Ž . Ž . Ž .U 1

'where C � 2 
 � p ; see Theorem 3.1. ThenŽ .1

p�2p 2 �1 �1ˆ� �E f x � f x � 2 C � h n log n ,Ž . Ž . Ž .f 0 0 4

Ž .where C is due to 3.4 .4

DISCUSSION 4.1. Now we can also reformulate the definition of the ‘‘opti-
Ž .mal symmetric window’’ U see the discussion after Theorem 3.1 in terms off

‘‘optimal bandwidth’’ h :f

1�2�1 �14.2 h � argmax h: � f � C � h n log n .Ž . Ž . Ž .½ 5f � x �h , x �h � 10 0
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The statement of Theorem 4.1 shows that the adaptive procedure provides
accuracy of estimation corresponding to the choice of the ‘‘optimal bandwidth’’

Ž .h . It was proved in Lepski, Mammen and Spokoiny 1997 that each estima-f
tion procedure with such properties is automatically rate optimal for a wide
range of Sobolev or Besov classes.

Note that a more standard way to define the ‘‘optimal bandwidth’’ is based
on the assumption that the function f is m times differentiable and the mth

Žm. Žderivative f is uniformly bounded at least in some neighborhood of the
.point x ,0

� Žm. �f x � Mm!.Ž .
Ž . mIn this case one has easily � f � Mh and the balance equation� x �h, x �h �0 0m � 1 � 1 Ž 2 � 2 � 1Mh � � h n log n leads to the bandwidth h � � M nf

.1�Ž2 m�1. Ž .log n . However, our smoothness condition 4.1 is weaker than the
Ž .last one and hence the balance rule 4.2 seems to be a bit more flexible.

Now we turn to the case when change-points are incorporated in the
model. Let x be a change-point. Without loss of generality we may assumecp
that x coincides with a grid point a � i�n. As above in Theorem 3.2 wecp i
assume that the function f is regular from the left and from the right of xcp
and it has a jump of kth derivative at x with k from 0 to m � 1. This iscp
understood in the following way. Let some small h � 0 be fixed and let0

V � x � h , x ,.1 cp 0 cp

V � x , x � h .Ž2 cp cp 0

Let also � and � be the coefficients of the approximating polynomials forV V1 2

V and V . A jump of kth derivative of f means that � and � are1 2 V , j V , j1 2

equal or very close to each other for j � 0, . . . , k � 1 and the difference
� � � differs significantly from zero.V , k V , k1 2

We are mostly interested in describing the minimal distance h between0
the change-point x and the point of estimation x , which is enough for acp 0

Ž .rate-consistent estimation of f x . Particularly, it is of interest to under-0
stand how this distance h depends on what derivative f Žk . has a jump and0
on the jump size.

THEOREM 4.2. Let the function f be bounded by 1. Let h , V , V , � and0 1 2 V1

� be introduced above and let, for some k from 0 to m � 1, it hold thatV2

� �� � � 	 2b.V , k V , k1 2

Let also there be some h � 2h such that0

1�2�1 �1� f � C � h n log n ,Ž . Ž .Ž x , x �h � 10 0
4.3Ž .

1�2�1 �1� f � C � h n log nŽ . Ž .� x �h , x . 10 0

with C from Proposition 3.1. If1

h2 k�1 	 C b�2� 2 n�1 log n0 5
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with

2 �2C � C � C d 2k � 1Ž . Ž .5 3 1 0

2 �2'' '� 2k � 1 2 p � m � 1 � 2 m 2 
 � p d ,Ž . Ž .Ž . 0

� � � �then for each x � x � h , x � h or x � x � h, x � h , one has0 cp 0 cp 0 cp cp 0

p�2p 2 �1 �1ˆ� �E f x � f x � 2 2C � h n log n ,Ž . Ž . Ž .f 0 0 4

where C is from Theorem 3.2.4

DISCUSSION 4.2. This result shows that the presence of a change-point
leads to poor quality of estimation only in some small neighborhood of this
change-point. The radius h of this neighborhood depends on the type of0

Ž .change jump of a function itself or its kth derivative and on the size b of
jump,

Ž .1� 2 k�1�2 �1h � b n log n .Ž .0

Particularly, the proposed estimation procedure is able to detect about
2 Ž .b n�log n in order jumps of a size b � 0. Similarly, for jumps of kth deriv-

Ž 2 .1�Ž2 k�1.atives, the detectable number of change-points is about b n�log n .

DISCUSSION 4.3. The result of Theorem 4.2 applies not only to the ‘maxi-
Ž .mal’ set of windows from 2.1 but also to an arbitrary family UU of the form

Ž .2.2 if the related sets AA and AA are ‘‘dense’’ near the point x in thel r 0
� �following sense: for every h � m�n, the interval x � h, x contains at0 0

� �least two points a and a from AA , such that a � a 	 h�2, and similarly1 2 l 1 2
� �for the interval x , x � h . It can easily be seen that the family UU from0 0

Example 2.1 satisfies this condition.

To conclude, we discuss briefly the question of optimal estimation of the
location of a change-point. It is well known that a single jump can be

�1 Ž .estimated with the rate n ; see, for example, Hinkley 1970 , Ibragimov and
Ž . Ž .Khasminskii 1981 and Korostelev 1987 . Our procedure provides the rate

n�1 log n. The following result shows that this extra log factor is not only the
price for adaptation. Even in the case when only two jumps are allowed, their
locations cannot be estimated with a better rate than n�1 log n. Similarly, it
can be shown that the optimal rate for estimation of a jump of kth derivative

Ž �1 .1�Ž2 k�1.is n log n , if more than one jump is considered.
Introduce a class FF of piecewise constant functions with two values 0, 1h

� �and two jumps at points x and x inside the interval 0, 1 separated with1 2
the distance h,

� �x � x 	 h.1 2
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Ž . �1THEOREM 4.3. There exists C � 0 such that for h n � Cn log n and for
arbitrary estimates x , x , the following asymptotic bound holds:ˆ ˆ1 2

� � � �sup max P x � x � h n , P x � x � h n � 1, n � �.Ž . Ž .ˆ ˆ� 4Ž . Ž .f 1 1 f 2 2
f�FFhŽn.

5. Proofs. In this section we present the proofs of the results from
Sections 3 and 4.

Ž .5.1. Proof of Proposition 3.1. Using 1.1 , rewrite the vector of residuals
� in the formU

� � f � 	 f � � � 	 � � f � 	 f � � � � ;U U U U U U U U U U U U

Ž . Ž .see 2.5 . Here f means the vector with elements f X , X � U andU i i
� � 	 � . The ‘‘test’’ statistic T can be represented now in the formU U U U, V , k

1 kT � X � x f X � 	 f XŽ . Ž . Ž .Ž .ÝU , V , k i 0 i U i
� d N' V , 2 k V V

1 k� X � x �Ž .Ý i 0 i
� d N' V , 2 k V V5.1Ž .

1 k� X � x � XŽ . Ž .Ý i 0 U i
� d N' V , 2 k V V

� S � S � S .1 2 3

We analyze each sum in this expression separately, starting from the first
one.

Ž .By definition of � f , there exists for each � � 0 a polynomial P � PPU m
� Ž . Ž . � 2 2 Ž .such that Ý f X � P X � x � N � f � � . To simplify the exposi-U i i 0 U U

tion, we suppose that this inequality holds with � � 0. Since 	 is theU
projector on the space generated by polynomials of degree m � 1, then
	 P � P and henceU

� � 2 � � 2 � � 2 2f � 	 f � f � P � 	 f � P � f � P � N � f ,Ž . Ž .U U UU U U U

� � 2 2Ž .where f � Ý f X . Now we get, using the Cauchy�Schwarz inequalityU U i
Ž .and condition 3.1 ,

1 kS � X � x f X � 	 f XŽ . Ž . Ž .Ž .Ý1 i 0 i U i
� d N' V , 2 k V V

1�2 1�21 22 k� X � x f X � 	 f XŽ . Ž . Ž .Ž .Ý Ýi 0 i U i2� d NV , 2 k V V V
5.2Ž .

�1 �1 �1� � � �� � f � 	 f � � f � 	 f � � N � fŽ .'V UU U U U

� 2 
 � p log N .' Ž . U
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Next, since the errors � are Gaussian zero mean random variables, the samei
Ž .is true for the sum S in 5.1 . Moreover, using independence of the � ’s,2 i

1 2 k2 25.3 ES � X � x E� � 1Ž . Ž .Ý2 i 0 i2� d NV , 2 k V V

and hence S is standard Gaussian.2
It remains to estimate S . The vector � � 	 � is Gaussian as the linear3 U U U

transform of the Gaussian vector � . Obviously E� � 0. Moreover, we easilyU U
obtain

�1T 2 T TE� � � � � � � � .Ž .U U U U U U

Here we have used that E� � � � 2� . This impliesi j i, j

E� 2 X � tr E� � TŽ .Ý U i U U
U

�12 T T0 � � tr � � � �Ž .U U U U

�12 T T� � tr � � � �Ž .U U U U

� � 2 tr I � � 2 m ,m

where tr A stands for the trace of matrix A and I means the unit m � m-m
matrix.

Now, using again the Cauchy�Schwarz inequality, we obtain
21 k2ES � E X � x � XŽ . Ž .Ý3 i 0 U i2� d NV , 2 k V V

1 2 k 2� X � x E� XŽ . Ž .Ý Ýi 0 U i2� d NV , 2 k V V V

5.4Ž .

� ��2 E� 2 X � m.Ž .Ý U i
U

Clearly the sum of the Gaussian variables S and S is also Gaussian with2 3
Ž . Ž . Ž .zero mean; see 5.1 and along with 5.3 , 5.4 ,

2 2 2E S � S � ES � ES � 2ES SŽ .2 3 2 3 2 3

1�22 2 2 2� ES � ES � 2 ES ESŽ .2 3 2 3

2'� 1 � m .Ž .
Ž . Ž .Summing up 5.2 through 5.4 , we get

'� �P T � 2 � m 2 
 � p log N' Ž .Ž .ž /f U , V , k U

'� �� P S � S � 1 � m 2 
 � p log N' Ž .Ž .ž /2 3 U

� 2 1 � � 2 
 � p log N' Ž .ž /ž /U

� exp � 
 � p log N � N�Ž 
�p. .� 4Ž . U U
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Ž .Here � means the Laplace distribution and we have used that 1 � � z �
Ž 2 . Ž .0.5 exp �z �2 for z � 1. This estimate and condition 2.7 allow bounding

the probability of rejecting U in the following way:
m�1

'� �P � � 1 � P T � 2 � m 2 
 � p log N'Ž . Ž .Ž .Ý Ý ž /f U f U , V , k U
Ž . k�0V�VV U

� m�VV U N�Ž 
�p. � mN�pŽ . U U

as required.

5.2. Some technical results. Now we present two more technical state-
ments. The first one explains how much information can be extracted from

Ž .the fact that � � 0 for some U � UU and V � VV U . Let matrix G be dueU, V V
Ž .to 3.3 .

Ž . � �PROPOSITION 5.1. Let U � UU, V � VV U and let � � 0. If det G � 0,U, V V
then

1�2�1 �1 2 �1ˆ ˆ � �
 � � � � C G � N log N ,Ž .ž /V U V 2 V V U

� � 2 2 2where � � � � ��� �� and0 m�1

' 'C � m � 2 m 2 
 � p .Ž .Ž .2

In particular,
1�2�1 2 �1ˆ ˆ� � � �f x � f x � C G � N log NŽ . Ž . Ž .U 0 V 0 2 V V U

and
1�2�1�2 �1 2 �1ˆ ˆ� � � �� � � � C d G � N log N , k � 0, 1, . . . , m � 1.Ž .U , k V , k 2 V , 2 k V V U

PROOF. Let � be m-vector with coordinatesU, V

1 k�1�2� � � N T � X � x � ,Ž .ÝU , V , k V U , V , k i 0 U , iN d'V V , 2 k V

m�11 k k �ˆ� X � x Y � � X � x ,Ž . Ž .Ý Ýi 0 i U , k � i 0N d'V V , 2 k V k��0

k � 0, 1, . . . , m � 1. Using matrix notation, we can rewrite this equality in
the form

�1 T ˆ� � N 
 � Y � � � � .Ž .U , V V V V V V V U

ˆThe definition of the least squares estimate � implies the equalityV

T ˆ� Y � � � � ;V V V V V

Ž .see 2.3 . Hence

�1 T ˆ ˆ ˆ ˆ� � N 
 � � � � � � 
 D � � � .ž / ž /U , V V V V V V U V V V U
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When denoting
�1 ˆ ˆ5.5 � � 
 � � � ,Ž . ž /U , V V V U

we get
5.6 � � G � .Ž . U , V V U , V

The fact that � � 0 meansU, V

� �� � r ,U , V , k

where
�1�2 'r � N � 2 � m 2 
 � p log N .' Ž .Ž .V U

In particular,
m�1

2 2 2� �5.7 � � � � mr .Ž . ÝU , V U , V , k
k�0

It remains to understand what follows from this inequality for the vector
�1 Ž . Ž .� � G � ; see 5.6 . By 5.7 ,U, V V U, V

�1 �1'� � � � � �� � G � � r m G .U , V V U , V V

Ž .In view of 5.5 , the assertion follows. �

The next statement is nothing else than the standard decomposition of the
local polynomial estimator into deterministic and stochastic terms; compare

Ž . Ž . Ž . Ž .Stone 1977 , Cleveland 1979 , Katkovnik 1979, 1985 , Tsybakov 1986 ,
Ž . Ž .Korostelev and Tsybakov 1993 , Goldenshluger and Nemirovski 1994 . In

particular, it shows that if the function f is regular on U and the matrix GU
ˆis well defined, then the estimator � provides a good accuracy of estimationU

of the function f and its derivatives at x .0

Ž .PROPOSITION 5.2. Let U � UU and let G be nonsingular; see 3.3 . Let alsoU

�1 � � 2 25.8 N f X � P X � x � �Ž . Ž . Ž .ÝU i � i 0 U
U

Ž . Ž .with some � � 0 and � � � , . . . , � . Here P z � � � � z � ��� �U 0 m�1 � 0 1
m� 1 ˆ Ž .� z . Then it holds for the vector � from 2.4 ,m� 1 U

�1 ˆ �1 �1�2 �1�25.9 
 � � � � � G w � � N G � ,Ž . Ž .U U U U U U U U

Ž . mwhere w � w , . . . , w is a nonrandom vector in R such thatU U, 0 U, m�1

� �5.10 w � 1, k � 0, . . . , m � 1,Ž . U , k

5.11 � 	 NN 0, IŽ . Ž .U m

and for every k � 0, 1, . . . , m � 1,

ˆ �1�2 �1 �1�2 
� �5.12 � � � � d G z � � z � N � ,Ž . Ž .U , k k U , 2 k U 1 U 2 U U , k

� � � � 
 Ž .where z � 1, z � 1 and � 	 NN 0, 1 .1 2 U, k
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�1 ˆŽ . Ž . Ž . Ž .PROOF. Denote � � 
 � � � . Then, using 2.4 , 1.1 and 3.3 , weU U U
obtain

�1�1 T T� � 
 � � � Y � � �Ž . Ž .U U U U U U U

�1 �1 T� N G 
 � f � � � � 
 � �Ž .U U U U U U U U U

� � G�1 w � � N�1�2G�1�2� .U U U U U U

NU Ž .Here f means the vector in R with elements f X , X � U. Also weU i i
m �1 Ždenote by w a nonrandom vector in R defined by w � � 
 � f �U U U U U U

T . m �1 �1�2� � and by � a random vector in R with � � � G 
 � � .U U U U U U U
Ž . Ž . Ž .For 5.9 , it remains to check 5.10 and 5.11 . Note that

m�1
kf � � � � f X � � X � xŽ . Ž . Ž .ÝU U i k i 0i

k�0

Ž .and in view of 5.8 ,

�1 � � 2 2N f � � � � � .Ž .ÝU U U Ui
U

Next, using the Cauchy�Schwarz inequality,

k�1 �1�2� �w � � d X � x f � � �Ž . Ž .ÝU , k U U , 2 k i 0 U U i
U

1�2 1�2
2 k 2�1 �1 �1� � N d X � x N f � � � � 1.Ž . Ž .Ý ÝU U U , 2 k i 0 U U U i

U U

Finally, we observe that � is a Gaussian vector with the covariance matrixU

E� � T � ��2 N�1 G�1�2
 � E� � T �T 
 G�1�2 � I .U U U U U U U U U U U m

Ž . Ž .Statement 5.12 is a consequence of 5.9 . In fact, let us fix some k �
1�2 ˆ �1 ˆ� 4 Ž . Ž .0, 1, . . . , m � 1 . Then d � � � is the kth component of 
 � � � .U, 2 k U, k k U U

Next, arguing as at the end of the proof of Proposition 5.1, we obtain that
�Ž �1 . � � �1 � 
G w � G . Similarly, the kth component � of the GaussianU U k U U, k

�1�2 Ž 
 .2vector G � is a Gaussian random variable with zero mean and E �U U U, k
� �1 � � �1 � 2 Ž .� G � G . This implies 5.12 . �U U

5.3. Proof of Proposition 3.2. The event � � 0 implies � � 0, j � 1, 2.U U, Vj

Let V be V or V . By Proposition 5.1,1 2

1�2�1 �1�2 2 �1ˆ ˆ� � � �� � � � C G d � N log N .Ž .U , k V , k 2 V V , 2 k V U

Next, by application of Proposition 5.2, we get

�1�2 �1 �1�2ˆ � �� � � � d G z � � z � N �V , k V , k V , 2 k V 1 V 2 V V , k
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Ž . � � � � Ž .with � from 3.5 , z , z � 1 and � 	 NN 0, 1 . Along with these inequali-V 1 2 V ,k
Ž .ties and 3.7 , we obtain

�pˆ� � � �P � � � � b � P � � 2 p log N � N , V � V or V .'Ž . ž /f U , k V , k V , k V , k U U 1 2

Ž . Ž .This and 3.6 obviously imply 3.9 .

5.4. Proof of Theorem 3.1. Let U* be selected by the adaptive procedure;
Ž .see 2.10 . We distinguish between two cases: N � N and N 	 N .U * U U * U

ŽRecall that due to Proposition 3.1, � � 0 with probability close to 1 andU
.hence typically N 	 N .U * U

ˆ� �Note first that, by construction, f � f and by the theorem’s conditionx 00ˆ� Ž . � � Ž . Ž . �f x � f . Hence f x � f x � 2 f and0 0 0 0 0

ppˆ� �E f x � f x 1 N � N � 2 f P N � N .Ž . Ž . Ž . Ž . Ž .f 0 0 U * U 0 f U * U

Ž . Ž .Obviously P N � N � P � � 1 and by Proposition 3.1 we obtainf U * U f U

pp �pˆ� �5.13 E f x � f x 1 N � N � 2 f mN .Ž . Ž . Ž . Ž . Ž .f 0 0 U * U 0 U

Next we consider the case with N 	 N . Clearly, U* contains eitherU * U
� � � �x � a , x or x , x � a . By making use of the definition of the class0 1 0 0 0 2

Ž .UU d , we get either for V � V or for V � V that V � U 
 U*, N 	s 0 1 2 V
� 4 � �1 � �1min N , N 	 N �3 and G � d . The fact that � � 0 implies inV V U V 0 U *1 2

particular that � � 0. Using now the result of Proposition 5.1 we concludeU *, V
that

1�22 �1ˆ ˆ� �5.14 f x � f x � C � N log N .Ž . Ž . Ž . Ž .U * 0 V 0 2 V U *

Ž . Ž .Next, since V � U, then � f � � f and the application of Proposition 5.2V U
ˆ Ž .to f x givesV 0

�1�2 �1ˆ � �5.15 f x � � � � N G z C log N � z � ,Ž . Ž . 'V 0 V , 0 V V V , 1 1 U V , 2 V , 0

� � � � Ž . Ž .where z , z � 1 and � 	 NN 0, 1 . From the definition of � f itV , 1 V , 2 V , 0 V
� Ž . � Ž . Ž . Ž . Ž .follows that f x � � � � f � � f . Along with 5.14 and 5.15 and0 V , 0 V U

� �1 � �1applying G � d , we concludeV 0

ˆ p� �E f x � f x 1 N 	 NŽ . Ž . Ž .Žf 0 0 U *

p
ˆ ˆ ˆ� E f x � f x � f x � � � � � f xŽ . Ž . Ž . Ž .f U * 0 V 0 V 0 V , 0 V , 0 0

pp �p�2 �p � �'� � N d E 2C � C log n � �Ž .V 0 1 2 V , 0

p p�2p �p �1� 2C � C � C p � d 3N log n .Ž . Ž .1 2 0 U

� � p Ž Ž .. pHere we have used the inequality E � � � � � � C p for a standard
Ž . Ž .normal � and some positive constant C p � 2. This and 5.13 prove the

assertion.
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5.5. Proof of Theorem 3.2. By Proposition 3.1,

P � � 1 � mN�pŽ .U U

and by Proposition 3.2, if some U� contains V and V and if N 	 N , then1 2 U � U

P � � 0 � N�p .Ž .U � U

Using the arguments from the proof of Theorem 3.1 we can reduce our
Ž .consideration to the case when � � 0 U is accepted and � � 1 for everyU U �

Ž .U� with V � V � U� every such U� is rejected .1 2
Let U* be selected by the adaptive procedure. Since � � 0, the definitionU

of U* implies N 	 N . Furthermore, U* does not contain V . Indeed,U * U 1
otherwise U* contains also V because x � U* and V is between V and2 0 2 1
x , hence � � 1 does hold.0 U *

Ž .Denote U � U 
 U*. Then the inequalities 3.10 and N 	 N imply2 U * U
that
5.16 N 	 1 � � N .Ž . Ž .U U2

In fact, let a be the right end-point of U. If a � U*, then also U � U* and3 3 2
Ž .U � U � U , and hence N 	 N � N 	 1 � � N . Next, if a � U*,1 2 U U U U 32 1

then U* � U � U , and it follows from N 	 N that1 2 U * U

N 	 N � N 	 1 � � N .Ž .U U U U2 1

� �1 � �1By the conditions of the theorem, we also have G � d .U 02

Now, by Proposition 5.1,
�1�2�1 2 �1ˆ ˆ� � � �f x � f x � C G � N log nŽ . Ž . Ž .U * 0 U 0 2 U U2 2 2

and by Proposition 5.2,

�1�2 �1ˆ � �f x � f x � � N G z C log N � z � ,Ž . Ž . 'U 0 0 U U 1 1 U 22 2 2 2

� � � � Ž .where z , z � 1 and � 	 NN 0, 1 .1 2
These inequalities allow completing the proof in the same way as for

Theorem 3.1. �

5.6. Proof of Theorem 4.2. We derive this result as a consequence of the
general result of Theorem 3.2. First we assume without loss of generality that

N � N � nhV V 01 2

Ž �and similarly for U � x , x � h ,0 0

N � nh.U

Ž . � � Ž .� Ž .Now condition 4.3 means that U � UU see 3.2 and condition 3.10 of
Theorem 3.2 is fulfilled with � � 1�2. Next, we easily obtain for V � V or1
V � V and x 	 x � h ,2 0 cp 0

�1 2 k 2 kd � nh X � x 	 h � 2k � 1 .Ž . Ž . Ž .ÝV , 2 k 0 i 0 0
X �Vi
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Therefore, all the conditions of Theorem 3.2 are satisfied and the application
of this theorem leads to the desired assertion. �

5.7. Proof of Theorem 4.3. As usual for this kind of result, we change the
minimax problem to a specific Bayes one. Let some positive C � 2 be fixed.

Ž . �1 Ž .Set h n � Cn log n. Without loss of generality we assume that nh n �
Ž . Ž .C log n is an integer number and that M � 1�h n � n� C log n is also

� �integer. Let us split the whole interval 0, 1 into M subintervals of length
Ž .h n and denote this partition by II. Each interval I from II contains

Ž .N � nh n � 1 � C log n � 1 design points. Now we assume that our func-
tion f is random and with probability M�1 it coincides with the function fI
which is one on I and zero outside. Now our original problem can be clearly

Ž .reduced to the problem of estimating I as an element of the finite set II

from observed data.
Denote by Z the log-likelihoodI, n

Z � log dP �dP ,Ž .I , n f 0I

Ž .where P corresponds to the function f � 0. It follows easily from 1.1 that0

21 2Z � Y � Y � 1 � Y � N�2.Ž .Ý ÝI i i i2
i�n�I i�n�I

ˆ ˆŽ .Now the Bayes estimate I of I for the indicator loss function 1 I � I is of
obvious structure,

1ˆ � 4I � arginf exp Z � argmax Z .Ý I� IMI II��I

ˆŽ .Let us fix an arbitrary I � II and consider the probability P I � I where0 I 00

the measure P corresponds to the function f . First we note that under PI I I0 0 0

it holds with probability 1 that

'Y � N � � N ,Ý i I0
I0

'Y � N � , I � I ,Ý i I 0
I

where � � N�1�2 Ý � , and obviously all � are standard normal. NowI I i I

ˆ ' ' 'P I � I � P max � � N �2 � � � N �2 � P max � � N .Ž .I 0 I I Iž /ž /0 0I�I I�II0

Therefore, it holds for the Bayes measure P � M�1Ý P ,B II I0

�1˜ ˆ ˆ 'inf P I � I � P I � I � M P I � I � P max � � N .Ž . Ž . Ž .ÝB B I 0 Iž /0 I�IIĨ I �II0
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Here the infimum is taken over the class of all possible estimators of I. It is
� Ž .�well known see, e.g., Petrov 1975 that for each 
 � 2,

'P max � � 
 log M � 1, M � �.Iž /
I�II

Therefore, the desired assertion follows if 
 log M � N or equivalently,

C log n � 1 � 
 log n� C log n .Ž .Ž .
It remains to observe that the latter property holds true for C � 
 � 2 and n
large enough.

Acknowledgments. The thoughtful comments of two referees, leading
to significant improvements of this paper, are gratefully acknowledged. The
author thanks also O. Lepski, A. Juditski and M. Neumann for helpful
remarks and discussion.

REFERENCES
Ž .BUCKLEY, M. J., EAGLESON, G. K. and SILVERMAN, B. W. 1988 . The estimation of residual

variance in nonparametric regression. Biometrika 75 189�199.
Ž .CLEVELAND, W. S. 1979 . Robust locally weighted regression and smoothing scatterplots. J.

Amer. Statist. Soc. 74 829�836.
Ž .DELYON, B. and JUDITSKY, A. 1996 . On minimax wavelet estimators. Appl. Comput. Harmon.

Anal. 3 215�228.
Ž .DONOHO, D. L., JOHNSTONE, I. M., KERKYACHARIAN, G. and PICARD, D. 1995 . Wavelet shrinkage:

Ž .asymptopia? with discussion J. Roy. Statist. Soc. Ser. B 57 301�369.
Ž .GASSER, T., SROKA, L. and JENNEN-STEINMETZ, CH. 1986 . Residual variance and residual

pattern in nonlinear regression. Biometrika 73 625�633.
Ž .GOLDENSHLUGER, A. and NEMIROVSKI, A. 1994 . On spatial adaptive estimation of nonparametric

regression. Technical Report 5�94, Technion, Haifa.
Ž .HALL, P., KERKYACHARIAN, J. and PICARD, D. 1996 . On the minimax optimality of block thresh-

olded wavelet estimators. Statist. Sinica. To appear.
Ž .HALL, P. and PATIL, P. 1995 . Formulae for mean integrated squared error of nonlinear

wavelet-based density estimators. Ann. Statist. 23 905�928.
Ž .HINKLEY, D. 1970 . Inference about a change point in a sequence of random variables. Biometrika

57 41�58.
Ž .IBRAGIMOV, I. and KHASMINSKII, R. 1981 . Statistical Estimation: Asymptotic Theory. Springer,

New York.
Ž .KATKOVNIK, V. JA. 1979 . Linear and nonlinear methods of nonparametric regression analysis.

Ž .Avtomatika 5 35�46 in Russian .
Ž .KATKOVNIK, V. JA. 1985 . Nonparametric Identification and Data Smoothing: Local Approxima-

Ž .tion Approach. Nauka, Moscow in Russian .
Ž .KOROSTELEV, A. 1987 . On minimax estimation of a discontinuous signal. Theory Probab. Appl.

32 727�730.
Ž .KOROSTELEV, A. and TSYBAKOV, A. 1993 . Minimax Theory of Image Reconstruction. Springer,

New York.
Ž .LEPSKI, O., MAMMEN, E. and SPOKOINY, V. 1997 . Optimal spatial adaptation to inhomogeneous

smoothness: An approach based on kernel estimates with variable bandwidth selec-
tors. Ann. Statist. 25 929�947.

Ž .LEPSKI, O. and SPOKOINY, V. 1997 . Optimal pointwise adaptive methods in nonparametric
estimation. Ann. Statist. 25 2512�2546.

Ž .MULLER, H. 1992 . Change-points in nonparametric regression analysis. Ann. Statist. 20¨
737�761.



V. G. SPOKOINY1378

Ž .NEMIROVSKI, A. 1985 . On nonparametric estimation of smooth function. Sov. J. Comput. Syst.
Sci. 23 1�11.

Ž .OUDSHOORN, C. 1995 . Minimax estimation of a regression function with jumps: attaining the
optimal constant. Technical Report 934, Dept. Mathematics, Univ. Utrecht.

Ž .PETROV, V. V. 1975 . Sums of Independent Random Variables. Springer, New York.
Ž . Ž .STONE, C. J. 1977 . Consistent nonparametric regression. with discussion Ann. Statist. 5

595�645.
Ž .TRIEBEL, H. 1992 . Theory of Function Spaces II. Birkhauser, Boston.¨
Ž .TSYBAKOV, A. 1986 . Robust reconstruction of functions by the local approximation. Problems

Inform. Transmission 22 133�146.
Ž .WANG, Y. 1995 . Jump and sharp cusp detection by wavelets. Biometrika 82 385�397.

Ž .WU, J. and CHU, C. 1993 . Kernel type estimators of jump points and values of a regression
function. Ann. Statist. 21 1545�1566.

Ž .YIN, Y. 1988 . Detection of the number, locations and magnitudes of jumps. Comm. Statist.
Stochastic Models 4 445�455.

WEIERSTRASS INSTITUTE FOR APPLIED ANALYSIS

AND STOCHASTICS

MOHRENSTR. 39
10117 BERLIN

GERMANY

E-MAIL: spokoiny@wias-berlin.de


