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Abstract

Shape constrained densities are encountered in many nonparametric
estimation problems. The classes of monotone or convex (and monotone)
densities can be viewed as special cases of the classes of k−monotone densities.
A density g is said to be k−monotone if (−1)lg(l) is nonnegative, nonincreasing
and convex for l = 0, . . . , k− 2 if k ≥ 2, and g is simply nonincreasing if k = 1.
These classes of shaped constrained densities bridge the gap between the classes
of monotone (1-monotone) and convex decreasing (2-monotone) densities for
which asymptotic results are known, and the class of completely monotone
(∞−monotone) densities.

In this paper we consider both (nonparametric) Maximum Likelihood
estimators and Least Squares estimators of a k−monotone density. We prove
existence of the estimators and give characterizations. We also establish
consistency properties, and show that the estimators are splines of order k
(degree k− 1) with simple knots. We further provide asymptotic minimax risk
lower bounds for estimating a k−monotone density g0(x0) and its derivatives
g
(j)
0 (x0), j = 1, . . . , k − 1, at a fixed point x0 under the assumption that

(−1)kg
(k)
0 (x0) > 0.
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1. Introduction

Shape constrained densities are encountered in many nonparametric estimation
problems. Monotone densities arise naturally via connections with renewal theory
and uniform mixing (see Vardi (1989) and Woodroofe and Sun (1993) for examples
of the former, and Woodroofe and Sun (1993) for the latter in an astronomical
context). Convex densities arise in connection with Poisson process models for bird
migration and scale mixtures of triangular densities; see e.g. Hampel (1987), and
Anevski (2003).

Estimation of monotone densities on the positive half-line R+ = [0,∞) was
initiated by Grenander (1956) (with related work by Ayer, Brunk, Ewing, Reid,
and Silverman (1955), Brunk (1958), and Van Eeden (1956), Van Eeden (1957)).
Asymptotic theory of the maximum likelihood estimators was developed by Prakasa
Rao (1969) with later contributions by Groeneboom (1985), Groeneboom (1989),
and Kim and Pollard (1990).

Estimation of convex densities on R+ was apparently initiated by Anevski
(1994) (see also Anevski (2003)), and was pursued by Jongbloed (1995). The
limit distribution theory for the (nonparametric) maximum likelihood estimator
and its first derivative at a fixed point was obtained by Groeneboom, Jongbloed,
and Wellner (2001b).

Our goal is to develop nonparametric estimators and asymptotic theory for the
classes of k-monotone densities on [0,∞) defined as follows: g is a k−monotone
density on (0,∞) if g is nonnegative and (−1)lg(l) is nonincreasing and convex for
l ∈ {0, . . . , k− 2} for k ≥ 2, and simply nonnegative and nonincreasing when k = 1.
As will be shown in section 2, it follows from the results of Williamson (1956), Lévy
(1962), and Gneiting (1999) that g is a k−monotone density if and only if it can
be represented as a scale mixture of Beta(1, k) densities. For k = 1 this recovers the
well known facts that monotone densities are scale mixtures of uniform densities,
and, for k = 2, that convex decreasing densities scale mixtures of the triangular, or
Beta(1, 2), densities.

Our motivation for studying nonparametric estimation in the classes Dk has
several components: besides the obvious goal of generalizing the existing theory for
the 1−monotone (i.e. monotone) and 2−monotone (i.e. convex and decreasing)
classes D1 and D2, these classes play an important role in several extensions of
Hampel’s bird migration problem which are discussed further in Balabdaoui and
Wellner (2005a). They also provide a potential link to the important limiting case
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of the k−monotone classes, namely the class D∞ of completely monotone densities.
Densities g in D∞ have the property that (−1)lg(l)(x) ≥ 0 for all x ∈ (0,∞)
and l ∈ {0, 1, . . .}. It follows from Bernstein’s theorem (see e.g. Feller (1971),
page 439, or Gneiting (1998)) that g ∈ D∞ if and only if it can be represented
as a scale mixture of exponential densities. Completely monotone densities arise
naturally in connection with mixtures of Poisson processes and have been used in
reliability theory and empirical Bayes estimation. Jewell (1982) initiated the study
of maximum likelihood estimation in the family D∞ and succeeded in showing that
the MLE F̂n of the mixing distribution function is almost surely weakly consistent.
Although consistency of the MLE follows now rather easily from the results of
Pfanzagl (1988) and van de Geer (1993), little is known about rates of convergence
or asymptotic distribution theory for either the estimator of the mixed density (the
“forward” or “direct” problem) or the estimator of the mixing distribution function
(the “inverse” problem). We hope that our development of methods and theory for
general k−monotone densites may throw some light on the issues and problems.

In this paper we consider the Maximum Likelihood ĝn,k and Least Squares g̃n,k

estimators of a density g0 ∈ Dk for a fixed integer k ≥ 2 based on a sample
X1, . . . , Xn i.i.d. with density g0. We show that the estimators exist, provide
characterizations, and establish consistency of the estimators and their derivatives
ĝ
(j)
n,k and g̃

(j)
n,k for j ∈ {1, . . . , k − 1} (uniformly on closed sets bounded away from

0). In section 4 we establish asymptotic minimax lower bounds for estimation of
g
(j)
0 (x0), j = 0, . . . , k− 1 under the assumption that g(k)

0 (x0) exists and is non-zero.
We also include statements of known results for estimation of a completely monotone
density g0 ∈ D∞ whenever possible.

2. Existence and characterizations

The following lemma characterizing integrable k−monotone functions and giving an
inversion formula follows from the results of Williamson (1956):

Lemma 2.1. (Integrable k−monotone characterization) A function g is an
integrable k-monotone function if and only if it is of the form

g(x) =
∫ ∞

0

k(t− x)k−1
+

tk
dF (t), x > 0 (2.1)

where F is nondecreasing and bounded on (0,∞). Thus g is a k−monotone density
if and only if it is of the form (2.1) for some distribution function F on (0,∞). If
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F in (2.1) satisfies limt→∞ F (t) =
∫∞
0 g(x)dx, then at a continuity point t > 0, F

is given by

F (t) = G(t)− tg(t) + · · ·+ (−1)k−1

(k − 1)!
tk−1g(k−2)(t) +

(−1)k

k!
tkg(k−1)(t), (2.2)

where G(t) =
∫ t
0 g(x)dx.

Proof. The representation (2.1) follows from Theorem 5 of Lévy (1962) by taking
k = n+1 and f ≡ 0 on (−∞, 0]. The inversion formula (2.2) follows from Lemma 1 in
Williamson (1956) together with an integration by parts argument. See Balabdaoui
and Wellner (2005c) for details. �

For completeness and for comparison, we also give the corresponding
characterization and inversion formula in the completely monotone case:

Lemma 2.2. (Integrable completely monotone characterization) A function g is
an integrable completely monotone function if and only if it is of the form

g(x) =
∫ ∞

0

1
t

exp(−x/t)dF (t), x > 0 (2.3)

where F is nondecreasing and bounded on (0,∞). Thus g is a completely monotone
density if and only if it is of the form (2.3) for some distribution function F on
(0,∞). If F in (2.3) satisfies limt→∞ F (t) =

∫∞
0 g(x)dx, then at a continuity point

t > 0, F is given by

F (t) = lim
k→∞

k∑
j=0

(−1)j

j!
(kt)jG(j)(kt) (2.4)

where G(t) =
∫ t
0 g(x)dx.

Proofs. Lemma 2.2 follows from the classical result of Bernstein; see Widder
(1946), pages 141-163; Feller (1971), page 439; and Gneiting (1998). The inversion
formula (2.4) follows from the development in Feller (1971), pages 232-233. For
further details, see Balabdaoui and Wellner (2005a). �

It is easy to see that if g is a density, and F is chosen to be right-continuous and
to satisfy the condition of the second part of Lemma 2.1, then F is a distribution
function. For k = 1 (k = 2), note that the characterization matches with the well
known fact that a density is nondecreasing (nondecreasing and convex) on (0,∞) if
and only if it is a mixture of uniform densities (triangular densities). More generally,
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the characterization establishes a one-to-one correspondance between the class of k-
monotone densities and the class of scale mixture of Beta’s with parameters 1 and
k. From the inversion formula in (2.2), one can see that a natural estimator for the
mixing distribution F is obtained by plugging in an estimator for the density g and
it becomes clear that the rate of convergence of estimators of F will be controlled by
the corresponding rate of convergence for estimators of the highest derivative g(k−1)

of g. When k increases the densities become smoother, and therefore the inverse
problem of estimating the mixing distribution F becomes harder.

We now consider the nonparametric Maximum Likelihood and Least Squares
Estimators of a k-monotone density g0. We show that these estimators exist
and give characterizations thereof. In the following, Mk is the class of all k-
monotone functions on (0,∞), Dk is the sub-class of k-monotone densities on (0,∞),
X1, · · · , Xn are i.i.d. from g0, and Gn is their empirical distribution function,
Gn(x) = n−1

∑n
1 1{Xi ≤ x} for x ≥ 0.

Let

ln(g) =
∫ ∞

0
log g(x) dGn(x)

be the log-likelihood function (really n−1 times the log-likelihood function). We want
to maximize ln(g) over g ∈ Dk. To do this, we change the optimization problem to
one over the whole cone Mk∩L1(λ). This can be done by introducing the “adjusted
likelihood function” ψn(g) defined as follows:

ψn(g) =
∫ ∞

0
log g(x) dGn(x)−

∫ ∞

0
g(x)dx,

for g ∈Mk∩L1(λ). Then, as in GJW (2001a), Lemma 2.3, page 1661, the maximum
likelihood estimator ĝn also maximizes ψn(g) over Mk ∩ L1(λ).

Using the integral representations established in the previous subsection, ψn can
also be rewritten as

ψn(F ) =


∫∞
0 log

(∫∞
0

k(t−x)k−1
+

tk
dF (t)

)
dGn(x)−

∫∞
0

∫∞
0

k(t−x)k−1
+

tk
dF (t)dx,∫∞

0 log
(∫∞

0
1
t exp(−x/t)dF (t)

)
dGn(x)

−
∫∞
0

∫∞
0

1
t exp(−x/t)dF (t)dx,

where F is bounded and nondecreasing.

Lemma 2.3. The maximum likelihood estimator ĝn,k in the classes Dk, k ∈
{1, 2, . . . ,∞} exists. Furthermore, ĝn,k is the maximizer of ψn over Mk ∩ L1(λ).
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Moreover, for k ∈ {1, 2, . . .} the density ĝn,k is of the form

ĝn,k(x) = ŵ1
k(â1 − x)k−1

+

âk
1

+ · · ·+ ŵm
k(âm − x)k−1

+

âk
m

,

for some m = m̂k, while for k = ∞, ĝn,∞ is of the form

ĝn,∞(x) =
ŵ1

â1
exp(−x/â1) + · · ·+ ŵm

âm
exp(−x/âm)

for some m = m̂∞ where ŵ1, · · · , ŵm and â1, · · · , âm are respectively the weights and
the support points of the maximizing mixing distribution F̂n,k.

Proof. From Lindsay (1983a) we conclude that there exists a unique maximizer
of ln and the maximum is achieved by a discrete mixing distribution function that
has at most n support points.

By arguing as in Groeneboom, Jongbloed, and Wellner (2001b) page 1662 it
follows that ψn is maximized over Mk ∩ L1(λ) by ĝn ∈ Dk. In the case k = ∞, the
assertions of the lemma are proved by Jewell (1982). �

The following lemma gives a necessary and sufficient condition for a point t to
be in the support of the maximizing distribution function F̂n,k. For k ∈ {3, . . .} it
generalizes lemma 2.4, page 1662, Groeneboom, Jongbloed, and Wellner (2001b).

Lemma 2.4. Let X1, · · · , Xn be i.i.d. random variables from the true density g0,
and let F̂n,k and ĝn,k be the MLE of the mixing and mixed distribution respectively.
Then, for k ∈ {1, 2, . . .},

Ĥn,k(t) ≡ Gn

(
k(t−X)k−1

+ /tk

ĝn,k(X)

)
≤ 1, (2.5)

with equality if and only if t ∈ supp(F̂n,k) = {â1, · · · , âm}. In the case k = ∞

Ĥn,∞(t) ≡ Gn

(
exp(−X/t)
tĝn,∞(X)

)
≤ 1, for all t > 0 (2.6)

with equality if and only if t ∈ supp(F̂n,∞) = {â1, · · · , âm}.

Remark 2.1. By factoring out tk−1 and replacing t by kv (say), it becomes clear
that the function Ĥn,∞ on the right side of (2.6) is a natural limiting version as
k →∞ of the functions Ĥn,k on the right side of (2.5).
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Proof. This follows the proof of proposition 2.3 of Groeneboom and Wellner (1992),
page 58. The proof of the result for k = ∞ is given by Jewell (1982), page 481. �

Now we consider the Least Squares estimators. The least squares criterion is

Qn(g) =
1
2

∫ ∞

0
g2(x)dx−

∫ ∞

0
g(x)dGn(x) . (2.7)

We want to minimize this over g ∈ Dk ∩ L2(λ), the subset of square integrable
k−monotone functions. Although existence of a minimizer of Qn over Dk ∩L2(λ) is
quite easily established, the minimizer has a somewhat complicated characterization
due to the density constraint

∫∞
0 g(x)dx = 1. Therefore we will actually consider

the alternative optimization problem of minimizing Qn(g) over Mk ∩ L2(λ).
In this optimization problem existence requires more work, but the resulting
characterization of the estimator is considerably simpler. Further we will show
that even though the resulting estimator does not necessarily have total mass one,
it does have total mass converging almost surely to one and it consistently estimates
g0 ∈ Dk.

Using arguments similar to those in the proof of Theorem 1 in Williamson
(1956), one can show that g ∈Mk if and only if

g(x) =
∫ ∞

0
(t− x)k−1

+ dµ(t)

for a positive measure µ on (0,∞). Thus we can rewrite the criterion in terms of
the corresponding measures µ: by Fubini’s theorem∫ ∞

0
g2(x)dx =

∫ ∞

0

∫ ∞

0
rk(t, t′)dµ(t)dµ(t′)

where rk(t, t′) =
∫ t∧t′

0 (t− x)k−1(t′ − x)k−1dx, and∫ ∞

0
g(x)dGn(x) =

∫ ∞

0

∫ ∞

0
(t− x)k−1

+ dµ(t)dGn(x) =
∫ ∞

0
sn,k(t)dµ(t)

where sn,k(t) ≡ Gn((t−X)k−1
+ ). Hence it follows that, with g = gµ

Qn(g) =
1
2

∫ ∞

0

∫ ∞

0
rk(t, t′)dµ(t)dµ(t′)−

∫ ∞

0
sn,k(t)dµ(t) ≡ Φn(µ)

Now we want to minimize Φn over the set X of all non-negative measures µ on R+.
Since Φn is convex and can be restricted to a subset C of X on which it is lower
semicontinuous, a solution exists and is unique.

7



Proposition 2.1. The problem of minimizing Φn(µ) over all non-negative
measures µ has a unique solution µ̃.

Proof. Existence follows from Zeidler (1985), Theorem 38.B, page 152. See
Balabdaoui and Wellner (2005c) for the verification of the hypotheses of required
hypotheses. Uniqueness follows from the strict convexity of Φn. �

The following proposition characterizes the least squares estimators.

Proposition 2.2. For k ∈ {1, 2, . . .} define Yn,k and H̃n,k respectively by

Yn,k(t) =
∫ t

0

∫ tk−1

0
· · ·
∫ t2

0
Gn(t1)dt1dt2 · · · dtk−1 =

∫ t

0

(t− x)k−1

(k − 1)!
dGn(x)

and

H̃n,k(t) =
∫ t

0

∫ tk

0
· · ·
∫ t2

0
g̃n(t1)dt1dt2 · · · dtk =

∫ t

0

(t− x)k−1

(k − 1)!
g̃n(x)dx

for t ≥ 0. Then g̃n,k is the LS estimator over Mk∩L2(λ) if and only if the following
conditions are satisfied for g̃n,k and H̃n,k:{

H̃n,k(t) ≥ Yn,k(t), for t ≥ 0, and∫∞
0 (H̃n,k − Yn,k)dg̃

(k−1)
n,k = 0.

(2.8)

Proof. This follows along the lines of the proof of lemma 2.2 of Groeneboom,
Jongbloed, and Wellner (2001b) using integration by parts in the sufficiency part of
the proof, and by taking the perturbations g̃n,k + εgt and g̃n,k(1+ ε) for ε sufficiently
small where gt(x) ≡ (t− x)k−1

+ /(k− 1)! for x ≥ 0 and t > 0 in the necessity half. �

In order to prove that the LSE is a spline of degree k− 1, we need the following
result.

Lemma 2.5. Let [a, b] ⊆ (0,∞) and let g be a nonnegative and nonincreasing
function on [a, b]. For any polynomial Pk−1 of degree ≤ k − 1 on [a, b], if the
function

∆(t) =
∫ t

0
(t− s)k−1g(s)ds− Pk−1(s), t ∈ [a, b]

admits infinitely many zeros in [a, b], then there exists t0 ∈ [a, b] such that g ≡ 0 on
[t0, b] and g > 0 on [a, t0) if t0 > a.
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Proof. By applying the mean value theorem k times, it follows that (k−1)!g = ∆(k)

admits infinitely many zeros in [a, b]. But since g is assumed to be nonnegative and
nonincreasing, this implies that if t0 is the smallest zero of g in [a, b], then g ≡ 0 on
[t0, b]. By definition of t0, g > 0 on [a, t0) if t0 > a. �

Now we will use the characterization of the LSE g̃n together with the previous
lemma to show that it is a finite mixture of Beta(1, k)’s. We know from Proposition
2.2 that g̃n,k is the LSE if and only if (2.8) holds. The equality condition in the second
part of (2.8) implies that H̃n,k and Yn,k have to be equal at any point of increase
of the monotone function (−1)k−1g̃

(k−1)
n,k . Therefore, the set of points of increase of

(−1)k−1g̃
(k−1)
n,k is included in the set of zeros of the function ∆̃n,k = H̃n,k − Yn,k.

Now, note that Yn,k can be given by the explicit expression:

Yn,k(t) =
1

(k − 1)!
1
n

n∑
j=1

(t−X(j))
k−1
+ , for t > 0.

In other words, Yn,k is a spline of degree k− 1 with simple knots X(1), · · · , X(n) (for
a definition of the multiplicity of knots, see e.g. de Boor (1978), page 96, or DeVore
and Lorentz (1993), page 140). Also note that the function (−1)k−1g̃

(k−1)
n,k cannot

have a positive density with respect to Lebesgue measure λ. Indeed, if we assume
otherwise, then we can find 0 ≤ j ≤ n and an interval I ⊂ (X(j), X(j+1)) (with
X(0) = 0 and X(n+1) = ∞) such that I has a nonempty interior, and H̃n,k ≡ Yn,k

on I. This implies that H̃(k)
n,k ≡ Y(k)

n,k ≡ 0, since Yn,k is a polynomial of degree
k − 1 on I, and hence g̃n,k ≡ 0 on I. But the latter is impossible since it was
assumed that (−1)k−1g̃

(k−1)
n,k was strictly increasing on I. Thus the monotone

function (−1)k−1g̃
(k−1)
n,k can have only two components: discrete and singular. In

the following theorem, we will prove that it is actually discrete with finitely many
points of jump.

Proposition 2.3. There exists m ∈ N\{0}, ã1, · · · , ãm and w̃1, · · · , w̃m such that
for all x > 0, the LSE g̃n,k is given by

g̃n,k(x) = w̃1
k(ã1 − x)k−1

+

ãk
1

+ · · ·+ w̃m
k(ãm − x)k−1

+

ãk
m

. (2.9)

Consequently, the equality part of proposition 2.2 can be re-expressed as H̃n,k(t) =
Yn,k(t) if t ∈ supp{F̃n,k}.

Proof. We need to consider two cases:
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(i) The number of zeros of ∆̃n,k = H̃n,k−Yn,k is finite. This implies by (??) that the
number of points of increase of (−1)k−1g̃

(k−1)
n,k is also finite. Therefore, (−1)k−1g̃

(k−1)
n,k

is discrete with finitely many jumps and hence g̃n,k is of the form given in (2.9).
(ii) Now, suppose that ∆̃n,k has infinitely many zeros. Let j be the smallest integer
in {0, · · · , n−1} such that [X(j), X(j+1)] contains infinitely many zeros of ∆̃n,k (with
X(0) = 0 and X(n+1) = ∞). By Lemma 2.5, if tj is the smallest zero of g̃n in
[X(j), X(j+1)], then g̃n,k ≡ 0 on [tj , X(j+1)] and g̃n,k > 0 on [X(j), tj) if tj > X(j).
Note that from the proof of Proposition 2.1, we know that the minimizing measure
µ̃n does not put any mass on (0, X(1)], and hence the integer j has to be strictly
greater than 0.

Now, by definition of j, ∆̃n has finitely many zeros to the left of X(j), which
implies that (−1)k−1g̃

(k−1)
n,k has finitely many points of increase in (0, X(j)). We also

know that g̃n,k ≡ 0 on [tj ,∞). Thus we only need to show that the number of
points of increase of (−1)k−1g̃

(k−1)
n,k in [X(j), tj) is finite, when tj > X(j). This can

be argued as follows: Consider zj to be the smallest zero of ∆̃n in [X(j), X(j+1)).
If zj ≥ tj , then we cannot possibly have any point of increase of (−1)k−1g̃

(k−1)
n in

[X(j), tj) because it would imply that we have a zero of ∆̃n,k that is strictly smaller
than zj . If zj < tj , then for the same reason, (−1)k−1g̃

(k−1)
n,k has no point of increase

in [X(j), zj). Finally, (−1)k−1g̃
(k−1)
n,k cannot have infinitely many points of increase

in [zj , tj) because that would imply that ∆̃n,k has infinitely zeros in (zj , tj), and
hence by Lemma 2.5, we can find t′j ∈ (zj , tj) such that g̃n ≡ 0 on [t′j , tj ]. But this
impossible since g̃n,k > 0 on [X(j), tj). �

3. Consistency

In this section, we will prove that both the MLE and LSE are strongly consistent.
Furthermore, we will show that this consistency is uniform on intervals of the form
[c,∞), where c > 0.

Consistency of the maximum likelihood estimators for the classes Dk in the sense
of Hellinger convergence of the mixed density is a relatively simple straightforward
consequence of the methods of Pfanzagl (1988) and van de Geer (1993). As
usual, the Hellinger distance H is given by H2(p, q) = (1/2)

∫
{√p−√q)2dµ for any

common dominating measure µ.

Proposition 3.1. Suppose that ĝn,k is the MLE of g0 in the class Dk, k ∈
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{1, . . . ,∞}. Then
H(ĝn,k, g0) →a.s. 0 as n→∞ .

Furthermore F̂n,k →d F0 almost surely where F̂n,k is the MLE of the mixing
distribution function F0.

Proof. This follows from the methods of Pfanzagl (1988) and van de Geer (1993)
by using the Glivenko-Cantelli preservation theorems of van der Vaart and Wellner
(2000). �

The following lemma establishes a useful bound for k-monotone densities.

Lemma 3.1. If g is a k-monotone density function for k ≥ 2, then

g(x) ≤ 1
x

(
1− 1

k

)k−1

for all x > 0.

Proof. We have

g(x) =
∫ ∞

x

k

yk
(y − x)k−1dF (y) =

1
x

∫ ∞

x

kx

y
(1− x

y
)k−1dF (y)

≤ 1
x

sup
x≤y<∞

kx

y

(
1− x

y

)k−1

=
k

x
sup

0<u≤1
u(1− u)k−1 =

1
x

(
1− 1

k

)k−1

by an easy calculation. (Note that when k = 2, this bound equals 1/(2x) which
agrees with the bound given by Jongbloed (1995), page 117, and Groeneboom,
Jongbloed, and Wellner (2001b), page 1669 in this case.) �

Proposition 3.2. Let g0 be a k-monotone density on (0,∞) and fix c > 0. Then
for j = 0, 1, · · · , k − 2 (with ĝ(0)

n,k = ĝn,k, g
(0)
0 = g0)

sup
x∈[c,∞)

|ĝ(j)
n,k(x)− g

(j)
0 (x)| →a.s. 0, as n→∞,

and for each x > 0 at which g0 is (k − 1)-times differentiable, ĝ(k−1)
n,k (x) →a.s.

g
(k−1)
0 (x).

Proof. Let F0 be the mixing distribution function associated with g0. Then for all
x > 0, we have g0(x) =

∫∞
0 k(t− x)k−1

+ /tkdF0(t). Now, let Y1, Y2, . . . be i.i.d. from
F0. Let Fn be the corresponding empirical distribution and gn the mixed density
gn(x) =

∫∞
0 k(t− x)k−1

+ /tkdFn(t), for x > 0.

11



Let d > 0. Using integration by parts, we have for all x > d

|gn(x)− g0(x)|

=
∣∣∣∣∫ ∞

x
k
(t− x)k−1

tk
d(Fn − F0)(t)

∣∣∣∣
=

∣∣∣∣∫ ∞

x
k
(k − 1)tk(t− x)k−2 − ktk−1(t− x)k−1

t2k
(Fn − F0)(t)dt

∣∣∣∣
≤

(∫ ∞

d
k
(t− d)k−2

tk
dt+ k2

∫ ∞

d

(t− d)k−2

tk
dt

)
‖Fn − F0‖∞

≤
(

2k2

∫ ∞

d

(t− d)k−2

tk
dt

)
‖Fn − F0‖∞

= Cd‖Fn − F0‖∞.

By the Glivenko-Cantelli theorem, the sequence of k-monotone densities (gn)n

satisfies supx∈[d,∞) |gn(x)−g0(x)| →a.s. 0 as n→∞. Since the MLE ĝn,k maximizes
the criterion function over the class Mk ∩ L1(λ), we have

lim
ε↘0

1
ε

(ψn((1− ε)ĝn,k + εgn)− ψn(ĝn,k)) ≤ 0,

and this is equivalent to ∫ ∞

0

gn(x)
ĝn,k(x)

dGn(x) ≤ 1. (3.1)

Let F̂n,k denote again the MLE of the mixing distribution. By the Helly-
Bray theorem, there exists a subsequence {F̂l,k} that converges weakly to some
distribution function F̂ and hence for all x > 0 ĝl,k(x) → ĝ(x) as l→∞ where

ĝ(x) =
∫ ∞

0
k
(t− x)k−1

+

tk
dF̂ (t), x > 0.

The previous convergence is uniform on intervals of the form [d,∞), d > 0. This
follows since ĝl,k and ĝ are monotone and ĝ is continuous. Using convergence of gn to
g0 and the inequality (3.1) we can show that the limit ĝ and g0 have to be the same,
which implies the consistency result. Consistency of the higher derivatives can be
shown recursively using convexity of (−1)j ĝ

(j)
n,k for j = 1, . . . , k−2. The proof follows

along the lines of Jongbloed (1995), pages 117-119, and Groeneboom, Jongbloed,
and Wellner (2001b), pages 1674-1675; see Balabdaoui and Wellner (2005c) for
complete details. �

We also have strong and uniform consistency of the LSE g̃n,k on intervals of the
form [c,∞), c > 0.
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Proposition 3.3. Fix c > 0 and suppose that the true k-monotone density g0

satisfies
∫∞
0 x−1/2dG0(x) <∞. Then ‖g̃n,k − g0‖2 →a.s. 0,

sup
x∈[c,∞)

|g̃(j)
n,k(x)− g

(j)
0 (x)| →a.s. 0, as n→∞,

for j = 0, 1, · · · , k−2, and, for each x > 0 at which g0 is (k−1)-times differentiable,
g̃
(k−1)
n,k (x) →a.s. g

(k−1)
0 (x).

Proof. We write g̃n for g̃n,k throughout the proof. The main difficulty here is that
the least squares estimator g̃n is not necessarily a density in that it may integrate
to more than one; indeed it can be shown that

∫∞
0 g̃1(x)dx = ((2k − 2)/k)(1 −

1/(2k − 1))k−2 > 1 for k ≥ 3. However, once we show that g̃n stays bounded in
L2 with high probability, the proof of consistency will be much like the one used
for k = 2; i.e., consistency of the LSE of a convex and decreasing density (see
Groeneboom, Jongbloed, and Wellner (2001b)). The proof for k = 2 is based on
the very important fact that the LSE is a density, which helps in showing that g̃n

at the last jump point τn ∈ [0, δ] of g̃′n for a fixed δ > 0 is uniformly bounded. The
proof would have been similar if we only knew that

∫∞
0 g̃n(x)dx = Op(1).

Here we will first show that
∫∞
0 g̃2

ndλ = Op(1). From the last display in the proof
of Proposition 2.2

∫∞
0 g̃2

n(x)dx =
∫∞
0 g̃n(x)dGn(x) and hence√∫ ∞

0
g̃2
n(x)dx =

∫ ∞

0
ũn(x)dGn(x), (3.2)

where ũn ≡ g̃n/‖g̃n‖2 satisfies ‖ũn‖2 = 1. Take Fk to be the class of functions

Fk =
{
g ∈Mk,

∫ ∞

0
g2dλ = 1

}
.

In the following, we show that Fk has an envelope G ∈ L1(G0).
Note that for g ∈ Fk we have

1 =
∫ ∞

0
g2dλ ≥

∫ x

0
g2dλ ≥ xg2(x) ,

since g is decreasing. Therefore g(x) ≤ 1/
√
x ≡ G(x) for all x > 0 and g ∈ Fk; i.e.

G is an envelope for the class Fk. Since G ∈ L1(G0) (by our hypothesis) it follows
from the strong law that∫ ∞

0
ũn(x)dGn(x) ≤

∫ ∞

0
G(x)dGn(x) →a.s.

∫ ∞

0
G(x)dG0(x), as n→∞

13



and hence by (3.2) the integral
∫∞
0 g̃2

ndλ is bounded (almost surely) by some constant
Mk.

Now we are ready to complete the proof. Let δ > 0 and τn be the last jump
point of g̃(k−1)

n if there are jump points in the interval (0, δ], otherwise we take τn to
be 0. To show that the sequence (g̃n(τn))n stays bounded, we consider two cases:

1. τn ≥ δ/2. Let n be large enough so that
∫∞
0 g̃2

ndλ ≤Mk. We have

g̃n(τn) ≤ g̃n(δ/2) = (2/δ)(δ/2)g̃n(δ/2) ≤ (2/δ)
∫ δ/2

0
g̃n(x)dx

≤ (2/δ)
√
δ/2

√∫ δ/2

0
g̃2
n(x)dx ≤

√
2/δ

√∫ ∞

0
g̃2
n(x)dx

=
√

2Mk/δ. (3.3)

2. τn < δ/2. We have∫ δ

τn

g̃n(x)dx ≤
√
δ − τn

√∫ δ

τn

g̃2
n(x)dx ≤

√
δ

√∫ ∞

0
g̃2
n(x)dx =

√
δMk.

Using that g̃n is a polynomial of degree k − 1 on the interval [τn, δ] we have√
δMk ≥

∫ δ

τn

g̃n(x)dx

= g̃n(δ)(δ − τn)− g̃′n(δ)
2

(δ − τn)2 + · · ·+ (−1)k−1 g̃
(k−1)
n (δ)
k!

(δ − τn)k

≥ (δ − τn)
(
g̃n(δ) +

1
k
(−1)g̃′n(δ)(δ − τn)

+ · · ·+ (−1)k−1 g̃
(k−1)
n (δ)
(k − 1)!

(δ − τn)k−1

)

= (δ − τn)
(
g̃n(δ)

(
1− 1

k

)
+

1
k
g̃n(τn)

)
≥ δ

2k
g̃n(τn)

and hence g̃n(τn) ≤ 2k
√
Mk/δ. By combining the bounds, we have for large n,

g̃n(τn) ≤ 2k
√
Mk/δ = Ck. Now, since g̃n(δ) ≤ g̃n(τn), the sequence g̃n(x) is

uniformly bounded almost surely for all x ≥ δ. Using a Cantor diagonalization
argument, we can find a subsequence {nl} so that, for each x ≥ δ, gnl

(x) → g̃(x),
as l→∞. By Fatou’s lemma, we have∫ ∞

δ
(g̃(x)− g0(x))2dx ≤ lim inf

l→∞

∫ ∞

δ
(g̃nl

(x)− g0(x))2dx. (3.4)
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On the other hand, the characterization of g̃n implies that Qn(g̃n) ≤ Qn(g0), and
this yields∫ ∞

0
(g̃n(x)− g0(x))2dx ≤ 2

∫ ∞

0
(g̃n(x)− g0(x))d(Gn(x)−G0(x)) .

Thus we can write∫ ∞

δ
(g̃nl

(x)− g0(x))2dx ≤
∫ ∞

0
(g̃nl

(x)− g0(x))2dx

≤ 2
∫ ∞

0
(g̃nl

(x)− g0(x))d(Gnl
(x)−G0(x)) →a.s. 0, (3.5)

as l → ∞. The last convergence is justified as follows: since
∫∞
0 g̃2

nl
dλ is bounded

almost surely, we can find a constant C > 0 such that g̃nl
− g0 admits G(x) =

C/
√
x, x > 0, as an envelope. Since G ∈ L1(G0) by hypothesis and since the class

of functions {(g − g0)1[G≤M ] : g ∈ Mk ∩ L2(λ)} is a Glivenko-Cantelli class for
every M > 0 (each element is a difference of two bounded monotone functions)
(3.5) holds. From (3.4), we conclude that

∫∞
δ (g̃(x)− g0(x))2dx ≤ 0, and therefore,

g̃ ≡ g0 on (0,∞) since δ > 0 can be chosen arbitrarily small. We have proved
that there exists Ω0 with P (Ω0) = 1 and such that for each ω ∈ Ω0 and any given
subsequence g̃nk

(·, ω), we can extract a further subsequence g̃nl
(·, ω) that converges

to g0 on (0,∞). It follows that g̃n converges to g0 on (0,∞), and this convergence is
uniform on intervals of the form [c,∞), c > 0 by the monotonicity and continuity of
g0. As for the MLE, consistency of the higher derivatives can be shown recursively
using convexity of (−1)j g̃

(j)
n for j = 1, . . . , k − 2. �

4. Asymptotic minimax risk lower bounds for the rates

of convergence

In this section our goal is to derive minimax lower bounds for the behavior of any

estimator of a k−monotone density g and its first k − 1 derivatives at a point x0

for which the k−th derivative exists and is non-zero. The proof will rely upon the
basic Lemma 4.1 of Groeneboom (1996); see also Jongbloed (2000). This basic
method seems to go back to Donoho and Liu (1987) and Donoho and Liu (1991)).
The relationship of our results to other rate results due to Fan (1991), and Zhang
(1990) will be discussed later in the section.

As before, let Dk denote the class of k−monotone densities on [0,∞). Here is
the notation we will need. Consider estimation of the j−th derivative of g ∈ Dk
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at x0 for j ∈ {0, 1, . . . , k − 1}. If T̂n is an arbitrary estimator of the real-valued
functional T of g, then the (L1−)minimax risk based on a sample X1, . . . , Xn of size
n from g which is known to be in a suitable subset Dk,n of Dk is defined by

MMR1(n, T,Dk,n) = inf
tn

sup
g∈Dk,n

Eg|T̂n − Tg| .

Here the infimum ranges over all possible measurable functions tn : Rn → R, and
T̂n = tn(X1, . . . , Xn). When the subclasses Dk,n are taken to be shrinking to
one fixed g0 ∈ Dk, the minimax risk is called local at g0. The shrinking classes
(parametrized by τ > 0) used here are Hellinger balls centered at g0:

Dk,n ≡ Dk,n,τ =
{
g ∈ Dk : H2(g, g0) =

1
2

∫ ∞

0
(
√
g(x)−

√
g0(x))2dx ≤ τ/n

}
,

The behavior, for n → ∞ of such a local minimax risk MMR1 will depend on n

(rate of convergence to zero) and the density g0 toward which the subclasses shrink.
The following lemma is the basic tool for proving such a lower bound.

Lemma 4.1. Assume that there exists some subset {gε : ε > 0} of densities in
Dk,n such that, as ε ↓ 0,

H2(gε, g0) ≤ ε(1 + o(1)) and |Tgε − Tg0| ≥ (cε)r(1 + o(1))

for some c > 0 and r > 0. Then

sup
τ>0

lim inf
n→∞

nrMMR1(n, T,Dk,n) ≥ 1
4

( cr
2e

)r
.

Proof. See Jongbloed (1995) and Jongbloed (2000). �

Here is the main result of this section:

Proposition 4.1. Let g0 ∈ Dk and x0 be a fixed point in (0,∞) such that g0 is
k−times continuously differentiable at x0 (k ≥ 2). An asymptotic lower bound for
the local minimax risk of any estimator T̂n,j for estimating the functional Tjg0 =
g
(j)
0 (x0), is given by:

sup
τ>0

lim inf
n→∞

n
k−j
2k+1MMR1(n, Tj ,Dk,n,τ ) ≥

{
|g(k)

0 (x0)|2j+1g0(x0)k−j

}1/(2k+1)

dk,j ,
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where dk,j > 0, j ∈ {0, . . . , k − 1}. Here

dk,j =
1
4

(
4
k − j

2k + 1
e−1

) k−j
2k+1 λ

(j)
k,1

(λk,2)
k−j
2k+1

where

λk,2 =


24(k+1) (2k+3)(k+2)

(k+1)2
((2(k+1))!)2

(4k+7)!((k−1)!)2
“
( k

k/2−1)
”2 , k even

24(k+2)(2k + 3)(k + 2) ((2(k+1))!)2

(4k+7)!(k!)2
“
( k+1
(k−1)/2)

”2 , k odd.

Proposition 4.1 also yields lower bounds for estimation of the corresponding
mixing distribution function F at a fixed point.

Corollary 4.1. Let g0 ∈ Dk and let x0 be a fixed point in (0,∞) such that g0 is
k−times continuously differentiable at x0, k ≥ 2. Then, for estimating Tg0 = F (x0)
where F0 is given in terms of g0 by (2.2),

sup
τ>0

lim inf
n→∞

n
1

2k+1MMR1(n, T,Dk,n,τ ) ≥
{
|g(k)

0 (x0)|2k−1g0(x0)
}1/(2k+1)xk

0

k!
dk,k−1,

The dependence of our lower bound on the constants g0(x0) and g
(k)
0 (x0)

matches with the known results for k = 1 and k = 2 due to Groeneboom (1985)
and Groeneboom, Jongbloed, and Wellner (2001b), and reappears in the limit
distribution theory for k ≥ 3 in Balabdaoui and Wellner (2004c).

The result of Corollary 4.1 is consistent with the lower bound results of Zhang
(1990) and Fan (1991) in the deconvolution setting as we now explain.

To link up with the deconvolution literature we transform our scale mixture
problem to a location mixture or deconvolution problem. To do this we will
reparametrize our k−monotone densities so that the beta kernels converge to the
limiting exponential kernels: Note that if

g(x) =
∫ ∞

0

1
y

(
1− x

ky

)k−1

+

dF (y) ,

then for X ∼ g, Z = Zk ∼ k × Beta(1, k), and Y ∼ F with Y and Z independent,
we have X d= ZY . Thus X∗ ≡ logX = log Y + logZ ≡ Y ∗ + Z∗. Hence the density
g∗ of X∗ is given by

g∗(x) =
∫ ∞

−∞

(
1− 1

k
ex−y

)k−1

+

ex−ydF ∗(y) =
∫ ∞

−∞
fZ∗(x− y)dF ∗(y)
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where F ∗(y) = F (ey) is the distribution function of Y ∗.
For the completely monotone case corresponding to k = ∞, the corresponding

formulas for g and g∗ are given by

g(x) =
∫ ∞

0

1
y

exp(−x/y)dF (y) ,

and
g∗(x) =

∫ ∞

−∞
exp(−ex−y)ex−ydF ∗(y) =

∫ ∞

−∞
fZ∗∞(x− y)dF ∗(y) .

According to Fan (1991), we need to compute the characteristic function φZ∗

and bound its modulus above and below for large arguments. Thus we calculate
first for Z∗∞: from Abramowitz and Stegun (1964), page 930,

φZ∗∞(t) =
∫ ∞

−∞
eitze−ez

ezdz =
∫ ∞

0
eit log ve−vdv = Γ(1 + it) .

Thus by Abramowitz and Stegun (1964), page 256,

|φZ∗∞(t)|2 = Γ(1 + it)Γ(1− it) =
πt

sinh(πt)
=

2πt
eπt − e−πt

,

and it follows that√
2π|t| exp(−π|t|/2) ≤ |φZ∗∞(t)| ≤

√
3π|t| exp(−π|t|/2)

for |t| ≥ 1. Thus the hypothesis (1.3) of Fan (1991) holds with β = 1 and β0 = β1 =
1/2. This implies the first hypothesis of Fan’s theorem 4, page 1263, and thus we are
in the case of a “super-smooth” convolution kernel. Fan’s second hypothesis is easily
satisfied by the current extreme value distribution function since fZ∗∞(y) = O(|y|−2)
as y → ±∞. It therefore follows in the completely monotone case (k = ∞) that
for estimation of F ∗0 (y0) = F (ey0) the resulting minimax lower bound yields the
rate of convergence (log n)−1. This rate could also be deduced from Zhang (1990),
Corollary 3, page 824. (Note that the tail behavior of the characteristic function
of our extreme value kernel coincides with the tail behavior of the characteristic
function of the Cauchy kernel and that Zhang’s example 2 yields the rate (log n)−1

in the case of the Cauchy kernel.)
We can also follow the deconvolution approach to obtain a minimax lower bound

for estimation of the mixing distribution in the k−monotone case: the characteristic
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function of Z∗k = logZk is given by

φZ∗k
(t) =

∫ ∞

−∞
eitz

(
1− 1

k
ez
)k−1

+

ezdz =
∫ k

0
eit log v(1− v/k)k−1

+ dv

=
kitΓ(k + 1)Γ(1 + it)

Γ(k + 1 + it)
.

Thus

|φZ∗k
(t)|2 =

kitΓ(k + 1)Γ(1 + it)
Γ(k + 1 + it)

k−itΓ(k + 1)Γ(1− it)
Γ(k + 1− it)

=
(k!)2

(k2 + t2) · · · (1 + t2)
∼ (k!)2

t2k
as t→∞ .

It should also be noted that

lim
k→∞

|φZ∗k
(t)|2 = lim

k→∞

(k!)2

(k2 + t2) · · · (1 + t2)
=

πt

sinh(πt)
= |φZ∗∞(t)|2 .

Thus |φZ∗k
(t)| ∼ k!/tk as →∞, and we are in the situation of a smooth convolution

kernel of hypothesis (1.4) of Fan (1991), page 1263, with Fan’s β = k in our setting.
Thus Fan’s theorem (extended to negative values of l) gives our rate of convergence
for estimating F ∗(y0) = F (ey0) or g(k−1) by taking l = −1, α +m = 0, and β = k.
By “extending” Fan’s theorem further and taking l = −(k − j), we get the rate of
convergence n−(k−j)/(2k+1), j = 1, . . . , k − 1 for estimation of g(j)

0 (x0).
Proof of Proposition 4.1. Let µ be a positive number and consider the function
gµ defined by:

gµ(x) = g0(x) + s(µ)(x0 + µ− x)k+1(x− x0 + µ)k+21[x0−µ,x0+µ](x), x ∈ (0,∞)

where s(µ) is a scale to be determined later. We denote the unscaled perturbation
function by g̃µ; i.e.,

g̃µ(x) = (x0 + µ− x)k+1(x− x0 + µ)k+21[x0−µ,x0+µ](x).

If µ is chosen small enough so that the true density g0 is k-times continuously
differentiable on [x0 − µ, x0 + µ], the perturbed function gµ is also k-times
differentiable on [x0 − µ, x0 + µ] with a continuous k-th derivative. Now, let r
be the function defined on (0,∞) by

r(x) = (1− x)k+1(1 + x)k+21[−1,1](x) = (1− x2)k+1(1 + x)1[−1,1](x).
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Then, we can write g̃µ as g̃µ(x) = µ2k+3r((x− x0)/µ). Then for 0 ≤ j ≤ k

g(j)
µ (x0)− g

(j)
0 (x0) = s(µ)µ2k+3−jr(j)(0).

The scale s(µ) should be chosen so that (−1)jg
(j)
µ (x) > 0 for all 0 ≤ j ≤ k, for

x ∈ [x0 − µ, x0 + µ]. But for µ small enough, the sign of (−1)jg
(j)
µ will be that

of (−1)jg
(j)
0 (x0), and hence gµ is k−monotone. For j = k, g(k)

µ (x0) = g
(k)
0 (x0) +

s(µ)µk+3r(k)(0). Assume that r(k)(0) 6= 0. Set s(µ) = g
(k)
0 (x0)/(µk+3r(k)(0)). Then

for 0 ≤ j ≤ k − 1

g(j)
µ (x0) = g

(j)
0 (x0) + µk−j g

(k)
0 (x0)r(j)(0)
r(k)(0)

= g
(j)
0 (x0) + o(µ),

as µ→ 0, and

(−1)kg(k)
µ (x0) = 2(−1)kg

(k)
0 (x0) > 0.

for j = k. It can be shown (after some algebra; see Balabdaoui and Wellner (2005c)
for the details) that

r(j)(0) =

{
(−2)j/2

∏j/2−1
i=0 (k + 1− i)×

∏j/2−1
i=0 (j − 2i− 1) 6= 0, j even

(−2)(j−1)/2
∏(j−1)/2−1

i=0 (k + 1− i)×
∏(j−1)/2

i=0 (j − 2i) 6= 0, j odd.

We set Ck,j = r(j)(0) for 1 ≤ j ≤ k. Then Ck,k becomes

Ck,k =

{
(−2)k/2

∏k/2−1
i=0 (k + 1− i)×

∏k/2−1
i=0 (k − 2i− 1), if k is even

(−2)(k−1)/2
∏(k−1)/2−1

i=0 (k + 1− i)×
∏(k−1)/2

i=0 (k − 2i), if k is odd.

The previous expressions can be given in a more compact form. After some algebra,
we find that

Ck,k =

{
2× (−1)k/2(k + 1)(k − 1)!

(
k

k/2−1

)
, if k is even

(−1)(k−1)/2k!
(

k+1
(k−1)/2

)
, if k is odd.

(4.1)

We have for 0 ≤ j ≤ k − 1,

|Tj(gµ)− Tj(g0)| =
∣∣∣∣Ck,j

Ck,k
g
(k)
0 (x0)

∣∣∣∣µk−j ≡ λ
(j)
k,1

∣∣∣g(k)
0 (x0)

∣∣∣µk−j

where we defined λ
(j)
k,1 = |Ck,j/Ck,k| for j ∈ {0, . . . , k − 1}. Furthermore, by

computation and change of variables,∫ ∞

0

(gµ(x)− g0(x))
2

g0(x)
dx

=


(
g
(k)
0 (x0)

)2

g0(x0)

∫ 1
−1(1− z2)2(k+1)(z + 1)2dz

(Ck,k)2

µ2k+1 + o(µ2k+2)
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as µ ↘ 0. This gives control of the Hellinger distance as well in view of Jongbloed
(2000), Lemma 2, page 282, or Jongbloed (1995), Corollary 3.2, pages 30 and 31.
We set

λk,2 =

∫ 1
−1(1− z2)2(k+1)(z + 1)2dz

(Ck,k)2

=


24(k+1) (2k+3)(k+2)

(k+1)2
((2(k+1))!)2

(4k+7)!((k−1)!)2
“
( k

k/2−1)
”2 , k even

24(k+2)(2k + 3)(k + 2) ((2(k+1))!)2

(4k+7)!(k!)2
“
( k+1
(k−1)/2)

”2 , k odd

Now, by using the change of variable ε = µ2k+1(bk + o(1)), where bk =
λk,2(g

(k)
0 (x0))2/g0(x0)) so that µ = (ε/bk)

1/(2k+1) (1 + o(1)), then for 0 ≤ j ≤ k − 1,
the modulus of continuity, mj , of the functional Tj satisfies

mj(ε) ≥ λ
(j)
k,1g

(k)
0 (x0)

(
ε

bk

)(k−j)/(2k+1)

(1 + o(1)).

The result is that mj(ε) ≥ (rk,jε)
k−j
2k+1 (1 + o(1)), where rk,j =

(λ(j)
k,1g

(k)
0 (x0))(2k+1)/(k−j)/bk and hence

sup
τ>0

lim
n→∞

inf n
k−j
2k+1MMR1(n, Tj ,Dk,n,τ ) ≥

1
4

(
4
k − j

2k + 1
e−1

) k−j
2k+1

(rk,j)
k−j
2k+1 , (4.2)

which can be rewritten as

sup
τ>0

lim
n→∞

inf n
k−j
2k+1MMR1(n, Tj ,Dk,n,τ )

≥ 1
4

(
4
k − j

2k + 1
e−1

) k−j
2k+1 λ

(j)
k,1

(λk,2)
k−j
2k+1

{ ∣∣∣g(k)
0 (x0)

∣∣∣ 2j+1
2k+1

g0(x0)
k−j
2k+1

}
for j = 0, · · · , k − 1. �
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