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ESTIMATION OF A NOISY DISCRETE-TIME STEP FUNCTION:
BAYES AND EMPIRICAL BAYES APPROACHES!

By Yi-CHING YAoO

Colorado State University

Consider the problem of estimating, in a Bayesian framework and in the
presence of additive Gaussian noise, a signal which is a step function. Best
linear estimates and Bayes estimates are derived, evaluated and compared. A
characterization of the Bayes estimates is presented. This characterization
has an intuitive interpretation and also provides a way to compute the Bayes
estimates with a number of operations of the order of T® where 7' is the fixed
time span. An approximation to the Bayes estimates is proposed which reduces
the total number of operations to the order of 7. The results are applied to
the case where the Bayesian model fails to be satisfied'using an empirical
Bayes approach.

1. Introduction. We consider the problem of estimating, in a Bayesian
framework, a signal which is a step function when one observes the signal plus
Gaussian noise. Optimal linear and nonlinear estimates are derived and com-
pared. '

This problem is a simplified version of a more general one, applications of
which appear in many fields such as seismology, tomography, image processing,
econometric modeling, regression analysis and tracking problems. In these prob-
lems, the unknown underlying structure is a function, of one or more variables,
which is discontinuous or has discontinuous derivatives. It is desired to estimate
these nonsmooth functions (signal processes). They can be measured either
directly with measurement error or indirectly through various transformations.
There are two important and relevant problems: (1) Can one estimate such
signals efficiently? (2) Can one detect whether or when a process changes its
character?

We shall restrict ourselves to the simple case where the signal processes are
flat except for jumps and can be measured directly. In other words, in discrete
time denote the signal process by u;, us, - -+, ur and let w1 = u, except for
occasional changes. Let the observations X, = u, +¢,,n=1,2, - .., T where the
¢, are measurement noise. We shall concentrate on estimating the signal process
(i.e. the first problem) and pay little attention to detecting change points.

In this simple case, if the change points were known, we could estimate u, by
the average of the data points between the two surrounding change points. If
jumps are not large, it is hard to tell when jumps take place and take appropriate
action. Moreover, if measurement noise has a heavy-tailed distribution, outliers
may be disguised as jumps.
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In order to develop insight for estimating the signal from the observations, we
take a Bayesian point of view and consider a simple model. To be specific, we
will characterize the underlying problem through the following special assump-
tions, which form the discrete time version of a model of Duncan (see Barnard,
1959, page 255).

(1) The sequence of the change points forms a discrete renewal process with
identically geometrically distributed interarrival times.

(2) The distinct levels of the signal are mutually independent from a common
Gaussian distribution.

(3) The measurement noise is Gaussian white noise.

Barnard (1959) and Chernoff and Zacks (1964) studied a similar model where
the number of operations required to compute the Bayes solution is of the order
of 27. Here T is the fixed time span. In contrast, we will see that in our case the
Bayes solution can be computed with a number of operations of the order of 7°.

This paper is organized as follows. In Section 2, the Bayesian model is
formulated more precisely. In Section 3, the minimum variance linear estimates
of the signal are derived and their average mean squared error is expressed in a
closed form. In Section 4, a characterization of the Bayes solution is presented
which has an intuitive interpretation. A good approximation to the Bayes solution
is also proposed, which is computationally efficient. In Section 5, various esti-
mates are compared under the Bayesian model. In Section 6, we discuss, by use
of an empirical Bayes idea, a more general problem where either the Bayesian
model has unknown parameters or it fails to be satisfied. Section 7 is a simulation
study of the empirical Bayes estimate developed in Section 6.

2. The special Bayesian model (Model A). The three assumptions of
the model (to be called Model A) are described more precisely below.

(1) LetdJ = (Jy, s, - - -, Jr—1) be a Bernoulli sequence indicating when changes
take place; i.e.
J, =1 if there is a change between n and n + 1,

2.1
(2.1) = (0 otherwise

where Pr(J, = 1) =p, for 1 = n < T — 1. For convenience, define J, = Jy = 1.
(2) Let Yy, Yo, ---, Yr be iid. _#(8, 6®). Define the signal process {u.}

recursively as follows.

(22) M1 = Yl, Mn+1 = (1 - Jn)ﬂn + JnYn+1, n= 1, 2, ey, T-1.

This means that when a change takes place between n and n + 1 (i.e. J, = 1),
the signal process shifts to a new level Y, from _# (6, ¢°) (independent of the
previous levels) and keeps at the same level until the next change occurs.
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(3) Let the observation process {X,} be given by
(2-3) Xn=#n+8n3 n=1’2""’T

where the noise {e,} is i.i.d. _# (0, o2). The processes {J,}, {Y,} and {e,} are
mutually independent.

In Sections 3 through 5, the parameters p, 0, ¢, and o2 are assumed known
and without loss of generality, # and o2 are set equal to 0 and 1, respectively.

3. The minimum variance linear estimates (MVLE). The minimum
variance linear estimates of the signal depend only on the first and second
moments of the signal and observation processes. A standard argument shows
that fi,., the MVLE of p,, satisfies 4, = e.(I — M")X wheree, = (0,0, ---, 1, 0,
..+, 0)’ is the nth natural coordinate vector, I = the T X T identity matrix,
X = (X1, Xs, - -+, Xr)’ and the (i, j)-component of M = §; + o%(1 — p)!*7!,

Several explicit expressions have been derived in Snyders (1972) for the
asymptotic behavior of the minimum mean squared errors as T' — o in linear
filtering, prediction and interpolation of weakly stationary discrete time processes
corrupted by additive noise under very general conditions. In contrast, for finite
T, explicit expressions have seldom been found. The following proposition
presents a closed-form representation for AMSE(4,), the average of the mean
squared errors of fi,. The proof can be found in Yao (1981).

PROPOSITION 3.1.
AMSE(4,) = T7' Yot E(ftn — p)* = 1 + T 07 (=072 /fr(—07%)
=1+ 6 2ui(—e)/us(—e7% + o(1), (T — ).
where p=1—pand
fr(N) = a7 + bW (u-(N)7,
u=(\) = [1 = p* = M1 + p%) £ V(1 = p* = M1 + p?)* — 4p°N7]/2,

a(N) = [1 =N = p® = 1 = NuJ/(? — u,u),
b(N) = [(1 = Nus = (1 = N + p*)/(usu- — u?).

4. The Bayes solution—the minimum variance nonlinear esti-
mates. The Bayes solution can be computed by brute force with a number of
operations of the order of 27. In this section, we present a characterization of
Bayes estimates which has an intuitive interpretation and also provides a way to
compute the solution with O(T?) operations.

In the following, we consider the conditional distributions of u, based on
(1) the past and present data, < (u,|Xi, ---, X,), (2) the future data,
& (un| Xns1, - - -5 X7), and (3) all of the data, & (u,| Xi, Xz, - -, X7). We will
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see that < (u,| X1, - -+, X,) and < (u,| Xp+1, - -+, Xr) can be computed recur-
sively and . (.| X1, Xz, - - -, X7) can be computed by use of & (p,| Xy, - - -, X3)
and =-(/(I"'nl Xn+1’ Tty XT)~

Here are convenient notations:

(1) Xi=(X;, Xis1, -+, X;) (i = J). In particular, XT = X.

2) S =0, 8, = ¥ X, (cumulative sums).

(3) £(Y) = the distribution of random variable Y.

(4) f,,(z] X)) = the conditional probability density of x, at z given X

(5) ¢(-) = the standard normal density, the density of the noise distribution.

(8) f.(x) = (1/0)¢(x/s), the density of the prior signal distribution.

(7) “f(x, 2) = g(x, 2) in 2” means that there exists‘ c(x) such that f(x, 2) =
c(x)g(x, 2) for all x, .

4.1 Expressions for <& (un | X1 and & (o | X541

PRrOPOSITION 4.1.

(4.1) L | XD = Ty AP - /[

S, — Sn-x 1
k+oc 2’ k+o2

where, forn=1,2, ..., T; k=1, ... n,

p(1 — p) e p[(sn - sn_m]
V1 + kelaps: 2(k + 07%)

and a, (n=1,2, -.-, T+ 1) are defined recursively by a; = 1, and

o - zn a p(]- - P)k—l - (Sn - Sn—k)2
n+1 k=1 Kn—Fk+1 m p Z(k + 0__2) .

(4.2) Al =

4.3)

PrOOF. Applying Bayes’ theorem and using the conditional independence of
tns1 and {p;; L < n} given J, = 1, we can easily derive, for l=n<T — 1,

(44) [, XT) « ¢(Xnr1 — (A = P, (2] XT) + pfu(2)] in =

This provides ‘a recursive way to compute . (u, | X?) for all n. Since & (u1 | X1)
= _#(S:(1+ ¢, (1 + ¢, the proposition follows by use of induction and

(4.4).0
The number of operations to compute «,, given oy, k < n, is O(n) according
to (4.3). The total number of operations to compute
E(pn | X7) = Tit AP(Sn — Snci)/(k + 67%)

for all n is O(T?). As for Proposition 4.1, we can derive, by use of backward
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induction,

n —n Snk_Sn 1
(4.5) &L (pn| X711) = S8 BT /I/[ k++ o7 "k + 0_2]
where for T—n=0,1, ..., T—1;k=0,.--,T—n,

p(l — P)kﬂT—n—k ex l:(Sn+k - S,)?
T+ kot TL2(k+ o)

and 87, (n=T, - .-, 1) are defined recursively by 8, = 1, and

pl-p* [(SMH - sm]
Vi+ (k+ Do J2k+1+ 0677

4.2 Expressions for < (un | XT) and E(p, | X7).

(4.6) B = ] + (1 — p)énr

(4.7) Br-n = ThF™ Bron-1-s

PROPOSITION 4.2. The signal density satisfies
(4.8) [ 2| XT) « £, (2] XDf, (2| X7 [fu(2) in 2

REMARK. This states that the “two-sided” conditional density of the signal
is proportional to the product of the two “one-sided” conditional densities divided
by its prior density. The idea of using forward and backward recursions has been
introduced in the engineering literature. See Mayne (1966), Fraser (1967) and
Forney (1973).

Proor. By Bayes’ theorem,
fu2| XT = xT) = fxp(xT | pn = 2)fu(2)/fxp(x])
o fxr(x] | un = 2)fu(2) in 2.
From the Markov property of the process {u.,},
fxr(el | e = 2) = fxg(x? | o = 2) - fxz, (X0 | = 2)
= £z Xt = xDfxp(x)f,,(2 | X = x00)fxz, (x70)/[f2)])
« f, (2| XT = af, (2| XTs1 = 200)/[f(2)] in 2
Applying Bayes’ theorem again completes the proof.

From (4.1), (4.5) and (4.8), we can derive

PROPOSITION 4.3.

S; = Siy 1 }

Ty = . . -
49 L(u.|Xi 21515ns,;sT Cij /I/I:J i1+ 0_—2’1- —i+1+o2
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where
Cij = C,;/D, D= ElSiSnSjST Cz{p

(4.10) Cl = aspr (1 — p) . l: (S; — Si_1)? ]
v ZT—I\/1+(j—i+1)02 2 —i+1+ 673"

NOTE. It can be shown that D is independent of n and therefore equal to
ary1/p. Therefore, we have

(4.11) E(pn | X1) = Trmisnsjer Cy(S; — Sic)/(j — i + 1 + ¢72).

REMARK 1. Sinceforisn=<j
f/(#an?,Ji—1= ,Ji=dy=-.. =‘]j—1=O,J}‘=1)

_ Sj—Si—l 1
-l 14+e Y — i+ 1+ 02
one can see from (4.9) that

Ci=PrJi=1,d;= ... =J,,=0,J;,=1| X)).

Thus {Ci41): 0 = i< n < j =< T} represents the conditional distribution of the
two change points surrounding time n. So, Pr(J, = 1| XT) can be computed by

Prid, = 1|1 X1) = B Prh = L Jpsr = -+ = Jpey = 0, J, = 1| X7)

= Y155 Cieryn.

In particular, Pr(No change in [1, T]| X{) = Cir can be used to test whether
changes have occurred.

REMARK 2.
E(pn| XT) = Sisisnzjer Ci(S; — Si)/(G = i + 1 + 67 = TL, dPX,
where
ap = Yisismin(n k) maxn,p<j=r Cif/(j =i+ 1+ ¢7%), 1sks=sT.

S0, 0<d{"<dP’ < ... <d® <dP>d", > ... >dP >0, and
Yi-1 dy” = Disisnsjer P ——— Ci<1

Thus, the Bayes estimate E(u, | X7) is a sample dependent weighted average of
the observations X, and the prior mean 0, and the weights d;{') attain their
maximum at k = n and decrease strictly as k moves away from n on either side.

REMARK 3. The number of operations required to compute «,, Brn, Cy
l=n=T1=<i=sj=T)is O(T?. The number of operations to compute
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E(u,| XD is O(n(T — n)). So the total number of operations to compute
E(un | XT) for all nis O(T?).

4.3 An approximation to the Bayes solution. Harrison and Stevens (1976)
proposed, for the filtering (i.e. one-sided) problem, an approximation technique
for computing the posterior distributions of states in multi-process models.
Their basic idea is to apply the following step recursively in time. First, the
(estimated) posterior distribution of the state at time ¢ is approximated by a
normal distribution with the same first two moments. Next, this normal approx-
imation is used together with the observation at ¢ + 1 to estimate the posterior
distribution of the state at t + 1. Applying this idea, we can approx-
imate < (u.|X?) as follows. Suppose that < (u.|X?) approximately equals
N (B, 72). By use of (4.4), & (pn+1 | XT*') approximately equals a mixture of two
normal distributions. Then we approximate & (gn+1| X)) by A (6nt1, T241)
where 8,., and 72,; are the mean and variance of this two-normal mixture de-
rived from (4.4). Here 0,., and 72, are functions of 6,, 72 and X, only. See
Yao (1982) for explicit expressions. Applying this step recursively with initial
conditions 6; = Xi(1 + 0™ and 77 = (1 + 67?7}, we approximate . (u, | X1)
by ¥ (0., 72) for each n. Similarly, we approximate . (.| X%) by # (wn, 63)
where w, and 82 are functions of w1, 62+, and X, only. Notice that these normal
approximations are exact for p = 0 or 1, for Model A is a Gaussian system when
p=0orl.

Now, we extend Harrison-Stevens approximation to the smoothing (i.e. two-
sided) case. We need the following variation of (4.8), the proof of which is similar
to that of (4.8). For2=n=T-1,

fuz| XT) o« ¢(Xn = 21 = P)f, (2] XT7) + pful2)]

x [(1 — p)f.,..z| Xin) + pf(D)/f(2) in =z

Since £ (n-1, X7 1) and & (pns1 | X%41) are approximated by _# (6,1, 75-1) and
N (@na1, 8241), & (pn | XT) is naturally approximated by the normalization of
the right side of (4.12) with £, (2| X7™") andf, , (2| X T.1) being replaced by their
normal approximations. This approximation is a mixture of four normal distri-
butions. Denote its mean by fi,, an explicit expression of which in terms of 6,-,,
721, Wne1, 0241 and X, is given in Yao (1982). The estimate g, may be regarded
as an appréximation to the Bayes estimate E(u, | X7). In fact we will see in the
next section that the /i, are close to the Bayes estimates in the sense of mean
squared error. Thus f, are nearly optimal. More importantly, the number of
operations required to compute i, for all n is O(T'). Hence, the computational
requirements of these approximate Bayes estimates are much less than those of
the exact Bayes ones.

(4.12)

5. Comparison among various estimates under Model A. In this sec-
tion, the performances of the MVLE i, the Bayes estimate E(y, | X), and the
approximate Bayes estimate f,, are compared in terms of their average mean
squared errors for T = 20 for different pairs of p and ¢°.
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Since E(ﬁn - I'Ln)2 = E[E(ﬂn I X) - I'Ln]2 + E[ﬁn - E(ﬂn I X)]Z: we have
(5.1) AMSE(i,) = AMSE(E(p, | X)) + AMSE(4. — E(u.| X))

where AMSE(ji, — E(pn|X)) = T7' Y11 Elfi» — E(p.|X))®. The AMSE of
E(u,|X) and £, — E(u. | X) are estimated by simulation with 400 replications
for each pair of p and o2 The AMSE of ji, is estimated by use of (5.1). The
AMSE of g, is calculated from Proposition 3.1. Partial simulation results are
presented in Figures 1 and 2 where either p or o2 is fixed. In these two figures,
the AMSE of E(u, | X, J) is also presented in order to see how much additional
information for estimating u, is obtained from the knowledge of the change

points.

REMARK 1. All these four estimates (including E(u. | X, J)) are identical for
p =0 or 1, for the model is a Gaussian system in these two cases.

REMARK 2. It can be shown that the AMSE of f, is increasing as p or o2
increases. So is the AMSE of E(u,|X) as p increases. However, from the
simulation results, it appears that as ¢? increases, AMSE(E(u, | X)) first in-
creases and then decreases and eventually approaches AMSE(E(u, | X, J)). One
explanation is that when o2 is large enough, J can be well estimated from X, and
this information can offset the loss of the relatively small amount of prior
information about y,.

REMARK 3. The linear estimate j, performs poorly when either ¢2 is mod-
erately large or p is away from 0 and 1. It seems that in non-Gaussian systems,
linear estimates are rather inflexible and therefore cannot perform well.

1.0

0.8

0.6

AMSE

0.4

0.2

0 1 ! il I
o 0.2 04 0.6 0.8 1.0

p

Fic. 1. AMSE as a function of p. (¢ = 4). (1) Best linear estimate; (2) Approximate Bayes
estimate; (3) Bayes estmate; (4) Estimate given change points.
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1.0

0.8 (1

0.6

AMSE

0.4

N/,o
/

0.2

F16. 2. AMSE as a function of o. (p = 0.1).

REMARK 4. In our simulation study, AMSE(i, — E(u,| X)) = AMSE(4,) —
AMSE(E(u, | X)) is at most about 10% of AMSE(E(u, | X)). This indicates that
i is a good approximation to E(u, | X). Since the cost of computing 4, is much
less than that of E(u, | X), it may be desirable to substitute g, for E(pu, | X).

6. An empirical Bayes estimate using Model A with unknown param-
eters. Ingeneral, astep-function signal can be either deterministic or stochastic
and therefore Model A can fail to be satisfied. Why then should we consider this
model? The basic idea is that it is hoped the unknown signal would resemble a
“typical” realization of the model with properly assigned parameters. Indeed, this
is an interpretation of the empirical Bayes approach. The most famous example
is the James-Stein estimate which shows uniform superiority to the classical
estimate of the mean of a multivariate normal distribution.

It is almost impossible to produce a sensible estimate of the signal without
any information about the structure of the signal and/or the noise. Hence, our
first assumption is that the noise is Gaussian white noise. One main reason to
have the Gaussian assumption is that it is hard to distinguish outliers from jumps
if the noise has a heavy tailed distribution. Furthermore, if the step-function
signal has many jumps, the noise variance cannot be well estimated. Indeed, the
noise variance in Model A is not identifiable without further information. For
instance, the observation process {X,} is i.i.d. _#(0, 1) when (p, 0, o, 0.) =
(1,0, 1, 0) or (p, 0, 0, 1). So, we make the second assumption that the rate of
jump in the signal is at most p, where p, is a prespecified number between 0
and 1.

As the next step in generalizing our estimation procedure, let us assume that
Model A applies with unknown parameters p, 6, s, 0. and apply maximum
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likelihood to estimate these parameters. Notice that in this section we do not
assume § = 0 and o2 = 1 unless otherwise specified. To be more precise,
we estimate the signal u, as follows. First, fit Model A to the observations
X; (1 =i =< T) by finding the maximum likelihood estimates (MLE) p, 8, ¢ and
o, with the constraint that p < p,. Next, estimate u, by

(6.1) iR = E(u,|X) at (p, 9,5, 4)

where EB stands for empirical Bayes and E(-) at (p, 0, , 6,) means expectation
according to the probablhty structure determined by parameter values p = p,
0=0,0=¢and g, = d,. Since the MLE satisfy, (for constants a % 0 and any c)
p@X + ¢) = p(X), 6@X + ¢) = abdX) + ¢, 6(aX + ¢) = |a]6(X) and
o.(aX + ¢) = | a| 6.(X), and since Model A is time reversible, the empirical Bayes
estimate of u,, AE®, is translation and scale invariant,.and time reversible. That
is,

(6'2) ﬁEB(ax + C) = aﬁEB(X) + c, ﬁEB(Xl, M) XT) = ﬁFI:'Er&l(XTy ct Xl)-

The computation of the MLE can be very time-consuming. A naive method
may require O(27) operations to compute the likelihood for each quadruple
(p, 8, 0, 6). We present in Proposition 6.1 a representation of the likelihood
function which reduces the number of operations to the order of T2 Since the
log likelihood L(p, 8, o, o.; X) satisfies

(6.3) L(p,0,0,0.;X)=L(p, 0, ¢/c.,1; X’) — T log o,

where X; = (X, — 0)/0., we need only consider L(p, 0, o, 1; X). The following
proposition is a simple consequence of Proposition 4.1.

PROPOSITION 6.1.
L(p, 0, o, 1; XT =20 = log fX,(xl) + 25;11 log fX,,+1(xn+1 | XT = x7)

where
LX) = 40,2+ 1),

L (Xnr | XD
(6.4)

S, — S.- 1
=(1-p) T AP . /1/< k+a’2k’k+a‘2+ 1>+p/f/(0, e+ 1)

and A" are deﬁned in Proposition 4.1.

Even though this proposition suggests a way to compute the exact likelihood
with O(T?) operations, it is still time-consuming to compute the MLE without
further reduction in computation. Therefore it is desired to find a more efficient
way to approximate the likelihood. We will again make use of the idea of Harrison
and Stevens in Section 4.3 to develop an approximation procedure which reduces
the number of operations to the order of 7.

Assume 6 = 0 and ¢, = 1 now. First, we approximate & (X,+; | X7) as follows.
In Section 4.3, & (u, | X?) is approximated by _# (,, 72) where 8, and 2 are
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defined recursively. Since
L (X1 | XD = 1 = p) A (4n | XP) * #(0,1) +pA# (0, 6* + 1)

where * means convolution of laws, we are naturally led to approximate
L (X1 | XP) by (1 — p) A (B, 72 + 1) + p#(0, 0* + 1). Next, we approximate
the log likelihood L(p, 0, o, 1; X) by use of Proposition 6.1 and the above
approximation and denote this approximate log likelihood by L(p, 0, ¢, 1; X). By
(6.3), define L(p, 0, o, 0.; X) = L(p, 0, o/o., 1; X’) — T log o, where X, =
(X, — 8)/0.. This approximation L is close to L in the sense that the Kullback-
Leibler information number between exp(L) and exp(L),

E[L(p, 9, o, 0.; X) — L(p, ,0,0,;X)] at (p,0,o0,0)

is small. Detailed numerical results on this approximation can be found in Yao
(1982).

We shall define the pseudo MLE p’, §’, 6’, 6. as the values of the parameters
which maximize L subject to p < po. Then we estlmate un by

(6.5) ji=E@u,|X) at (p', 8,6, 40).

7. Simulation on empirical Bayes estimators. In this section, we com-
pare, through computer simulation, the performance of /i, (an approximation to
4EP), and several other estimates. We considered deterministic signal sequences
of length 7' = 20. For each signal sequence, we generated 100 samples of Gaussian
white noise of variance 1.

In defining /i, we estimated the parameters of Model A by use of pseudo
maximum likelihood. It is interesting to see how well the method of moments
can do compared to the pseudo maximum likelihood method. It is also interesting
to see how much the additional information ¢, = 1 can contribute to estimating
.. Hence, we considered the following four estimators of .

(i) Estimator 1: ., po = 0.2.

(ii) Estimator 2: This is defined in the same way as Estimator 1 except for
the additional constraint ¢, = 1 in the pseudo maximum likelihood estimation of
the parameters.

(iii) Estimator 3: E(u.|X) at (p:, 61, o1, 6.1) where these four parameter
values are estimates of the true ones by the method of moments based on the
first two sample moments and sample autocovariances at lag 1 and lag 2. The
estimated p, is truncated at 0.2.

(iv) Estimator 4: This is defined in the same way as Estimator 3 except for
the additional constraint o, = 1.

We use the average of mean squared errors (AMSE) as the criterion. Partial
simulation results are presented in Table 1 where we also present the mean and
standard deviation of &/, the pseudo MLE of o..
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Note. All these estimators have one property in common, namely, they first
estimate p, 6, o, o, and then estimate u, by the Bayes estimate E(u, | X) at the
estimated parameter values. In the simulation above, we actually computed the
approximate Bayes estimate (see Section 4.3) instead of the exact one.

REMARKS ON TABLE 1:

(1) Roughly speaking, when the number of jumps increases, the AMSE of 4,
increases. When the size of jumps increases, the AMSE of ), first increases and
then decreases. For when the size of jumps is moderate (i.e. compatible with the
noise) it is hard to tell where jumps take place and take appropriate action. This
property is similar to that of the Bayes estimator. (See Remark 2 of Section 5.)

(2) Estimator 1 (41}) is better than Estimator 3. This suggests that the method
of pseudo maximum likelihood is better than the method of moments in finding
suitable parameter values.

(3) Estimator 1 is just slightly worse than Estimator 2. So the exact infor-
mation about the noise variance is not very important for estimating the signal
unless the rate of jump in the signal is high. In that case, it is hard to estimate
a, well.

(4) The empirical Bayes estimator, /i, is robust against the signals’ behavior.
However, it is not known how to deal with cases involving non-Gaussian noise
where outliers may be easily confused with jumps.

(5) If the rate of jump in the signal exceeds the prespecified number p,, 4,
may be misleading, although our limited simulations do not indicate so.

(6) It is interesting that &/, the pseudo MLE of o., estimates o, well with
small bias. This is essentially due to the information p < p,.
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