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ESTIMATION OF A MULTIVARIATE DENSITY 

* by Theophilos Cacoullos 

University of Minnesota 

O. Summary and introduction. The problem of estimating a probability 

density function has not received as much attention as the corresponding 

problem of estimating the spectral ·density of a stationary times series. 

However, several authors {Rosenblatt [4], Whittle [6], Parzen [3], and 

Watson and Leadbetter [5]) have recently considered e·stimating a ." 

univariate density function f{x) on the basis of a random sample from 

f{x). 

This paper extends Parzen's results to the case of a multivariate 

density function. The exposition and most of the results are parallel 

to those of [3]. Thus a family of asymptotically unbiased, consistent, 

and asymptotically normal estimates is obtained. L~mits for bias and mean 

square error are also given. Moreover, it is shqwn that the class of 

estimatoxs generates an asymptotically Gaussian process with independent 

components. 

The results of the paper, like those of [3li rest rather heavily 

on Theorem 1.1, which is essentially a modification of some results on 

approximations of functions at points given in [1]. Actually, the exten

sion is carried out in two directions corresponding to the two general 

forms of the approximating functions of probability densities as generally 

described in Theorems 1.1 and 6.1. 

Estimating a multivariate density function might arise in various 

practical situations, e., g-.,; in estimating the hazard ·function f{x)/ { 1-F(x)}. 

* This work was supported in part by the National Science Foundation under 
Grant Number C-19126. 



- Thus, if x
1 

and x
2 

denote the ages of husband and wife respectively, 

then f(x
1

, x
2

) is involved in what actuaries might call r.rithe joint 

force of mortalityn of a couple: f(x
1

,x
2

)dx
1

dx
2
/(l-F(x

1
,x

2
)); this is 

the conditional probability of the husband's death in (x
1

, x
1 

+ dx
1

) 

given survival to age x
1 

and the wife's death in (x
2

, x
2 

+ dx
2

) 

given survival to age x
2

• Apparently however, such applications at 

present are rare (if not nonexistent), because of theoretical and 

technical difficulties involved in such a pursuit. 

1. A family of asymptotically ·u·nbiased estimates. Let x
1 
,x

2
, ... ,Xn 

be n independent observations on a p-dimensional random variable X with 

absolutely continuous distribution function F(x) so that 

(1.1) 

-ex, -00 

We are interested in estimating f(x) on the basis of the sample 

x
1

, ... ,Xn. It should be recalled at the outset that,whereas an unbiased 

estimate of F(x) is provided by the empirical distribution function 

(1.2) F (x) 
n 

= 
1 
n 

n 

l: € (x - X.), 
. 1 l. 
J= 

where e(y) = 1 if yi ~ 0 for all i = l, ••• ,p, and e(y) = 0 

otherwise, there exists no uniformly (in x) unbiased estimate of the 

density f(x) {see [4]). Therefore, it is desirable to look for estimators 

which, besides having other optimality properties, are unbiased in the 

limit as n tends to infinity. In the absolutely continuous case a simple 

asymptotically unbiased estimate may be constructed from F (x) as follows. 
n 
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(1.3) 

where 

Let R(x;h) denote the rectangle in E centered at x defined as 
p 

R(x;h) = (y:x. - h. ~ y. ~ x. + h., i = 1, ••• ,p}, 
i i i i i 

hl, ••• ,hp are positive constants. Then, for 111sma1Pa rectangles, 

the density f(x) may be estimated by the naverage empirical density 

function" 

f~(x) = n_Il<2hJ {no. of X's falling in R(x;h) . 

f 
p ~ -1 "} 

i=l 

This can be written as 

[ 

p -·, 
,-1 

f~(x) = 2P II h
1
j 6 Fn(x) 

i=l J 

where 

6,F (x) = F (x
1
+ h

1
, ... ,x + h ) - F (x

1
- h

1
, x

2
+ h

2
, ..• ,x + h) 

n n pp n pp 

- . • . - F (x
1
+ h

1
, .•. ,x 

1 
+ h 

1
, x - h ) 

n p- p- p p 

+ ......... + (-l)PF (x
1

- h
1

, .•• ,x - h) 
n p p 

is a p-th order difference of F (x). Let us now choose h = (h
1

, .•• ,h) 
n p 

as a function of the sample size n (this will be understood in the sequel 

even if, for convenience, we write h instead of h(n)) so that 

(1.4) lim h(n) = 0. 
n~00 

It follows then, since F (x) is an unbiased estimate of F(x) and F(x) is 
n 

by hypothesis absolutely continuous, that 

(1.5) lim E[f
0

(x)] 
n 

n ~00 

= lim 
n ~00 

/:J.F(x) 
p 

II (2hi) 

i=l 

-3-
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whenever xis a continuity point off. 

The estimate f
0 

(x) however may 'be written also as a weighted average 
n 

n 

[ 

p J -1 
= n_rrhi I 

1.=l . 1 
J=, 

tl-X · 1 x - X. ~ 
K J P JP 

-h-i--, ••. , hp , 

where the weighting function K{y) is the uniform kernel: 

(1.7) 
K{y) = 2-p if IYil ~ 1 for each i=l, .•• ,p, 

K(y) = 0 otherwise; 

here, and henceforth unless otherwise stated, the domain of integration 

is the entire range of the integrated variable; X. = {x.
1

, ... ,X. ), j=l, ..• ,n. 
J J JP 

The form of the estimate f
0
{x) in (1.6) suggests that by choosing different 

n 

kernels K(y) as weighting functions we can generate a family of estimates 

of the form (1.6). 

Indeed, we are now going to give fairly general conditions on kernels 

K(y) so that the corresponding estimates of the form (1.6) are asymptotically 

unbiased. First, we shall consider the case where the role of the rectangle 

(1.3) above is played by a square centered at x, so that h
1
=h

2
= ••• =hp=h. 

Therefore, the problem reduces to finding conditions on K(y) under which 

estimates of the form 
n 

(1.8) f (x) 
n = I (h( 

1 IK~) 
j=l 

are asymptotically unbiased in the sense that, whenever the sequence of 

-4-



-

-

positive constants h(n)satisfies (1.4), we have 

lim E[f (x)] = f(x). 
n 

n ~oo 

Such sufficient conditions on Kare essentially given by the following 

theorem, which is a multivariate analog of Theorem lA of [3], and forms 

the basis of this paper. 

Theorem 1.1. Suppose K(y) is a Borel function on E such that 
p 

(1.9) supj K(y)j < oo, 

yeE 
p 

(1.10) J IK(y)ldy < 00 , 

(1.11) lim jyjPjK(y)j = O, 

IYl~oo 

where IYI denotes the length of the vector y. 

Let g(y) be another scalar function on E such that 
p 

f ls(y)ldy < 00 , 

and define 

(1.12) g (x) = 
n 

l JK & g(x-y)dy, 
(h(n) t h(n) 

where {h(n)} is a sequence of positive constants satisfying (1.4). 

Then at every point x of continuity of g 

(1. 13) lim gn (x) = g(x) J K(y )dy 
n ~oo 

Proof. Note that 

gn(x) - g(x) j K(y)dy = h! j [s(x-y) - g(x)] K(f) dy. 

Choose 8 > O and split the region of integration into two regions: 

-5-
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I YI ~ 8 and I YI > 8. We have 

lg (x) - g(x) j K(y)dyl ~ maxlg(x-y) - g(x)I f IK(z)ldz 
n I YI ~e I I s 8 

z~~ 

lzJ.: 
(h(n))P 

jK(iifuy)ldy + lg(x)I J 1 
P IK~) ldy 

I yj>8 (h(n)) 

~ max I g(x-y) - g(x)I }I K(z)I dz + _! sup 
6 

I zl pl K(z)I JI g(y) I dy 
IYl~8 · 5P lzl~ ~ 

+ I g(x)I JI K(z)I dz , 

I zl> h(n) 

which tends to O if we let first n -+ co(h(n) -+ 0) and then 8 -+ O. 

Corollary 1.1. The estimates defined by (1.8) are asymptotically unbiased 

provided the constants h(n) satisfy (1.4) and the kernel K(y) satisfies, 

in addition to (1.9) - (1.11), the condition 

(1.14) J K(y)dy = 1. 

Proof. Note that by (1.8) 

(1.15) Ef (x) = E [ l K/~( )X)] = J l p Kthx( -,x) f(y )dy 
n l(h(n))p \: n {h{n}) V n / 

and apply Theorem 1 with g (x) = f (x), g(x) = f(x). 
n n 

Remarks. It should be observed that K(y) above does not have to be p.ositive 

in order that Corollary 1.1 hold •. However, since we would like f (x) to 
n 

be nonnegative for every x and every n, it is more natural for our purposes 

to assume that K(y) is also nonnegative, in which case the estimates f (x), 
n 

as well as the K(y), are themselves density functions. We might think, then, 

-6-
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of the kernel K(y) as a weighting function, and, moreover, from the 

definition off (x), for each x as a parameter point K defines an a 
n 

priori density on EP of the form K(x~y)/hp so that fn(x) may be 

considered, in some sense, as a Bayes estimate of f(x) with respect to 

K as "prior weighting distribution." The form K(x~y) as a function of 

y also motivates the symmetry assumption we are going to make in the 

sequel (c.f. (1.6) and (1.7 )), namely, that K(y) is an even function in 

the sense that 

(1.16) K(y) = K(-y) 

Someexamples of K(y) are given in Table A. All the kernels except the 

normal one are product kernels in the sense that 

p 

(1.17) K(y) = 1U. 1<6(yi), 

where K
0
(t) is a kernel in E

1
. Of course the normal kernel becomes 

a product kernel if A is a diagonal matrix. 

K(y) 

2 -p, I y i I~ 1, i=l, ••• , p 

0, otherwise 

(2rr?/21AI½ e -½y' Ay 

p 

- E Ix I 
2-pe i=l i 

p 

IT r7r<1 + y~), -
1 

. 1 L' i ~ 
l.= 

0 otherwise 

TABLE A 

k(u) = e K(y )dy f iu'y 

1 -1 
-2',l'A u 

e 

P (sin(u/2)_)
2 

A u/2 1 

-7-
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2. As:ymptotic moments of the estimates. 

(1.8) may be written as an average 
n 

The estimate f (x) defined in 
n 

(2.1) f .{x) = l ~ £ .(x), £ .(x) = ...1 K~xh-Xj\, 
n n . nJ nJ hp 1 

J= 

of independent random variables identically distributed as a random 

variable 

(2.2) 

The study of the asymptotic properties off (x) relies on certain asymp
n 

totic expressions for the moments of£ (x) given in the following 
n 

propositions. 

Lennna 1.1 Let r ~- l; then, under (1.4), at every continuity point x of f(x) 

(2.3) lim hp(r-l) E(g~(x} = f(x)j¥:(y)dy. 
n ~co 

Proofo By (1.9) and (1.10) r(y) is bounded and absolutely integrable, 

and hence by Theorem 1.1 

hp( l-r) E fr (x) = f ...! r(x-y\ f(y )dy 
n hp h ·J 

converges to f(x) J IC(y)dy as n tends to oo, 

Applying the lennna for r = 2 and from (2.1),we obtain 

Corollary 2.1. The asymptotic variance of f
0

(x) in (1.8) satisfies 

(2,4) nhp Var[fn(x)] n -+; f(x)j K2(y)dy 

at every continuity point x off provided the constants h = h(n) satisfy (1.4). 

Lennna 2.2. Let x and x* be two continuity points off. Then, under (1.4), 

the asymptotic covariance off (x) and f (x*) satisfies 
n n 

(2. 5) nhp Cov(f
0 

(x), f
0 

(x*}--+o 

as n- ~co. 

-8-
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Proof. From (2.1) and (2.2) the quantity in (2.5) is equal to 

The second term ~o as n ~m by (1.4) and Theorem 1.1, and the first 

term after changing the variables can be written as 

(2.6) 

To show that this al so tends to zero as h ~ O (i.e., n -+ m) note that K(y) 

is bounded by hypothesis and K(y) ~o as IYI ~m by (1.11); hence, it 

is possible to split the region of integration into two regions, lzl ~ p 

and I zl > p where p is sufficiently big so that for every e
1 

> 0 

K(z) < e
1 

for lzl >p, and for every e
2 

> 0 there is N(e
1

) such that 

for all n > N(E
2

) h(n) makes K~ + x:(n)) < €
2 

for all lzl ;a; P· Therefore, 

fhe integral in (2.6) tends to zero ash ~o in view of the uniform bounded

ness of Kand the fact that jf(y)dy = 1, 

3. Consistency of the estimates. 

Theorem 3.1. If the constants h = h(n) in addition to (1.4) satisfy the 

condition 

(3.1) 

then the estimates f (x) are consistent in quadratic mean, i.e., 
n 

(3.2) lim E[f (x) - f(x)] 2 = O 
n 

n ~m 

at every point x of continuity of£. 

Proof. We have 

E[f (x) - f(x)] 2 = Var[£ (x)] + b2 [£ (x)] 
n n n 

-9-



.. 

where 

b[f (x)] = E[f (x)] - f(x) 
n n 

is the bias off (x). Hence and by (3.1) and Corollaries 1.1 and 2.1 
n 

(3.2) follows. 

Now it will be shown tha~under some additional assumptions,£ (x) 
n 

is a uniformly consistent estimate of f(x). For this we introduce the 

Fourier transform 

(3.3) k(u) = e K(y )dy J iu'y 

of K(y),and the sample characteristic function 
n 

(3,4) <pn(u) = fe iu'y dFn(y) = ¼ Ee iu'Xj 

J=1 

Then f (x) may be written as 
n 

-- nhlp ! K(xh-Xj) -- _1_ J iu'x e - k(hu) ~n(u)du > 
(2Jr)P 

j=l 

(3.5) f (x) 
n 

since k( u), like K(y), is even • 

Theorem 3.2. Uniform consistency of the estimates f (x). If 
n 

(i) the probability density f(x) is uniformly continuous, 

(ii) the constants h = h(n1 in addition to (1.4), satisfy 

(3.6) lim nh
2

P = ~, 
n ~00 

(iii) the Fourier transform k(u) of K(y) is integrable (this is true for 

all k(u) in Table A except the first (c.f.[3])), then, for every€> 0 

(3.7) lim P[ sup lfn(x) - f(x)I > e] = O. 
n ~00 E 

p 

Proof. It suffices to show that 

1 

(3.8) lim E2 [ sup lfn(x) - f(x)l 2
] = O. 

n ~00 E 
p 

:.:10-
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But since, by the uniform continuity of f(x) and Theorem 1.1, we have 

(3.8) 

lim 
n ~00 

sup 
E 

p 

If (x) - f (x) I = 0, 
n 

will hold if 

J 

lim E2 [ suplf {x) - E(f (x))l 2
] = 0 

n ~00 E n n 
. p 

holds. By (3.5) we have 

(3.10) sup 1£ (x) - E(f (x))I ~ (2JrfPjk{hu)ICP. {u) - E(cp (u))ldu, 
E n n ··n n 

p 

and by Holder-Minkowski inequality (see, e.g., [1]) 

which tends to Oas n ~00 by (ii) and (iii). (The last inequality in (3.11) 
. 1 

follows from the fact that Var cp (u) ~ - by (3.4)). 
n n 

4. Evaluation of bias and mean square error. 

Theorem 4.1. Evaluation of bias. If the probability density function f(~) 

has . continuous partial derivatives of third order in a neighborhood of 

x and if 

( 4 .1) J y i K(y )dy = 0, i = 1, ••• , p, 

then as n ~00 

b(fn(x)) j 
(4.2) h2 ~ ~ d2 f(x;y) K(y )dy, 

where 
p p 

d2f (x;y > = I I 
i=l j=l 

-11-
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Proof. From (1.14) and (1.15) 

b[fn(x)] = E[fn(x)] - f(x) = J [f(x + hy) - f(x)] K(y)dy , 

and, expanding f(x + hy) by Taylor's Theorem, (4.2) follows in view 

of (4.1). 

Under the assumptions of Theorem 4.1, an approximate expression may 

be given for the mean square error (m.s.e.): 

The value of h which minimizes the m.s.e. for a fixed value of n is 

easily found to be (c.f. Lemma 4a of [3]) 

.4 
t>+4 

(4.4) 

pf (x) J K'2(y )dy 

h == 1J d2 f(x;y) K(y 

that is, assuming that the integras in (4.4) converge absolutely, 
1 

(4.5) h = o(n- p+li-) 

Therefore, the m.s.e. 

Ejfn(x) - f'.(~)I~.., (p+4) [~(J d~f(x;y) K(y)dy)i p;Ji 

4 

(¥n J K2(y)dy)-;iJ+~ 

which shows that f {x) as an estimate of f(x) is consistent of order 
n 

4 4· 

n - p+4, i.e., its m.s.e. = O~- p+li-) (c.f. [3] and [4] for p = 1). 

5. AsXSJ?tot~c normality. In this section, we establish the asymptotic 

normality of the estimates f (x). The proof is based on the expression 
n 

(2.1) off (x) as a sum of independent and identically distributed random 
n 

variables s .(x) and the expressions for the asymptotic moments of these 
llJ 

-12-
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variables as given in section 2. 

Theorem 5.1 Let x(l),x(
2
), ••• ,x(k) be any finite set of continuity 

points off. If the constants h = h(n) satisfy (1.4) and (3.1), then 

the joint distribution of the random variables fn(x
1

), .•• ,fn(~) is 

asymptotically a k-variate normal in the following sense: 

For any real numbers c
1

, ... ,ck, 

where .t denotes' the standard normal distribution function, and 

(5.1) of= f(x(i)) J K2 (y)dy, i=l, ••• ,p • 

Proof. We have from (2.1) and (2.2) 

where, for each fixed i and each n, the 

/x(i)_ xi\ 
gnj(x(i)) = h-p~ h ~· j = 1, •.• ,n 

are independent random variables identically distributed as a random 

variable 

~n(x(i)) = h-pK~(i~_ x~. 

By Bernstein's multivariate central limit theorem {see Robbins

Hoeffding [2]) as applied to the set of independent and identically 

distributed random vectors 

p/2 G c1> < (k)~ = Z . = h i .(x ), ..• ,~ . X j 
nJ · nJ nJ 

l, ••• ,n, 

it suffices to show that 

-13-



for r,s=l, ••• ,k, and 8rs= 1 if r=s,8rs= 0 ,if i rs, and 

(5.3) 

where 

Now (5.2) follows innnediately from (2.3) and Lemma 2.2. 

In order to verify (5.3) it is enough to show that 

(5.4) n-li.E [hP
12

gn(x(i))]3 ---+ O, i=l, ••• ,k, 

as n ~~. But by (2.3), for each i, the quantity in (5.4) is approximately 

equivalent to 

(rulr11f(x(i)) J i3(y)dy 

and hence (5.4) follows from (3.1) since J i3(y)dy < ~·. K being bounded 

and integrable. This completes the proof of the theorem. 

Remark. In view of the results above, we may regard the estimates f (x) 
n 

as a stochastic process with vector parameter x ranging in the domain of 

definition of the estimated density f(x); furthermore, by Theorem 5.1, 

the process is asymptotically (as n ~~) Gaussian and its finite dimensional 

distributions are multinormal with independent components. 

In order to be able to replace E(f (x)] by its limit f(x) in Theorem 5.1 
n 

so that we can state that Jnh.Pf (x) i~ asymptotically normal with mean f(x) 
n 

and variance f (x) 1· K2(y )dy, it is necessary to impose some further res-

trictions on the rate of convergence of h to Oas a function of n. Thus 

from Theorem 5.1, the bias off (x) must satisfy 
n 

-14-
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which, under the assumptions of Theorem 4.1 and by (3.l)~holds if 

( -a) 1 1 
h=On 'p+4<a< p· 

It is interesting however to point out that the above range of a, 

specifying the rate of convergence of h to O~ as n tends to infinity, 

does not include the optimum a*= (p+4)-l co~responding to the h=h(n) 

of (4.4). Since however a* is the left end point of the above a interval, 

it suggests choosing h just smaller than the optimal h. This would make 

possible the above normal approximation of the distribution off (x) for 
n 

"large" n, and, in such case, it is clear how this might be used,for 

example, in setting up a test for the hypothesis that f(x) takes on a 

specified value. However, the discussion of this and related problems 

is outside the scope of our present investigation and we will not pursue 

it any more here. 

6. case of product kernels. The results of the preceding sections depend 

to some extent on the fact that, roughly speaking, the rectangle R(h,x) 

in (1.3) was restricted to a square,so that the estimators of the form 

(1.6) obtained the special form of (1.8). This enabled us to impose 

fairly general and nice conditions on the weighting functions K(y), which 

resulted in a natural multivariate generalization as given above. The 

purpose of this section is to indicate how most of the preceding results 

carry over to the case of estimates of the form (1.6). Of course, now we 

assume that the sequence of constant vectors h(n) = (h{(n), ••• ,hp(n)) 

satisfies (1.4). Moreover, in order to obtain an approximation theorem 

analogous to Theorem 1.1, we have to impose a different set of conditions 
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on the kernels K(y). Such sufficient conditions are given in the following 

theorem relating to the interesting case of product kernels as defined in 

(1.17). The estimates now take the form 

(6.1) 

Theorem 6.1. Let K(y) be a product kernel in the sense of (1.17), that is, 
p 

(6.2) K(y1, ... ,Y ) = IT K0(y.) 
p i=l l. 

where K
0 

is a kernel in E
1

• Suppose K
0 

is bounded and absolutely integ-

rable, and 

(6.3) lim ltK
0

(t)I = 0. 
~ ~00 

Let g(y) be as in Theorem 1.1, and define 

g (x) = 
n 

1 Ju(Y_l Y \ 
P ~l····•\J g(x-y)dy, 

Ilih. 
. l. 
l. 

where the sequence of constant vectors h=(h1 , ••• ,hp)=h(n) sa~~sfies (1.4). 

Then for every continuity point x of g 

(6.4) lim gn(x) = g(x) J K(y)dy, 
n ~00 

Proof. For the sakec£ brevity and clarity, we give the proof for the 

bivariate case p = 2, since the general case requires only obvious modi

fications. 

We have by (6.2) 

(6.5) gn(xl,x2) - g(xl,x2) ff Ka(yl) Ka(y2)dyldy2 
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Let 8
1 

> O, 8
2 

> 0 and split the region of integration into 

four regions, 

from I\ to the absolute value of the right-hand side of (6.5) is not 

greater than 

which tends to O if we let 8
1

, 8
2 

go to O, since (x
1

,x
2

) is a continuity 

point of g. The contribution from R
2 

is at most equal to 

-co < z
2 

< co 

+ lg(xl,x2)1j' l~(z1)ldz1Jl~(z2)idz2' 

I z1l > 81(h1 

which tends to Oby (6.3) if we let n tend to co {i.e., h
1

(n) ~o). 

Similarly for &
3

, and finally the contribution from¾ does not exceed 

slup lz1~(z1)I lz2~(z2)I J J g(yl'y2)dyldy2 
lzl > 8/h1 

I z2l > 82'h2 

+ lg(xl,x2)1 J l~(z1)ldz1f l1<c,(z2)ldz2' 

I zll > 8/h1 lz2l> 82/h2 
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which tends to Oas n ~m. Hence (6.4) follows. 

In obtaining the analogs of Corollaries 1.1, 2.1 and Theorem 3.1, 

3.2, 2in.4 5.1 for the estimators f:(x) of (6.l) details will be . 

omitted. Thus, for example, the condition (3.1) in Theorem 3.1 will be 
p 

replaced by n II h. (n) ~m as n ~m, and (3.6) in Theorem 3.2 by 
i=l l. 

p 

.n II h~(n) ~m as n ~m. Theorem 5.1 holds if we replace hp by h
1

IJ.
2

, ••• ,hp; 
i=l l. 

p 

note also that, since K(y) = IT K
0 

(y. ) , 
i=l l. 

the asymptotic variances a~ in (5.1) 
-i 

become a1 = f(x(i:){J ~(t)dip • 

For an estimate of the bias of f'*(x) we have the following analog of 
n 

Theorem 4.1, which can be easily established. 

Theorem 6.2. Suppose f(x) satisfies the assumptions of Theorem 4.1, and 

J tRu(t)dt = O. Let h(n) satisfy (1.4) and suppose that 

h. (n) 
lim hl.( ) = r .. > O, if j, i,j = 1, ••• ,p ~ 

. n J.J 
n ~m J 

then as n ~m 

b[f*(x)] 
n -+ I 

i 

where 
p 

( ) o2
f(x) .;! I a 

f . . x = -.:,,, 2 , r . = r . . r . . = 1 , i=l , ••. , p . 
11 ox. l. ~ lJ 1.1. 

]. J =.a. 

Furthermore, it can be easily verified, that for fixed n, the optimum 

choice of h(n) = (h1(n), ••• ,hp(n)) in order to minimize the approximate 

expression for the mean square error of~ (x) (c.f.(4.3)) requires taking 

h1(n) = h2 (n)= .•. =hp(n) = h0(n). It then follows that again h
0

(n) is of 
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the same order of magnitude as h(n) in (4.4). 

Finally, we should like to point out that the estimates f*(x) in (6.1) 
n 

have a stronger invariance property than the one possessed by the f (x) 
n 

in (1.8), namely, whereas the f (x) are invariant under the same scale 
n 

transformation Xi ~cxi(c > 0) of each of the components x
1

, .•. ,XP of the 

abreviation vector X, the f*(x) are invariant under different scale trans
n 

formations of the components of X, i.e., X. ~c.X.(c. > 0). This property 
i i i i 

of f*(x) is more desirable from the practical point of view, since the 
n 

components of X may represent inco11lllleosurable characteristics (e.g., height 

and weight). 
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