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Abstract
Estimation of a regression function from independent and identically distributed data is
considered. The L2 error with integration with respect to the distribution of the predictor
variable is used as the error criterion. The rate of convergence of least squares estimates
based on fully connected spaces of deep neural networks with ReLU activation function
is analyzed for smooth regression functions. It is shown that in case that the distribution
of the predictor variable is concentrated on a manifold, these estimates achieve a rate of
convergence which depends on the dimension of the manifold and not on the number of
components of the predictor variable.
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1 Introduction

Deep neural networks (DNNs) are built of multiple layers and learn sequentially multiple
levels of representation and abstraction by performing a nonlinear transformation on the
data. The approach has proven itself to work incredibly well in practice, like for speech
(Graves et al. (2013)) and image recognition (Krizhevsky et al. (2017)), or game intel-
ligence (Silver et al. (2016)). But, unfortunately, the procedure is not well understood.
Recently, several researchers tried to explain the performance of DNNs from a theoret-
ical point of view. Results concerning the approximation power of DNNs were shown
in Montufar (2014), Eldan and Shamir (2016), Yarotsky (2017), Yarotsky and Zhevn-
erchuck (2020), Langer (2021b) and Lu et al. (2020). Beside this, quite a few articles
try to answer the question about why neural networks perform well on unknown new
data sets (cf., e.g., Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer
(2020), Kohler, Krzyżak, and Langer (2019), Langer (2021a), Imaizumi and Fukumizu
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(2019), Suzuki (2018), Suzuki and Nitanda (2019), Schmidt-Hieber (2019) and the lit-
erature cited therein). The standard framework to do this is to consider DNNs in the
context of nonparametric regression. Here, (X, Y ) is an R

d × R–valued random vector
satisfying E{Y 2} <∞, and given a sample of size n of (X, Y ), i.e., given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} ,
where (X, Y ), (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed (i.i.d.),
the aim is to construct an estimate

mn(·) = mn(·,Dn) : R
d → R

of the so–called regression function m : Rd → R, m(x) = E{Y |X = x} such that the
so–called L2 error

∫

|mn(x)−m(x)|2PX(dx)

is “small” (cf., e.g., Györfi et al. (2002) for a systematic introduction to nonparametric
regression and a motivation for the L2 error).

It is well-known that without smoothness assumptions on the regression function it
is not possible to derive nontrivial results on the rate of convergence of nonparametric
regression estimates (cf. Cover (1968) and Section 3 in Devroye and Wagner (1980)).
In the sequel we assume that the regression function is (p,C)-smooth according to the
following definition.

Definition 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R

is called (p,C)-smooth, if for every α = (α1, . . . , αd) ∈ N
d
0 with

∑d
j=1 αj = q the partial

derivative ∂qm/(∂xα1
1 . . . ∂xαd

d ) exists and satisfies
∣

∣

∣

∣

∂qm

∂xα1
1 · · · ∂xαd

d

(x)− ∂qm

∂xα1
1 · · · ∂xαd

d

(z)

∣

∣

∣

∣

≤ C‖x− z‖s

for all x, z ∈ R
d, where ‖ · ‖ denotes the Euclidean norm.

As it was shown by Stone (1982), the optimal Minimax rate of convergence for es-
timation of a (p,C)–smooth regression function is n−2p/(2p+d). This rate underlies one
big problem, namely the so-called curse of dimensionality : For fixed p and increasing
d this rate gets rather slow. Since d tends to be very large in many machine learning
applications, to show Stone’s Minimax rate for DNNs is not really the answer for the
empirical good performance of DNNs. This is why many results are restricted to further
assumptions. Bauer and Kohler (2019), Schmidt-Hieber (2020), and Langer (2021a) con-
sidered regression functions with some kind of compositional structure and showed that
DNNs achieve a dimensionality reduction in this setting. Kohler, Krzyżak, and Langer
(2019), and Eckle and Schmidt-Hieber (2019) could show that DNNs can mimic the form
of multivariate adaptive regression splines (MARS). Kohler, Krzyżak, and Langer (2019)
further showed that in case of regression functions with low local dimensionality DNNs
are able to achieve dimensionality reduction. Further approaches like Barron (1993,1994),
Suzuki (2018), and Suzuki and Nitanda (2019) consider various types of smoothness or
spectral distibutions.
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1.1 Intrinsic Dimensionality

All the above mentioned results mainly focus on the structure of the underlying regression
function. Less results explore the geometric properties of the data. But it is reasonable
to also focus on the structure of the input variable X. Firstly, there exist several re-
sults where high-dimensional problems can be treated in much lower dimension (cf., e.g.,
Tenenbaum et al. (2000)). For instance, if we consider the pixels of potraits of persons,
the input dimensionality may be quite high, but the meaningful structure of these images
and therefore the intrinsic dimensionality can lie in a much smaller space. Secondly, as
already mentioned in Imaizumi and Nakada (2020), many estimators like kernel methods
or Gaussian process regression show good rate of convergence results depending only on
the intrinsic dimensionality of the input data (cf., e.g., Bickel and Li (2007) and Kpotufe
(2011)). It is therefore interesting to investigate whether estimators based on DNNs are
also able to exploit the structure of the input data.

In the sequel we do this by considering the special case that X is concentrated on some
d∗–dimensional Lipschitz-manifold. To describe this formally, we use the following defi-
nition.

Definition 2. Let M ⊆ R
d be compact and let d∗ ∈ {1, . . . , d}.

a) We say that U1, . . . , Ur is an open covering of M, if U1, . . . , Ur ⊂ R
d are open (with

respect to the Euclidean topology on R
d) and satisfy

M ⊆
r
⋃

l=1

Ul.

b) We say that
ψ1, . . . , ψr : [0, 1]

d∗ → R
d

are bi-Lipschitz functions, if there exists 0 < Cψ,1 ≤ Cψ,2 <∞ such that

Cψ,1 · ‖x1 − x2‖ ≤ ‖ψl(x1)− ψl(x2)‖ ≤ Cψ,2 · ‖x1 − x2‖ (1)

holds for any x1,x2 ∈ [0, 1]d
∗

and any l ∈ {1, . . . , r}.
c) We say that M is a d∗-dimensional Lipschitz-manifold if there exist bi-Lipschitz func-
tions ψi : [0, 1]

d∗ → R
d (i ∈ {1, . . . , r}), and an open covering U1, . . . , Ur of M such

that
ψl((0, 1)

d∗) = M∩ Ul
holds for all i ∈ {1, . . . , r}. Here we call ψ1, . . . , ψr the parametrizations of the manifold.

If M is a d∗-dimensional Lipschitz-manifold, then

M =
r
⋃

l=1

M∩ Ul =
r
⋃

l=1

ψl
(

(0, 1)d
∗)

(2)

and (1) hold. We will see in the proof of our main result that it suffices to assume that
M has these two properties.
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1.2 Neural Networks

In our analysis we consider DNNs with rectifier linear unit (ReLU) σ(x) = max{x, 0} as
activation function. A neural networks can be described by its number of hidden layers
L ∈ N and its number of neurons per layer k = (k1, . . . , kL) ∈ N

L, where ki describes the
number of neurons in the i-th layer. This leads to a network architecture (L,k) and the
corresponding neural network can be defined as follows:

Definition 3. A multilayer feedforward neural network with network architecture (L,k)
and ReLU activation function σ is a real-valued function defined on R

d of the form

f(x) =

kL
∑

i=1

c
(L)
1,i f

(L)
i (x) + c

(L)
1,0 (3)

for some c
(L)
1,0 , . . . , c

(L)
1,kL

∈ R and for functions f
(L)
i recursively defined by

f
(s)
i (x) = σ





ks−1
∑

j=1

c
(s−1)
i,j f

(s−1)
j (x) + c

(s−1)
i,0



 (4)

for some c
(s−1)
i,0 , . . . , c

(s−1)
i,ks−1

∈ R, s ∈ {2, . . . , L}, and

f
(1)
i (x) = σ





d
∑

j=1

c
(0)
i,j x

(j) + c
(0)
i,0



 (5)

for some c
(0)
i,0 , . . . , c

(0)
i,d ∈ R.

The space of multilayer neural networks with L hidden layers and r neurons per layer
is defined by

F(L, r) = {f : f is of the form (3) with k1 = k2 = . . . = kL = r}. (6)

As in Kohler and Langer (2020), we denote this network class as fully connected neural
networks. In contrast, network classes with a further restriction on the total number of
nonzero weights in the network are called sparsely connected neural networks.

A corresponding least squares estimator can be defined by

m̃n(·) = argmin
f∈F(Ln,rn)

1

n

n
∑

i=1

|f(Xi)− Yi|2 .

Here the number of hidden layers Ln and the number of neurons rn is chosen in de-
pendence of the sample size. For simplicity we assume here and in the sequel that the
minimum above indeed exists. When this is not the case our theoretical results also hold
for any estimator which minimizes the above empirical L2 risk up to a small additional
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term.
Due to the fact that we do not impose any sparsity constraints (i.e., an additional bound
on the number of nonzero weights in the functions in our neural network space), the
least squares estimate above can be (approximately) implemented in a very simple way
with standard software packages, e.g., in the Deep Learning framework of tensorflow and
keras. Here approximating the above least squares estimate from data xlearn and ylearn
can be done with only a few lines of code as follows:

model = Sequential()
model.add(Dense(d, activation="relu", input_shape=(d,)))
for i in np.arange(L):

model.add(Dense(K, activation="relu"))
model.add(Dense(1))
model.compile(optimizer="adam", loss="mean_squared_error")
model.fit(x=x_learn,y=y_learn)

For the implementation of sparsely connected neural networks, one may use so-called
pruning methods, which start with large strongly connected neural networks and delete
redundant parameters during the training process. Although the procedure is also simple,
the computational costs of these methods are high, due to the large initial size of the
networks. Therefore, the implementation of sparsely connected networks is critically
questioned in the literature (see, e.g., Evci et al. (2019) or Liu et al. (2019)).

1.3 Main results

In our study, we analyze the performance of DNNs when the input values are concentrated
on a d∗-dimensional Lipschitz-manifold. Here we develop a proof technique which enables
us to show a rate of convergence which depends only on the smoothness p and dimension
d∗ of our manifold, but not on d. In particular, we show that the convergence rate of
the above least squares neural network estimator is of the order n−2p/(2p+d∗) (up to some
logarithmic factor) and therefore able to circumvent the curse of dimensionality in case
that d∗ is rather small. In contrast to earlier results (see, e.g., Schmidt-Hieber (2019) and
Imaizumi and Nakada (2020)) we consider fully connected DNNs in our analysis. In these
networks the number of hidden layers is bounded by some logarithmic factor in the sample
size and the number of neurons per layer tends to infinity suitably fast for sample size
tending to infinity. To show the above rate of convergence we derive a new approximation
result concerning fully connected DNNs on d∗ -dimensional Lipschitz-manifolds. As in
Kohler and Langer (2020) we use a two-step approximation, where we partition our space
in a finite set of coarse and fine hypercubes and approximate the Taylor polynomial on
each of the cubes by a DNNs. As already mentioned above the analysis of fully connected
DNNs has the main advantage that an approximate implementation of a corresponding
least squares estimate is much easier.
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1.4 Related results

First results concerning neural networks date back to the 1980’s. Here networks with
only one hidden layer, so-called shallow neural networks, were analyzed and it was shown
that they approximate any continuous function arbitrarily well provided the number of
neurons is large enough (see, e.g., Cybenko (1989)). Limits of this network architecture
were analyzed e.g. in Mhaskar and Poggio (2016), who showed that specific functions can-
not be approximated by shallow neural networks but by deep ones. Concerning results
on the approximation power of multilayer neural networks we refer to Montufar (2014),
Eldan and Shamir (2016), Yarotsky (2017), Yarotsky and Zhevnerchuck (2019), Langer
(2021b) and the literature cited therein. The generalization error of least squares esti-
mates based on sparsely connected multilayer neural networks has been investigated in
Bauer and Kohler (2019), Kohler and Krzyżak (2017), Schmidt-Hieber (2020), Imaizumi
and Fukumizu (2020), and Suzuki (2018). In particular, it was shown that DNNs can
achieve a dimension reduction in case that the regression function is a composition of
(sums of) functions, where each of the function depends only on a few variables. As
was shown in Kohler and Langer (2020) and Langer (2021a) similar results can also be
achieved for least squares estimates based on fully-connected multilayer neural networks,
which are easier to implement.

Function approximation and estimation on manifolds has been studied e.g. in Belkin
and Niyogi (2008), Singer (2006), Davydov and Schumaker (2007), Hangelbroek, Nar-
cowich and Ward (2012), and Lehmann et al. (2019). An analysis in connection to DNNs
is given in Mhaskar (2010), who showed an approximation rate using so-called Eignets.
An overview of related results can be found in Chui and Mhaskar (2018). In Schmidt-
Hieber (2019) approximation rates and statistical risk bounds for functions defined on
a manifold were derived. His result is restricted to sparsely connected neural networks,
where only a bounded number of parameters in the network is non-zero. In comparison to
our result his proof strategy is more complex and requires a stronger smoothness assump-
tion on the charts of the manifold. In Imaizumi and Nakada (2020) approximation rates
and statistical risk bounds depending on the Minkowski dimension of the domain were
shown, which is a more general framework than in our paper since the Minkowski dimen-
sion of the d∗-dimensional Lipschitz-manifolds considered in our paper is bounded from
above by d∗. In case that supp(X) is only of dimension d∗ < d in the Minkowski sense,
Imaizumi and Nakada (2020) derived similar to us a d∗-dimensional approximation rate
and a convergence rate of a corresponding least squares estimator of n−2p/(2p+d∗). But
in contrast to our results, the DNNs in Imaizumi and Nakada (2020) were restricted by
a further sparsity constraint, such that an implementation of a corresponding estimator
is more difficult.

In the computer science literature the problem considered in this paper is called man-
ifold learning, see Subsection 5.11.3 in Goodfellow, Bengio, and Courville (2016) and the
literature cited therein.
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1.5 Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, integers, and real numbers are denoted by N, N0, Z, and
R, respectively. For z ∈ R, we denote the smallest integer greater than or equal to z by
⌈z⌉, and ⌊z⌋ denotes the largest integer less than or equal to z. Vectors are denoted by
bold letters, e.g., x = (x(1), . . . , x(d))T . We define 1 = (1, . . . , 1)T and 0 = (0, . . . , 0)T . A
d-dimensional multi-index is a d-dimensional vector j = (j(1), . . . , j(d))T ∈ N

d
0. As usual,

we define ‖j‖1 = j(1) + · · ·+ j(d), j! = j(1)! · · · j(d)!, and

∂j =
∂j

(1)

∂(x(1))j(1)
· · · ∂j

(d)

∂(x(d))j(d)
.

Let D ⊆ R
d and let f : Rd → R be a real-valued function defined on R

d. We write x =
argminz∈D f(z) if minz∈D f(z) exists and if x satisfies x ∈ D and f(x) = minz∈D f(z).
For f : Rd → R,

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ R
d is denoted by

‖f‖∞,A = sup
x∈A

|f(x)|.

Furthermore, we define the norm ‖ · ‖Cq(A) of the smooth function space Cq(A) by

‖f‖Cq(A) = max
{

‖∂jf‖∞,A : ‖j‖1 ≤ q, j ∈ N
d
}

for any f ∈ Cq(A). Let F be a set of functions f : Rd → R, let x1, . . . ,xn ∈ R
d and set

xn1 = (x1, . . . ,xn). A finite collection f1, . . . , fN : Rd → R is called an ε– cover of F on
xn1 if for any f ∈ F there exists i ∈ {1, . . . , N} such that

1

n

n
∑

k=1

|f(xk)− fi(xk)| < ε.

The ε–covering number of F on xn1 is the size N of the smallest ε–cover of F on xn1 and
is denoted by N1(ε,F ,xn1 ). For z ∈ R and β > 0 we define Tβz = max{−β,min{z, β}}.

1.6 Outline of the paper

The main result is presented and proven in Section 2. In Section 3 we prove a result con-
cerning the approximation of a smooth function on a manifold by deep neural networks.

2 Main result

Our main result is the following theorem, which presents a generalization bound of a
least squares estimate based on fully connected DNNs in case when X is concentrated
on a d∗-dimensional Lipschitz-manifold.
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Theorem 1. Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed
random variables with values in R

d × R such that

E
{

exp(c1 · Y 2)
}

<∞

for some constant c1 > 0. Let p = q + s for some q ∈ N0 and s ∈ (0, 1], let C > 0 and
assume that the corresponding regression function m(·) = E{Y |X = ·} is (p,C)-smooth
and satisfies

‖m‖Cq(Rd) <∞,

and that the distribution of X is concentrated on a d∗-dimensional Lipschitz-manifold
M. Let m̃n be the least squares estimate defined by

m̃n(·) = argmin
h∈F(Ln,rn)

1

n

n
∑

i=1

|Yi − h(Xi)|2

for some Ln, rn ∈ N, and define mn = Tc2·log(n)m̃n for some c2 > 0 sufficiently large.
Choose c3, c4 > 0 sufficiently large and set

Ln = ⌈c3 · log n⌉ and rn =

⌈

c4 · n
d∗

2(2p+d∗)

⌉

.

Then

E

∫

|mn(x)−m(x)|2PX(dx) ≤ c5 · (log n)6 · n−
2p

2p+d∗

holds for some constant c5 > 0.

Remark 1. Let v ∈ R
d−d∗ . Since

[0, 1]d
∗ × {v}

is a d∗-dimensional Lipschitz manifold, it is easy to see that Stone (1982) implies that
the rate of convergence in Theorem 1 is optimal up to some logarithmic factor.

Remark 2. The parameters Ln and rn of the estimate in Theorem 1 depend on d∗ and
p, which are usually unknown in practice. But if they are chosen, e.g., by splitting of
the sample (cf., e.g., Chapter 7 in Györfi et al. (2002)), then the corresponding estimate,
which does neither depend on d∗ or p, achieves the same rate of convergence as our esti-
mate in Theorem 1.

Remark 3. We conjecture that Theorem 1 can also be extended to very deep fully
connected neural network classes, where the number of neurons per layer is fixed and the
number of hidden layers tends to infinity for sample size tending to infinity. In order to
show this one could try to modify the proof in Theorem 1b) in Kohler and Langer (2020).

Proof of Theorem 1. Theorem 1 in Bagirov, Clausen and Kohler (2009) (cf., Lemma
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18 in Supplement B of Kohler and Langer (2020)) together with Lemma 19 in Supplement
B of Kohler and Langer (2020) helps us to bound the expected L2 error by

E

∫

|mn(x)−m(x)|2 PX(dx)

≤ c28 · (log(n))2c27 · log(n) · log(Ln · r2n) · L2
n · r2n

n
+ 2 · inf

f∈F(Ln,rn)

∫

|f(x)−m(x)|2 PX(dx).

Using this together with Theorem 2 below, where we choose

M = ⌈c33 · n
1

2(2p+d∗) ⌉,

shows the assertion. �

3 Approximation of smooth functions on a

Lipschitz-manifold by deep neural networks

3.1 An approximation result

In this section we evaluate how well a DNN approximates a (p,C)-smooth function f on
a d∗-dimensional Lipschitz-manifold.

Theorem 2. Let d ∈ N, let d∗ ∈ {1, . . . , d}, let M be a d∗-dimensional Lipschitz-
manifold, and let 1 ≤ a < ∞ such that M ⊆ [−a, a]d. Let f : Rd → R be (p,C)–smooth
for some p = q + s, q ∈ N0, s ∈ (0, 1], and C > 0. Let M ∈ N be such that

M ≥ 2 and M2p ≥ c6 ·
(

max
{

a, ‖f‖Cq(Rd)

})4(q+1)

holds for some sufficiently large constant c6 ≥ 1. Let σ : R → R be the ReLU activation
function

σ(x) = max{x, 0}.
There exists a neural network

f̂net ∈ F(L, r)

with

L = ⌈c7 · log(M)⌉ and r = ⌈c8 ·Md∗⌉,

such that

‖f − f̂net‖∞,M ≤ c9 ·
(

max
{

1, ‖f‖Cq(Rd)

})4(q+1)
·M−2p. (7)
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3.2 Idea of the proof of Theorem 2

The proof of Theorem 2 builds on the proof of Theorem 2a) in Kohler and Langer (2020).
In particular, we approximate a (p,C)-smooth function f by a two-scale approximation,
where we approximate piecewise Taylor polynomials with respect to a partition of R

d

into cubes with sidelength 1/M2. More precisely, we construct a coarse and fine grid of
cubes with side length 1/M and 1/M2, respectively, and approximate for the cube of the
coarse grid, which contains the x–value, the local Taylor polynomials on each cube of
the fine grid which is contained in the cube on the coarse grid and which has non-empty
intersection with M.
The difficulty compared to the result in Kohler and Langer (2020) is, that we only consider
those cubes on our grid that have a non-empty intersection with our manifold. This, in
turn, means that our cubes are not necessarily next to each other. It is therefore not
possible to only use the information about a lower left corner of one cube to reproduce
the whole grid as it was done in Kohler and Langer (2020). Although our proof works
somewhat differently, some parts are similar to the one of Theorem 2a) in Kohler and
Langer (2020). For convenience of the reader we will nevertheless present a complete
proof, which sometimes means that we have to repeat arguments of Kohler and Langer
(2020).

The partitions of Rd into the half-open equivolume cubes are defined as follows: Let

C(k1,...,kd) =

[

k1 ·
1

M
, (k1 + 1) · 1

M

)

× · · · ×
[

kd ·
1

M
, (kd + 1) · 1

M

)

, k1, . . . , kd ∈ Z,

and

D(k1,...,kd) =

[

k1 ·
1

M2
, (k1 + 1) · 1

M2

)

×· · ·×
[

kd ·
1

M2
, (kd + 1) · 1

M2

)

, k1, . . . , kd ∈ Z,

be the equivolume cubes with sidelengths 1/M and 1/M2, respectively. Then the corre-
sponding partitions are defined by

P1 = {Ck : k ∈ Z
d} and P2 = {Dk : k ∈ Z

d}. (8)

For a partition of cubes P on R
d, we denote by CP(x) the cube C that contains

x ∈ R
d. The "bottom left" corner of some cube C is denoted by Cleft. Therefore, one

can describe the cube C with side length s (which is half-open as the cubes in P1 and
P2) by a polytope as

−x(j) + C
(j)
left ≤ 0 and x(j) − C

(j)
left − s < 0 (j ∈ {1, . . . , d}).

Furthermore, we describe by C0
δ ⊂ C the cube that contains all x ∈ C that lie with a

distance of at least δ to the borders of C, i.e., a polytope defined by

−x(j) + C
(j)
left ≤ −δ and x(j) − C

(j)
left − s < −δ (j ∈ {1, . . . , d}).
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As every cube Ci ∈ P1 contains Md smaller cubes of P2, we denote those smaller cubes
by C̃1,i, . . . , C̃Md,i. Here we order the cubes such that C̃1,i, . . . , C̃Ni,i are all those cubes

which have a nonempty intersection with M (where Ni ∈ {0, 1, . . . ,Md}). We define by

Tf,q,x0(x) =
∑

j∈N0:‖j‖1≤q

(∂jf)(x0) ·
(x− x0)

j

j!

the Taylor polynomial of total degree q around x0.

Lemma 1 in Kohler (2014) implies that the piecewise Taylor polynomial

Tf,q,(CP2
(x))left(x) =

∑

k∈{1,...,Md},i∈Zd

Tf,q,(C̃k,i)left
(x) · 1C̃k,i

(x) (9)

satisfies

‖f −
∑

k∈{1,...,Md},i∈Zd

Tf,q,(C̃k,i)left
· 1C̃k,i

‖∞ ≤ c10 · (2 · a · d)2p · C · 1

M2p
.

For x ∈ M we have 1C̃k,i
(x) = 0 if Ci ∩M = ∅ or k > Ni, hence

Tf,q,(CP2
(x))left(x) =

∑

k∈{1,...,Ni},i∈Zd:Ci∩M6=∅

Tf,q,(C̃k,i)left
(x) · 1C̃k,i

(x)

satisfies

‖f − Tf,q,(CP2
(x))left‖∞,M = ‖f −

∑

k∈{1,...,Md},i∈Zd

Tf,q,(C̃k,i)left
(x) · 1C̃k,i

‖∞,M

≤ c10 · (2 · a · d)2p · C · 1

M2p
. (10)

If we use (9) to approximate f on some fixed compact set, then it is easy to see that
all summands except some constant times M2d of the summands in (9) are zero for all
the x-values in the compact set. As our next lemma shows, due to the fact that we
use Tf,q,(C̃k,i)left

(x) only to approximate f on our Lipschitz-manifold M, the number of

summands in the definition of Tf,q,(C̃k,i)left
(x), i.e.,

∑

i∈Zd :Ci∩M6=∅

Ni = |{C ∈ P2 : C ∩M 6= ∅}| ,

is bounded by some constant times M2d∗ . Furthermore, we show that Ni ≤ c11 ·Md∗

holds for all i ∈ Z
d.

Lemma 1. Let M be a d∗-dimensional Lipschitz-manifold.
a) Let h ∈ (0, 1] and set

P = {[k1 · h, (k1 + 1) · h)× · · · × [kd · h, (kd + 1) · h) : k1, . . . , kd ∈ Z} .

11



Then

|{C ∈ P : C ∩M 6= ∅}| ≤ c12 ·
(

1

h

)d∗

,

where c12 = r · (4 · Cψ,2 ·
√
d∗ + 4)d

∗
.

b) Define P1, P2 and Ni as above. Then

Ni ≤ c13 ·Md∗

holds for all i ∈ Zd, where c13 = max{1/Cd∗ψ,1, 3d
∗ · r2 · (2 · Cψ,2 ·

√
d∗ + 2)d

∗}.

Proof. a) Because of (2) we have

M ⊆
r
⋃

j=1

⋃

k1,...,kd∗∈{0,1,...,⌊1/h⌋}

ψj ([k1 · h, (k1 + 1) · h)× · · · × [kd∗ · h, (kd∗ + 1) · h)) ,

hence we can bound

|{C ∈ P : C ∩M 6= ∅}|

≤
r
∑

j=1

⌊ 1
h
⌋

∑

k1=0

· · ·
⌊ 1
h
⌋

∑

k∗d=0

|{C ∈ P : C ∩ ψj ([k1 · h, (k1 + 1) · h)× · · · × [kd∗ · h, (kd∗ + 1) · h)) 6= ∅}|.

Consequently, it suffices to show that

|{C ∈ P : C ∩ ψj ([k1 · h, (k1 + 1) · h)× · · · × [kd∗ · h, (kd∗ + 1) · h)) 6= ∅}|
≤ (2 · Cψ,2 ·

√
d∗ + 2)d

∗
. (11)

The Lipschitz continuity of ψj implies that

ψj ([k1 · h, (k1 + 1) · h)× · · · × [kd∗ · h, (kd∗ + 1) · h))

is contained in a cube with sidelength 2 ·Cψ,2 ·
√
d∗ ·h. But any such cube has a nonempty

intersection with at most

(

2 · Cψ,2 ·
√
d∗ · h

h
+ 2

)d∗

= (2 · Cψ,2 ·
√
d∗ + 2)d

∗

many cubes from the partition P. This shows the assertion.
b) W.l.o.g. we can assume that M ≥ 1/Cψ,1. We have

Ni = |{1 ≤ j ≤Md : C̃j,i ∩M 6= 0}|

=

∣

∣

∣

∣

∣

Md
⋃

j=1

r
⋃

l=1

M−1
⋃

k1=1

· · ·
M−1
⋃

kd∗=1

12



{

C̃j,i : C̃j,i ∩ ψl
([

k1
M
,
k1 + 1

M

)

× · · · ×
[

kd∗

M
,
kd∗ + 1

M

))

6= ∅
}

∣

∣

∣

∣

∣

.

Condition (1) implies for any x1,x2 ∈ [0, 1]d
∗

‖ψl(x1)− ψl(x2)‖ ≥ Cψ,1 · ‖x1 − x2‖ ≥ 1

M
· ‖x1 − x2‖.

Using that two points in C̃j,i have a supremum norm distance of at most 1/M2 this
implies that for fixed j ∈ {1, . . . ,Md} and l ∈ {1, . . . , r} there are at most 3d

∗
different

(k1, . . . , kd∗) ∈ {0, 1, . . . ,M − 1}d∗ which satisfy

C̃j,i ∩ ψl
([

k1
M
,
k1 + 1

M

)

× · · · ×
[

kd∗

M
,
kd∗ + 1

M

))

6= ∅.

Using this we see

Ni ≤ 3d
∗ · r · max

l∈{1,...,r},
k1,...,kd∗∈{0,...,M−1}

∣

∣

∣

∣

{

1 ≤ j ≤Md : C̃j,i ∩ ψj
([

k1
M
,
k1 + 1

M

)

× · · · ×
[

kd∗

M
,
kd∗ + 1

M

))

6= ∅
}∣

∣

∣

∣

.

Using

ψj

([

k1
M
,
k1 + 1

M

)

× · · · ×
[

kd∗

M
,
kd∗ + 1

M

))

⊆
⋃

j1,...,jd∗∈{0,...,M−1}

ψj

([

k1 + j1/M

M
,
k1 + (j1 + 1)/M

M

)

× · · · ×
[

kd∗ + jd∗/M

M
,
kd∗ + (jd∗ + 1)/M

M

))

the assertion follows from (11). �

To approximate f(x) on M by neural networks our proof follows similar to the proof of
Theorem 2a) in Kohler and Langer (2020) four key steps:

1. Compute Tf,q,(CP2
(x))left(x) by using recursively defined functions.

2. Approximate the recursive functions by neural networks. The resulting network
will be a good approximation for f(x) in case that

x ∈





⋃

k∈Zd

(Dk)
0
1/M2p+2



 ∩M.
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3. Construct a neural network to approximate wP2(x) · f(x) for x ∈ M, where

wP2(x) =

d
∏

j=1

(

1− 2 ·M2 ·
∣

∣

∣

∣

(CP2(x))
(j)
left +

1

2 ·M2
− x(j)

∣

∣

∣

∣

)

+

is a linear tensorproduct B-spline which takes its maximum value at the center of
CP2(x), which is nonzero in the inner part of CP2(x) and which vanishes outside
of CP2(x).

4. Apply those networks to 2d slightly shifted partitions of P2 to approximate f(x)
in supremum norm.

3.3 Key step 1 of the proof of Theorem 2: A recursive definition of
Tf,q,(CP2

(x))left(x)

In the first key step we describe how to compute Tf,q,(CP2
(x))left(x) by recursively defined

functions. Those functions will later be approximated by neural networks.
Assume x ∈ M, and let i ∈ Z

d such that we have CP1(x) = Ci. The recursion follows
two steps. In a first step we compute the value of (C̃j,i)left for j ∈ {1, . . . , Ni}, the
values of (∂lf)((C̃j,i)left) for j ∈ {1, . . . , Ni} and l ∈ N

d
0 with ‖l‖1 ≤ q and the length

of the corresponding cubes C̃j,i for j ∈ {1, . . . , Ni}. This can be done by computing
the indicator function 1Ck

multiplied by (C̃j,k)left, (∂
lf)((C̃j,k)left) and 1/M2 for each

k ∈ Z
d with Ck ∩M 6= ∅, respectively. Furthermore, we need the value of the input x

in the further recursive definition, therefore we shift this value by applying the identity
function. We set

φ1,1 = (φ
(1)
1,1, . . . , φ

(d)
1,1) = x,

φ
(j)
2,1 = (φ

(j,1)
2,1 , . . . , φ

(j,d)
2,1 ) =

∑

k∈Zd:Ck∩M6=∅, j≤Nk

(C̃j,k)left · 1Ck
(x)

for j ∈ {1, . . . , ⌈c13 ·Md∗⌉},

φ
(l,j)
3,1 =

∑

k∈Zd:Ck∩M6=∅, j≤Nk

(∂lf)
(

(C̃j,k)left

)

· 1Ck
(x)

for j ∈ {1, . . . , ⌈c13 ·Md∗⌉} and l ∈ N
d
0 with ‖l‖1 ≤ q, and

φ
(j)
4,1 =

∑

k∈Zd:Ck∩M6=0,j≤Nk

1

M2
· 1Ck

(x)

for j ∈ {1, . . . , ⌈c13 ·Md∗⌉}. Here we have φ
(j)
2,1 = φ

(l,j)
3,1 = φ

(j)
4,1 = 0 for j > Ni.

Let i ∈ Z
d and j ∈ {1, . . . , Ni} such that CP2(x) = C̃j,i. In a second step of the recursion
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we compute the value of (CP2(x))left = (C̃j,i)left and the values of (∂lf) ((CP2(x))left) for
l ∈ N

d
0 with ‖l‖1 ≤ q. It is easy to see (cf. proof of Lemma 2 below) that each cube C̃j,i

with j ≤ Ni can be defined by

A(j) =
{

x ∈ R
d : −x(k) + φ

(j,k)
2,1 ≤ 0

and x(k) − φ
(j,k)
2,1 − φ

(j)
4,1 < 0 for all k ∈ {1, . . . , d}

}

. (12)

Thus, in our recursion we compute for each j ∈ {1, . . . , Ni} the indicator function 1A(j)

multiplied by φ
(j)
2,1 or φ

(l,j)
3,1 for l ∈ N

d
0 with ‖l‖1 ≤ q. Again we shift the value of x by

applying the identity function. We set

φ1,2 = (φ
(1)
1,2, . . . , φ

(d)
1,2) = φ1,1,

φ2,2 = (φ
(1)
2,2, . . . , φ

(d)
2,2) =

⌈c13·Md∗⌉
∑

j=1

φ
(j)
2,1 · 1A(j) (φ1,1)

and

φ
(l)
3,2 =

⌈c13·Md∗⌉
∑

j=1

φ
(l,j)
3,1 · 1A(j) (φ1,1)

for l ∈ N
d
0 with ‖l‖1 ≤ q. In a last step, we compute the Taylor polynomial by

φ1,3 =
∑

j∈N0:‖j‖1≤q

φ
(j)
3,2

j!
· (φ1,2 − φ2,2)

j .

Our next lemma shows that this recursion computes our piecewise Taylor polynomial on
M.

Lemma 2. Let p = q+ s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let f : Rd → R

be a (p,C)-smooth function and let Tf,q,(CP2
(x))left be the Taylor polynomial of total degree

q around (CP2(x))left. Define φ1,3 recursively as above. Then we have for any x ∈ M:

φ1,3 = Tf,q,(CP2
(x))left(x).

Proof. Let x ∈ M and let i ∈ Z
d and j ∈ {1, . . . , Ni} be such that we have CP2(x) = C̃j,i.

Then we have x ∈ Ci, and our definitions above imply

φ1,1 = x, φ
(k)
2,1 = (C̃k,i)left · 1{k≤Ni}(x), φ

(l,k)
3,1 = (∂lf)

(

(C̃k,i)left

)

· 1{k≤Ni}(x)

and

φ
(k)
4,1 =

1

M2
· 1{k≤Ni}(x)
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for all k ∈ {1, . . . , ⌈c13 ·Md∗⌉} and l ∈ N
d
0 with ‖l‖1 ≤ q. This implies

A(k) = C̃k,i for k ≤ Ni,

and using again our definitions above we see

φ1,2 = x, φ2,2 =

Ni
∑

k=1

(C̃k,i)left · 1C̃k,i
(x) = (C̃j,i)left

and

φ
(l)
3,2 =

Ni
∑

k=1

(∂lf)((C̃k,i)left) · 1C̃k,i
(x) = (∂lf)

(

(C̃j,i)left

)

.

Consequently, it holds

φ1,3 =
∑

j∈N0:‖j‖1≤q

φ
(j)
3,2

j!
· (φ1,2 − φ2,2)

j =
∑

j∈N0:‖j‖1≤q

(∂lf)
(

(C̃j,i)left

)

j!
·
(

x− (C̃j,i)left

)j

= Tf,q,(CP2
(x))left(x).

�

3.4 Key step 2 of the proof of Theorem 2: Approximating φ1,3 by neural
networks

In key step 2 we approximate the functions φ1,1, φ
(j)
2,1, φ

(l,j)
3,1 , φ

(j)
4,1, φ1,2, φ2,2, φ

(l)
3,2, φ1,3

(j ∈ {1, . . . , ⌈c13 ·Md∗⌉}, l ∈ N
d
0 with ‖l‖1 ≤ q) by neural networks. By using the follow-

ing two computing operations for neural networks, we can combine smaller networks in
one large neural network:

Combined neural network: Let f ∈ F(Lf , rf ) and g ∈ F(Lg, rg) with Lf , Lg, rf , rg ∈
N, then we call f ◦ g the combined network, which is contained in the network class
F(Lf + Lg,max{rf , rg)). Here, the output of the network g is the input of the network
f and the total number of hidden layers equals the sum of the hidden layers of both
networks f and g (cf. Figure 3 in Kohler and Langer (2020)).

Parallelized neural network: Let f ∈ F(L, rf ) and g ∈ F(L, rg) be two networks with the
same number of hidden layers L ∈ N. Then we call (f, g) ∈ F(L, rf + rg) the parallelized
network, which computes f and g in parallel in a joint network.

The final network of this step approximates f(x) in case that x ∈ M does not lie
close to the boundary of any cube of P2, i.e., for

x ∈





⋃

k∈Zd

(Dk)
0
1/M2p+2



 ∩M.
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Lemma 3. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Let P2

be defined as in (8). Let p = q + s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let
f : Rd → R be a (p,C)-smooth function. Let M be a d∗-dimensional Lipschitz-manifold,
and let 1 ≤ a <∞ such that M ⊆ [−a, a]d. Then there exists for M ∈ N with

M2p ≥ c14 ·
(

max
{

3a, ‖f‖Cq(Rd)

})4(q+1)

a neural network f̂P2 ∈ F(L, r) with

(i) L = 4 + ⌈log4(M2p)⌉ · ⌈log2(max{q + 1, 2})⌉

(ii) r = max
{(

(d+q
d

)

+ d
)

· ⌈c13 ·Md∗⌉ · 2 · (2 + 2d) + 2d, 18 · (q + 1) ·
(d+q
d

)

}

such that

|f̂P2(x)− f(x)| ≤ c15 ·
(

max
{

3a, ‖f‖Cq(Rd)

})4(q+1)
· 1

M2p

holds for all x ∈
(

⋃

k∈Zd (Dk)
0
1/M2p+2

)

∩M. The network value is bounded by

|f̂P2(x)| ≤ 2 · e4ad ·max
{

‖f‖Cq(Rd), 1
}

for all x ∈ R
d.

In the proof of Lemma 3 we will need several auxiliary neural networks, which we
introduce next:

Identity network: As we are using the ReLU activation function, we can exploit its
projection property to shift input values in the next hidden layer or to synchronize the
number of hidden layers for two networks, which are computed in parallel. Here we use
the network f̂id : R → R,

f̂id(z) = σ(z)− σ(−z) = z, z ∈ R,

and

f̂id(x) =
(

f̂id

(

x(1)
)

, . . . , f̂id

(

x(d)
))

=
(

x(1), . . . , x(d)
)

, x ∈ R
d.

Furthermore, we will use the abbreviations

f̂0id(x) = x, x ∈ R
d

f̂ t+1
id (x) = f̂id

(

f̂ tid(x)
)

= x, t ∈ N0,x ∈ R
d.

Network for polynomials: Let PN be the linear span of all monomials of the form

d
∏

k=1

(

x(k)
)rk
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for some r1, . . . , rd ∈ N0, r1+ · · ·+rd ≤ N . Then, PN is a linear vector space of functions
of dimension

dim PN =
∣

∣

∣

{

(r0, . . . , rd) ∈ N
d+1
0 : r0 + · · ·+ rd = N

}∣

∣

∣ =

(

d+N

d

)

.

The next lemma describes a neural network that approximates functions of the class PN
multiplied by an additional factor. This modified form of polynomials is later needed in
the construction of our network of Lemma 3.

Lemma 4. Let a ≥ 1. Let m1, . . . ,m(d+N
d ) denote all monomials in PN for some N ∈ N.

Let r1, . . . , r(d+N
d ) ∈ R, define

p
(

x, y1, . . . , y(d+N
d )

)

=

(d+N
d )
∑

i=1

ri · yi ·mi(x), x ∈ [−a, a]d, yi ∈ [−a, a],

and set r̄(p) = max
i∈{1,...,(d+N

d )} |ri|. Let σ : R → R be the ReLU activation function

σ(x) = max{x, 0}. Then for any

R ≥ log4(2 · 42·(N+1) · a2·(N+1)) (13)

a neural network

f̂p ∈ F(L, r)

with L = R · ⌈log2(N + 1)⌉ and r = 18 · (N + 1) ·
(d+N

d

)

exists, such that

∣

∣

∣f̂p

(

x, y1, . . . , y(d+N
d )

)

− p
(

x, y1, . . . , y(d+N
d )

)∣

∣

∣ ≤ c16 · r̄(p) · a4(N+1) · 4−R

for all x ∈ [−a, a]d, y1, . . . , y(d+N
d ) ∈ [−a, a], where c16 depends on d and N .

Proof. See Lemma 5 in Supplement A of Kohler and Langer (2020). �

Network for multidimensional indicator functions: The next lemma presents a network
that approximates the multidimensional indicator function and the multidimensional in-
dicator function multiplied by an additional factor.

Lemma 5. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Let
R ∈ N. Let a,b ∈ R

d with

b(i) − a(i) ≥ 2

R
for all i ∈ {1, . . . , d}

and let

K1/R =
{

x ∈ R
d : x(i) /∈ [a(i), a(i) + 1/R) ∪ (b(i) − 1/R, b(i))
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for all i ∈ {1, . . . , d}
}

.

a) Then the network

f̂ind,[a,b)(x) = σ

(

1−R ·
d
∑

i=1

(

σ

(

a(i) +
1

R
− x(i)

)

+σ

(

x(i) − b(i) +
1

R

)))

of the class F(2, 2d) satisfies

f̂ind,[a,b)(x) = 1[a,b)(x)

for x ∈ K1/R and

∣

∣

∣
f̂ind,[a,b)(x)− 1[a,b)(x)

∣

∣

∣
≤ 1

for x ∈ R
d.

b) Let |s| ≤ R. Then the network

f̂test(x,a,b, s) = σ

(

f̂id(s)−R2 ·
d
∑

i=1

(

σ

(

a(i) +
1

R
− x(i)

)

+σ

(

x(i) − b(i) +
1

R

)))

− σ

(

− f̂id(s)−R2 ·
d
∑

i=1

(

σ

(

a(i) +
1

R
− x(i)

)

+σ

(

x(i) − b(i) +
1

R

)))

of the class F(2, 2 · (2d + 2)) satisfies

f̂test(x,a,b, s) = s · 1[a,b)(x)

for x ∈ K1/R and

∣

∣

∣
f̂test(x,a,b, s) − s · 1[a,b)(x)

∣

∣

∣
≤ |s|

for x ∈ R
d.

Proof. See Lemma 6 in Supplement A of Kohler and Langer (2020). �

Proof of Lemma 3. In a first step of the proof we describe how the recursively defined
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function φ1,3 can be approximated by neural networks. To approximate an indicator
function 1[a,b)(x) for some a,b ∈ R

d and BM ∈ N with

b(i) − a(i) ≥ 2

BM
for all i ∈ {1, . . . , d}

we will use the network

f̂ind,[a,b) ∈ F(2, 2d)

of Lemma 5 (with R = BM ). With the networks

f̂test ∈ F(2, 2 · (2d+ 2))

of Lemma 5 (again with R = BM ) we approximate functions of the form

s · 1[a,b)(x).

Lemma 5 implies that for |s| ≤ BM and x ∈ R
d with

x(i) /∈
[

a(i), a(i) +
1

BM

)

∪
(

b(i) − 1

BM
, b(i)

)

for all i ∈ {1, . . . , d}

we have

f̂ind,[a,b)(x) = 1[a,b)(x)

and

f̂test(x,a,b, s)(x) = s · 1[a,b)(x).

For some vector v ∈ R
d it follows

v · f̂ind,[a,b)(x) =
(

v(1) · f̂ind,[a,b)(x), . . . , v(d) · f̂ind,[a,b)(x)
)

.

To compute the final Taylor polynomial in φ1,3 we use the network

f̂p ∈ F
(

BM,p · ⌈log2(max{q + 1, 2})⌉, 18 · (q + 1) ·
(

d+ q

d

))

from Lemma 4 (with R = BM,p) satisfying

∣

∣

∣

∣

f̂p

(

z, y1, . . . , y(d+q
q )

)

− p

(

z, y1, . . . , y(d+q
q )

)∣

∣

∣

∣

≤ c16 · r̄(p) ·
(

max
{

3a, ‖f‖Cq(Rd)

})4(q+1)
· 4−BM,p (14)

for all z(1), . . . , z(d), y1, . . . , y(d+q
d ) contained in

[

−max
{

3a, ‖f‖Cq(Rd)

}

,max
{

3a, ‖f‖Cq(Rd)

}]

,
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where BM,p ∈ N satisfying

BM,p ≥ log4

(

max{c16, 2 · 42·(q+1)} ·
(

max
{

3a, ‖f‖Cq(Rd)

})2·(q+1)
)

is properly chosen (cf. (13)). In case that q = 0 we use a polynomial of degree 1 where
the ri’s of all coefficients greater than zero are chosen as zero. That is why we changed
log2(q + 1) to log2(max{q + 1, 2}) in the definition of L in Lemma 4.

Each network of the recursion of φ1,3 is now computed by a neural network. To compute

the values of φ1,1, φ
(j)
2,1, φ

(l,j)
3,1 and φ

(j)
4,1 we use for j ∈ {1, . . . , ⌈c13 ·Md∗⌉} and l ∈ N

d
0 with

‖l‖1 ≤ q the networks

φ̂1,1 =
(

φ̂
(1)
1,1, . . . , φ̂

(d)
1,1

)

= f̂2id(x),

φ̂
(j)
2,1 = (φ̂

(j,1)
2,1 , . . . , φ̂

(j,d)
2,1 ) =

∑

i∈Zd :Ci∩M6=∅, j≤Ni

(C̃j,i)left · f̂ind,Ci
(x),

φ̂
(l,j)
3,1 =

∑

i∈Zd :Ci∩M6=∅, j≤Ni

(∂lf)
(

(C̃j,i)left

)

· f̂ind,Ci
(x).

and

φ̂
(j)
4,1 =

∑

i∈Zd :Ci∩M6=∅, j≤Ni

1

M2
· f̂ind,Ci

(x).

To compute φ1,2, φ2,2 and φ
(l)
3,2 we use the networks

φ̂1,2 =
(

φ̂
(1)
1,2, . . . , φ̂

(d)
1,2

)

= f̂2id(φ̂1,1),

φ̂
(k)
2,2 =

⌈c13·Md∗⌉
∑

j=1

f̂test

(

φ̂1,1, φ̂
(j)
2,1, φ̂

(j)
2,1 + φ̂

(j)
4,1 · 1, φ̂

(j,k)
2,1

)

(15)

for k ∈ {1, . . . , d} and

φ̂2,2 = (φ̂
(1)
2,2, . . . , φ̂

(d)
2,2)

and

φ̂
(l)
3,2 =

⌈c13·Md∗⌉
∑

j=1

f̂test

(

φ̂1,1, φ̂
(j)
2,1, φ̂

(j)
2,1 + φ̂

(j)
4,1 · 1, φ̂

(l,j)
3,1

)

. (16)

Choose l1, . . . , l(d+q
d ) such that

{

l1, . . . , l(d+q
d )

}

=
{

(s1, . . . , sd) ∈ N
d
0 : s1 + · · · + sd ≤ q

}
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holds. The value of φ1,3 can then be computed by

φ̂1,3 = f̂p

(

z, y1, . . . , y(d+q
d )

)

, (17)

where

z = φ̂1,2 − φ̂2,2

and

yv = φ̂
(lv)
3,2

for v ∈
{

1, . . . ,
(d+q
d

)

}

. The coefficients r1, . . . , r(d+q
d ) in Lemma 4 are chosen as

ri =
1

li!
, i ∈

{

1, . . . ,

(

d+ q

d

)}

.

It is easy to see that the network φ̂1,3 forms a composed network, where the networks

φ̂1,1, φ̂
(1)
2,1, . . . , φ̂

(⌈c13·Md∗⌉)
2,1 , φ̂

(lv ,1)
3,1 , . . . , φ̂

(lv ,⌈c13·Md∗⌉)
3,1 ,φ̂

(1)
4,1, . . . , φ̂

(⌈c13·Md∗⌉)
4,1 and the net-

works φ̂1,2, φ̂2,2, φ̂
(lv)
3,2 (v ∈ {1, . . . ,

(

d+q
d

)

}) are computed in parallel (i.e., in the same
layers), respectively. Thus, we can conclude that

(φ̂1,1, φ̂
(1)
2,1, . . . , φ̂

(⌈c13·Md∗⌉)
2,1 , φ̂

(lv,1)
3,1 , . . . , φ̂

(lv ,⌈c13·Md∗⌉)
3,1 , φ̂

(1)
4,1, . . . , φ̂

(⌈c13·Md∗⌉)
4,1 )

needs L1 = 2 hidden layers and r1 = 2d+
(

d+
(

d+q
d

)

+ 1
)

· ⌈c13 ·Md∗⌉ · 2d neurons per

layer in total.

Furthermore, the parallelized network

(φ̂1,2, φ̂2,2, φ̂
(lv)
3,2 )

needs L2 = L1 + 2 = 4 hidden layers and

r2 = max

{

r1, 2d+ d · ⌈c13 ·Md∗⌉ · 2 · (2d+ 2) +

(

d+ q

d

)

· ⌈c13 ·Md∗⌉ · 2 · (2d + 2)

}

= 2d+

(

d+

(

d+ q

d

))

· ⌈c13 ·Md∗⌉ · 2 · (2d + 2)

neurons per layer. Finally we have that φ̂1,3 lies in the class

F (4 +BM,p · ⌈log2(max{q + 1, 2})⌉, r)

with

r = max

{

r2, 18 · (q + 1) ·
(

d+ q

d

)}

.
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Here we have used that

F(L, r′) ⊆ F(L, r)

for r′ ≤ r. We set

f̂P2(x) = φ̂1,3.

In a second step of the proof we analyze the error of the network f̂P2 in case that

BM ≥M2p+2

and

x ∈





⋃

k∈Zd

(Dk)
0
1/M2p+2



 ∩M.

From Lemma 5 we can conclude that the networks φ̂1,1, φ̂
(1)
2,1, . . . , φ̂

(⌈c13·Md∗⌉)
2,1 , φ̂

(lv,1)
3,1 , . . . ,

φ̂
(lv,⌈c13·Md∗⌉)
3,1 , φ̂

(1)
4,1, . . . , φ̂

(⌈c13·Md∗⌉)
4,1 and the networks φ̂1,2, φ̂2,2, φ̂

(lv)
3,2 (v ∈ {1, . . . ,

(d+q
d

)

})
compute the corresponding functions φ1,1, φ

(1)
2,1, . . . , φ

(⌈c13·Md∗⌉)
2,1 , φ

(lv ,1)
3,1 ,. . . , φ

(lv,Md)
3,1 ,

φ
(1)
4,1, . . . , φ

(⌈c13·Md∗⌉)
4,1 and φ1,2,φ2,2, φ

(lv)
3,2 (v ∈ {1, . . . ,

(d+q
d

)

}) without an error. Thus, it
follows that

∣

∣

∣φ̂1,2 − φ̂2,2

∣

∣

∣ = |x− φ2,2| ≤ 2a

and
∣

∣

∣
φ̂
(lv)
3,2

∣

∣

∣
=
∣

∣

∣
φ
(lv)
3,2

∣

∣

∣
≤ ‖f‖Cq([−a,a]d).

Therefore, the input of f̂p in (17) is contained in the interval where (14) holds. By
choosing

BM,p = ⌈log4
(

M2p
)

⌉

we get

∣

∣

∣
f̂P2(x)− Tf,q,(CP2

(x))left(x)
∣

∣

∣
=
∣

∣

∣
φ̂1,3 − φ1,3

∣

∣

∣

≤ c16 ·
(

max
{

2a, ‖f‖Cq(Rd)

})4(q+1)
· 1

M2p
,

where we have used r̄(p) ≤ 1. This together with Lemma 2 and (10) implies the first
assertion of the lemma.
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In the last step of the proof we bound |f̂P2(x)| in case that x ∈ R
d. If Ci ∩ M 6= ∅

we know
(C̃j,i)left ∈ [−2a, 2a]d (j ∈ {1, . . . ,Md}),

from which we can conclude
∣

∣

∣φ̂
(l,j)
3,1

∣

∣

∣ ≤ ‖f‖Cq(Rd) (j ∈ {1, . . . , ⌈c13 ·Md∗⌉})

and
∣

∣

∣φ̂
(j,s)
2,1

∣

∣

∣ ≤ 2 · a (j ∈ {1, . . . , ⌈c13 ·Md∗⌉}, s ∈ {1, . . . , d}).

Here we have used, that the value of f̂ind,Ck
lies (due to its construction in Lemma 5a)) in

the interval [0, 1] and that for fixed x ∈ R
d at most one of the values f̂ind,Ci

(x) (i ∈ Z
d)

is not equal to zero. To bound the values of φ̂
(l)
3,2 and φ̂

(j,s)
2,2 we consider the sums in (15)

and (16). Due to the fact that all cubes [φ̂
(j)
2,1, φ̂

(j)
2,1 + φ̂

(j)
4,1 · 1) are distinct for different

j ∈ {1, . . . , ⌈c13 ·Md∗⌉}, those sums produce for at most one summand a value not equal
to zero. By construction of f̂test in Lemma 5 this value, in turn, is bounded in absolute

value by |φ̂(j,s)2,1 | or |φ̂(l,j)3,1 |, respectively. This leads to

∣

∣

∣
φ̂
(l)
3,2

∣

∣

∣
≤ ‖f‖Cq(Rd)

and
∣

∣

∣
φ̂
(s)
2,2

∣

∣

∣
≤ 2 · a, (s ∈ {1, . . . , d}).

We conclude
∣

∣

∣f̂P2(x)
∣

∣

∣ ≤
∣

∣

∣f̂p

(

z, y1, . . . , y(d+q
d )

)

− p
(

z, y1, . . . , y(d+q
d )

)∣

∣

∣

+
∣

∣

∣p
(

z, y1, . . . , y(d+q
d )

)∣

∣

∣

≤ 1 +
∑

0≤‖l‖1≤q

1

l!
· ‖f‖Cq(Rd) · (4a)‖l‖1

≤ 1 + ‖f‖Cq(Rd) ·
(

∞
∑

l=0

(4a)l

l!

)d

= 1 + e4ad · ‖f‖Cq(Rd).

�

3.5 Key step 3 of the proof of Theorem 2: Approximation of wP2(x) · f(x)
by neural networks

In our key step 3 we construct a network that approximates

wP2(x) · f(x),
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where

wP2(x) =

d
∏

j=1

(

1− 2 ·M2 ·
∣

∣

∣

∣

(CP2(x))
(j)
left +

1

2 ·M2
− x(j)

∣

∣

∣

∣

)

+

(18)

is a linear tensorproduct B-spline which takes its maximum value at the center of CP2(x),
which is nonzero in the inner part of CP2(x) and which vanishes outside of CP2(x).

Lemma 6. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Let M
be a d∗-dimensional Lipschitz-manifold and let 1 ≤ a < ∞ such that M ⊆ [−a, a]d. Let
p = q + s for some q ∈ N0, s ∈ (0, 1] and let C > 0. Let f : Rd → R be a (p,C)-smooth
function and let wP2 be defined as in (18). Let M ∈ N0 be such that

M2p ≥ c17 ·
(

max
{

3a, ‖f‖Cq(Rd)

})4(q+1)

and
M2p ≥ c18 · (2 · a · d)2p · C

hold. Then there exists a network

f̂ ∈ F (L, r)

with

L = 5 + ⌈log4(M2p)⌉ · (⌈log2(max{q, d} + 1})⌉ + 1)

and

r =64 ·
(

d+ q

d

)

· d2 · (q + 1) · ⌈c13 ·Md∗⌉

such that

∣

∣

∣
f̂(x)− wP2(x) · f(x)

∣

∣

∣
≤ c19 ·

(

max
{

3a, ‖f‖Cq(Rd)

})4(q+1)
· 1

M2p

holds for x ∈ M.

In the proof of Lemma 6 we adapt the arguments in the proof of Lemma 7 in Sup-
plement A of Langer and Kohler (2020) to the case that our input is contained in a
d∗-dimensional Lipschitz-manifold. To do this, we need the following two auxiliary re-
sults.

Lemma 7. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Let M
be a d∗-dimensional Lipschitz-manifold and let 1 ≤ a < ∞ such that M ⊆ [−a, a]d. Let
M ≥ 44d+1 · d. Let P2 be the partition defined in (8) and let wP2(x) be the corresponding
weight defined by (18). Then there exists a neural network

f̂wP2
∈ F

(

5 + ⌈log4(M2p)⌉ · ⌈log2(d)⌉, r
)
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with

r = max
{

18d, 2d + d · ⌈c13 ·Md∗⌉ · 2 · (2 + 2d)
}

such that
∣

∣

∣
f̂wP2

(x)− wP2(x)
∣

∣

∣
≤ 44d+1 · d · 1

M2p

for x ∈
(

⋃

k∈Zd(Dk)
0
1/M2p+2

)

∩M and

|f̂wP2
(x)| ≤ 2

for x ∈ M.

Proof. The proof follows by a slight modification from the proof of Lemma 9 in the
Supplement A of Kohler and Langer (2020). A complete proof is given in the appendix.

�

Lemma 8. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Let M
be a d∗-dimensional Lipschitz-manifold and let 1 ≤ a < ∞ such that M ⊆ [−a, a]d. Let
P1 and P2 be the partitions defined in (8) and let M ∈ N. Then there exists a neural
network

f̂check,P2 ∈ F
(

5, 2d + (4d2 + 4d) · ⌈c13 ·Md∗⌉
)

satisfying

f̂check,P2(x) = 1⋃
i∈Zd

Dk\(Dk)
0
1/M2p+2

(x)

for x ∈ M \
(

⋃

k∈Zd(Dk)
0
1/M2p+2\(Dk)

0
2/M2p+2

)

and

f̂check,P2(x) ∈ [0, 1]

for x ∈ M.

Proof. Throughout the proof we assume that i ∈ Z
d satisfies CP1(x) = Ci. In oder to

compute f̂check,P2 we use a two-scale approximation defined as follows: In the first part
of the network we check whether x ∈ M is contained in

⋃

k∈Zd

Ck \ (Ck)
0
1/M2p+2 .

Therefore, our network approximates in the first two hidden layers for x ∈ M the function

f1(x) = 1⋃
k∈Zd:Ck∩M6=∅

Ck\(Ck)
0
1/M2p+2

(x) = 1−
∑

k∈Zd:Ck∩M6=∅

1(Ck)
0
1/M2p+2

(x)
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by

f̂1(x) = 1−
∑

k∈Zd:Ck∩M6=∅

f̂ind,(Ck)
0
1/M2p+2

(x),

where f̂ind,(Ck)
0
1/M2p+2

are the networks of Lemma 5a), which need 2d neurons per layer,

respectively. To approximate the indicator functions on the partition P2 only for the
cubes Dk ⊂ CP1(x) = Ci, we further need to compute the positions of (C̃j,i)left (j ∈
{1, . . . , ⌈c13 ·Md∗⌉}). This can be done as described by the networks φ̂

(j)
2,1 in the proof

of Lemma 3 with d · ⌈c13 ·Md∗⌉ · 2d neurons. The length of each cube (Cj,i)left (j ∈
{1, . . . , ⌈c13 ·Md∗⌉} is computed by φ̂

(j)
4,1 as in the proof of Lemma 3 with ⌈c13 ·Md∗⌉ · 2d

neurons per layer. To shift the value of x in the next hidden layers we further apply the
network f̂2id, which needs 2d neurons per layer. Analogous to (12) we can describe the
cubes (C̃j,i)

0
1/M2p+2 (j ∈ {1, . . . , Ni}) by

(A(j))01/M2p+2 =

{

x ∈ R
d : −x(k) + φ

(j,k)
2,1 +

1

M2p+2
≤ 0

and x(k) − φ
(j,k)
2,1 − φ

(j)
4,1 +

1

M2p+2
< 0 for all k ∈ {1, . . . , d}

}

.

Then, for x ∈ M, the function

f2(x) = 1⋃
k∈Zd:Ck∩M6=∅,j≤Nk

C̃j,k\(C̃j,k)
0
1/M2p+2

(x) = 1−
∑

k∈Zd:Ck∩M6=∅,j≤Nk

1(C̃j,k)
0
1/M2p+2

(x)

can be approximated by

f̂2(x) = 1−
∑

j∈{1,...,⌈c13·Md∗⌉}

f̂test

(

f̂2id(x), φ̂
(j)
2,1 +

1

M2p+2
· 1,

φ̂
(j)
2,1 + φ̂

(j)
4,1 · 1− 1

M2p+2
· 1, 1

)

,

where f̂test is the network of Lemma 5b), which needs 2 hidden layers and 2 · (2d + 2)
neurons per layer. Here, for any x ∈ R

d at most one of the terms in the sum in the

definition of f̂2(x) is not equal to zero, and φ̂
(j)
4,1 is equal to zero for j > Ni.

Combining the networks f̂1 and f̂2 and using the characteristics of ReLU activation
function that is zero in case of negative input, finally let us approximate

1⋃
k∈Zd

Dk\(Dk)
0
1/M2p+2

(x)

for x ∈ M by

f̂check,P2(x) = 1− σ
(

1− f̂2(x)− f̂2id

(

f̂1(x)
))
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= 1− σ





∑

j∈{1,...,⌈c13·Md∗⌉}

f̂test

(

f̂2id(x), φ̂
(j)
2,1 +

1

M2p+2
· 1,

φ̂
(j)
2,1 + φ̂

(j)
4,1 · 1− 1

M2p+2
· 1, 1

)

−f̂2id



1−
∑

k∈Zd:Ck∩M6=∅

f̂ind,(Ck)
0
1/M2p+2

(x)







 .

Now it is easy to see that our whole network is contained in the network class

F(5, r)

with

r = max{2d+ d · ⌈c13 ·Md∗⌉ · 2d+ ⌈c13 ·Md∗⌉ · 2d, ⌈c13 ·Md∗⌉ · 2 · (2 + 2d) + 2}
≤ 2d+ (4d2 + 4d) · ⌈c13 ·Md∗⌉.

As in the proof of Lemma 10 in Kohler and Langer (2020) it can be shown that

f̂check,P2(x) = 1⋃
k∈Zd

Dk\(Dk)
0
1/M2p+2

(x) (19)

holds for x ∈ M \
(

⋃

k∈Zd(Dk)
0
1/M2p+2\(Dk)

0
2/M2p+2

)

. This part of the proof is given in

the appendix. �

Proof of Lemma 6. Using the networks f̂P2 of Lemma 3, f̂check,P2 of Lemma 8 and f̂wP2

of Lemma 7, this proof follows directly from the proof of Lemma 7 in the Supplement A
of Kohler and Langer (2020). A complete proof is given in the appendix.

3.6 Key step 4 of the proof of Theorem 2: Applying f̂ to slightly shifted
partitions

Finally, we will use a finite sum of the networks of Lemma 6, where P2 is substituted by
a slightly shifted version of P2, respectively, to approximates f(x) in supremum norm
and to show Theorem 2.

Proof of Theorem 2. The proof follows as a slight modification from the proof of
Theorem 2 in Kohler and Langer (2020), where we use the networks f̂ of Lemma 6. A
complete proof is given in the appendix. �
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Appendix

An auxiliary result for the proof of Lemma 7. In the proof of Lemma 7 we will
need the following auxiliary result.

Lemma 9. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Then for
any R ∈ N and any b ≥ 1 a neural network

f̂mult,d ∈ F(R · ⌈log2(d)⌉, 18d)

exists such that
∣

∣

∣

∣

∣

f̂mult,d(x)−
d
∏

i=1

x(i)

∣

∣

∣

∣

∣

≤ 44d+1 · b4d · d · 4−R

holds for all x ∈ [−b, b]d.

Proof. See Lemma 8 in Supplement A of Kohler and Langer (2020). �

Proof of Lemma 7. The first four hidden layers of f̂wP2
compute for x ∈ M the value

of

(CP2(x))left

and shift the value of x in the next hidden layer, respectively. This can be done as
described in φ̂1,2 and φ̂2,2 in the proof of Lemma 3 with 2d+ d · ⌈c13 ·Md∗⌉ · 2 · (2 + 2d)
neurons per layer. The fifth hidden layer then computes the functions

(

1− 2 ·M2 ·
∣

∣

∣

∣

(CP2(x))
(j)
left +

1

2 ·M2
− x(j)

∣

∣

∣

∣

)

+

=
(

2 ·M2 ·
(

x(j) − (CP2(x))
(j)
left

))

+

−2 ·
(

2 ·M2 ·
(

x(j) − (CP2(x))
(j)
left −

1

2 ·M2

))

+

+

(

2 ·M2 ·
(

x(j) − (CP2(x))
(j)
left −

1

M2

))

+

, j ∈ {1, . . . , d},

using the networks

f̂wP2,j
(x) = σ

(

2 ·M2 ·
(

φ̂
(j)
1,2 − φ̂

(j)
2,2

))

− 2 · σ
(

2 ·M2 ·
(

φ̂
(j)
1,2 − φ̂

(j)
2,2 −

1

2 ·M2

))

+ σ

(

2 ·M2 ·
(

φ̂
(j)
1,2 − φ̂

(j)
2,2 −

1

M2

))

, j ∈ {1, . . . , d},
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with 3d neurons. The product (18) of wP2,j(x) (j ∈ {1, . . . , d}) can then be computed

by the network f̂mult,d of Lemma 9, where we choose x(j) = f̂wP2,j
(x). Finally we set

f̂wP2
(x) = f̂mult,d

(

f̂wP2,1
(x), . . . , f̂wP2,d

(x)
)

.

By choosing R = ⌈log4(M2p)⌉ in Lemma 9, this network lies in the class

F
(

4 + 1 + ⌈log4(M2p)⌉ · ⌈log2(d)⌉,max
{

18d, 2d + d · ⌈c13 ·Md∗⌉ · 2 · (2 + 2d), 3d
})

,

and according to Lemma 9 (where we set b = 1) it approximates wP2(x) with an error
of size

44d+1 · d · 1

M2p

in case that x ∈ M is contained in
⋃

k∈Zd(Dk)
0
1/M2p+2 . Since |f̂wP2

,j(x)| ≤ 1 for

j ∈ {1, . . . , d} we can bound the value of the network using the triangle inequality
by

|f̂wP2
(x)| ≤

∣

∣

∣

∣

∣

∣

f̂wP2
(x)−

d
∏

j=1

f̂wP2,j
(x)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

d
∏

j=1

f̂wP2,j
(x)

∣

∣

∣

∣

∣

∣

≤ 2

for x ∈ M, where we have used that

M2p ≥ 44d+1 · d.

�

Network accuracy of f̂check,P2 in Lemma 8.
Proof of (19). We distinguish between three cases. In our first case we assume that

x ∈ M and x /∈
⋃

k∈Zd

(Ck)
0
1/M2p+2 ,

which implies that

x /∈
⋃

k∈Zd

(Dk)
0
1/M2p+2 .

In this case we get from Lemma 5 that f̂1(x) = 1 from which we can conclude

1− f̂2(x)− f̂2id

(

f̂1(x)
)

=
∑

j∈{1,...,⌈c13·Md∗⌉}

f̂test

(

f̂2id(x), φ̂
(j)
2,1 +

1

M2p+2
· 1, φ̂(j)

2,1 + φ̂
(j)
4,1 · 1− 1

M2p+2
· 1, 1

)

− 1

≤ 0.
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Here we have used that each f̂test is contained in [0, 1] (according to its construction in
Lemma 5b)) and that at most one f̂test in the sum is larger than 0. Finally we get

f̂check,P2(x) = 1− 0 = 1 = 1⋃
k∈Zd

Dk\(Dk)
0
1/M2p+2

(x).

In our second case we assume that

x ∈ M∩





⋃

k∈Zd

(Ck)
0
1/M2p+2



 . (20)

and

x ∈
⋃

k∈Zd

(Dk)
0
2/M2p+2 .

Then we have φ̂
(j)
2,1 = (C̃j,i)left and φ̂

(j)
4,1 = (1/M2) · 1{j≤Ni}. Furthermore, we can

conclude that

(A(j))01/M2p+2 =

{

x ∈ R
d : −φ̂(k)1,1 + φ̂

(j,k)
2,1 +

1

M2p+2
≤ 0

and φ̂
(k)
1,1 − φ̂

(j,k)
2,1 − φ̂

(j)
4,1 +

1

M2p+2
< 0

for all k ∈ {1, . . . , d}
}

= (C̃j,i)
0
1/M2p+2

for j ∈ {1, . . . , Ni}. Since we only have to show our assumption for

x /∈
⋃

k∈Zd

(Dk)
0
1/M2p+2\(Dk)

0
2/M2p+2 ,

we can conclude by Lemma 5 that

f̂test

(

φ̂1,1, φ̂
(j)
2,1 +

1

M2p+2
· 1, φ̂(j)

2,1 + φ̂
(j)
4,1 · 1− 1

M2p+2
· 1, 1

)

= 1(C̃j,i)
0
1/M2p+2

(x) · 1{j≤Ni}

for all j ∈ {1, . . . , ⌈c13 ·Md∗⌉}. This implies

f̂2(x) = f2(x).

Since

x ∈
⋃

k∈Zd

(Dk)
0
2/M2p+2
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we can further conclude that

x ∈
⋃

k∈Zd

(Ck)
0
2/M2p+2

and it follows by Lemma 5 that

f̂1(x) = f1(x) = 0.

Thus, we have

1− f̂2(x)− f̂2id(f̂1(x)) = 1− f2(x) = 1− 0 = 1

and

f̂check,P2(x) = 1− 1 = 0 = 1⋃
k∈Zd

Dk\(Dk)
0
1/M2p+2

(x).

In our third case we assume (20), but

x ∈
⋃

k∈Zd

(Dk)\(Dk)
0
1/M2p+2 ,

which means that

x /∈
⋃

k∈Zd

(Dk)
0
1/M2p+2 .

In this case the approximation f̂1(x) is not exact. By the definition of the networks in
Lemma 5a), we can conclude that all values of f̂ind,(Ck)

0
1/M2p+2

in the definition of f̂1 are

contained in [0, 1] and that at most one of them is greater than zero. Thus, we have

f̂1(x) ∈ [0, 1].

Since (20) holds we further have

f̂2(x) = f2(x)

as shown in the second case. Summarizing, we can conclude that

1− f̂2(x)− f̂2id(f̂1(x)) =
∑

j∈{1,...,⌈c13·Md∗⌉}

1(C̃j,i)
0
1/M2p+2

(x)− f̂2id(f̂1(x))

≤ 0− 0 = 0.

This implies

f̂check,P2(x) = 1− 0 = 1 = 1⋃
k∈Zd

Dk\(Dk)
0
1/M2p+2

(x).

By construction of the network we have f̂1(x) ≥ 0 and f̂2(x) ≥ 0 (x ∈ R
d), hence

f̂check,P2(x) ∈ [0, 1]

holds for x ∈ M. �

An auxiliary result for the proof of Lemma 6. In the proof of Lemma 6 we will
need the following auxiliary result.
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Lemma 10. Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Then
for any R ∈ N and any b ≥ 1 a neural network

f̂mult ∈ F(R, 18)

exists such that
|f̂mult(x, y)− x · y| ≤ 2 · b2 · 4−R

holds for all x, y ∈ [−b, b].
Proof. See Lemma 4 in Supplement A of Kohler and Langer (2020). �

Proof of Lemma 6. Let f̂P2 be the network of Lemma 3 and let f̂check,P2 be the network

of Lemma 8. By successively applying f̂id to the output of one of these networks, we can
achieve that both networks have the same number of hidden layers, i.e.,

L = 4 +max
{

⌈log4(M2p)⌉ · ⌈log2(max{q + 1, 2})⌉, 1
}

.

We set

f̂P2,true(x) = σ
(

f̂P2(x)−Btrue · f̂check,P2(x)
)

−σ
(

−f̂P2(x) −Btrue · f̂check,P2(x)
)

,

where

Btrue = 2 · e4ad ·max
{

‖f‖Cq(Rd), 1
}

.

This network is contained in den network class F(L, r) with

L = 5 + ⌈log4(M2p)⌉ · ⌈log2(max{q + 1, 2})⌉

and

r =max

{((

d+ q

d

)

+ d

)

· ⌈c13 ·Md∗⌉ · 2 · (2 + 2d) + 2d, 18 · (q + 1) ·
(

d+ q

d

)}

+ 2d+ (4d2 + 4d) · ⌈c13 ·Md∗⌉.

Due to the fact that the value of f̂P2 is bounded by Btrue according to Lemma 3 and
that f̂check,P2(x) is 1 in case that x ∈ M lies in

⋃

i∈Zd

Di \ (Di)
0
1/M2p+2 , (21)

the properties of the ReLU activation function imply that the value of f̂P2,true(x) is zero

in case that x is contained in (21). Let f̂wP2
be the network of Lemma 7. To multiply

the network f̂P2,true by f̂wP2
we use the network

f̂mult ∈ F(⌈log4(M2p)⌉, 18)
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of Lemma 10, which satisfies

∣

∣

∣
f̂mult(x, y)− xy

∣

∣

∣
≤ 8 · (max {‖f‖∞, 1})2 ·

1

M2p
(22)

for all x, y contained in

[−2 ·max {‖f‖∞, 1} , 2 ·max {‖f‖∞, 1}] .

Here we have chosen R = ⌈log4(M2p)⌉ in Lemma 10.

By successively applying f̂id to the outputs of the networks f̂wP2
and f̂P2,true, we can

synchronize their depths such that both networks have

L = 5 + ⌈log4(M2p)⌉ · (⌈log2(max{q, d} + 1})⌉)

hidden layers.

The final network is given by

f̂(x) = f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

and the network is contained in the network class F(L, r) with

L = 5 + ⌈log4(M2p)⌉ · (⌈log2(max{q, d} + 1})⌉ + 1)

and

r =max

{((

d+ q

d

)

+ d

)

· ⌈c13 ·Md∗⌉ · 2 · (2 + 2d) + 2d, 18 · (q + 1) ·
(

d+ q

d

)}

+ 2d+ (4d2 + 4d) · ⌈c13 ·Md∗⌉+max
{

18d, 2d + d · ⌈c13 ·Md∗⌉ · 2 · (2 + 2d)
}

≤64 ·
(

d+ q

d

)

· d2 · (q + 1) · ⌈c13 ·Md∗⌉.

In case that

x ∈ M and x ∈
⋃

k∈Zd

(Dk)
0
2/M2p+2 ,

the value of x is neither contained in
⋃

k∈Zd

Dk \ (Dk)
0
1/M2p+2 (23)

nor contained in
⋃

k∈Zd

(Dk)
0
1/M2p+2 \ (Dk)

0
2/M2p+2 . (24)
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Thus, the network f̂wP2
(x) approximates wP2(x) according to Lemma 7 with an error of

size

4d+1 · d · 1

M2p
(25)

and f̂P2(x) approximates f(x) according to Lemma 3 with an error of size

c20 ·
(

max
{

2a, ‖f‖Cq(Rd)

})4(q+1)
· 1

M2p
. (26)

Since f̂check,P2(x) = 0, we have

f̂P2,true(x) = σ(f̂P2(x)) − σ(−f̂P2(x)) = f̂P2(x).

Since M2p ≥ 4d+1 ·d, we can bound the value of f̂wP2
(x) using the triangle inequality by

|f̂wP2
(x)| ≤ |f̂wP2

(x)− wP2(x)|+ |wP2(x)| ≤ 2.

Furthermore, we can bound

|f̂P2(x)| ≤ |f̂P2(x)− f(x)|+ |f(x)| ≤ 2 ·max{‖f‖∞, 1},

where we used M2p ≥ c33 ·
(

max
{

2a, ‖f‖Cq(Rd)

})4(q+1)
. Thus, the values of both

networks are contained in the interval, where (22) holds. Using the triangle inequality,
this implies

∣

∣

∣
f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

− wP2(x) · f(x)
∣

∣

∣

≤
∣

∣

∣
f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

− f̂wP2
(x) · f̂P2(x)

∣

∣

∣

+
∣

∣

∣f̂wP2
(x) · f̂P2(x)− wP2(x) · f̂P2(x)

∣

∣

∣

+
∣

∣

∣wP2(x) · f̂P2(x) −wP2(x) · f(x)
∣

∣

∣

≤ c21 ·
(

max
{

2a, ‖f‖Cq(Rd)

})4(q+1)
· 1

M2p
.

In case that x is contained in (23), the approximation error of f̂P2 is not of size 1/M2p.
But the value of f̂check,P2(x) is 1, such that f̂P2,true is zero. Furthermore, we have

∣

∣

∣
f̂wP2

(x)
∣

∣

∣
≤ 2.

Thus, f̂wP2
(x) and f̂P2,true(x) are contained in the interval, where (22) holds. Together

with

0 ≤ wP2(x) ≤
1

2 ·M2p
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and the triangle inequality it follows
∣

∣

∣
f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

− wP2(x) · f(x)
∣

∣

∣

≤
∣

∣

∣f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

− f̂wP2
(x)f̂P2,true(x)

∣

∣

∣

+
∣

∣

∣f̂wP2
(x) · f̂P2,true(x) −wP2(x) · f̂P2,true(x)

∣

∣

∣

+
∣

∣

∣wP2(x) · f̂P2,true(x)− wP2(x) · f(x)
∣

∣

∣

≤ c22 · (max{‖f‖∞, 1})2 ·
1

M2p
.

In case that x is in (24), it is not in (23) and the network f̂P2 approximates f(x) with
an error as in (26). Furthermore, f̂wP2

(x) ∈ [−2, 2] approximates wP2(x) with an error

as in (25). The value of f̂check,P2(x) is contained in the interval [0, 1], such that
∣

∣

∣f̂P2,true(x)
∣

∣

∣ ≤
∣

∣

∣f̂P2(x)
∣

∣

∣ ≤ 2 ·max {‖f‖∞, 1} .

Hence f̂wP2
(x) and f̂P2,true(x) are contained in the interval, where (22) holds. Together

with

wP2(x) ≤
1

M2p

and the triangle inequality it follows again
∣

∣

∣
f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

− wP2(x) · f(x)
∣

∣

∣

≤
∣

∣

∣f̂mult

(

f̂wP2
(x), f̂P2,true(x)

)

− f̂wP2
(x) · f̂P2,true(x)

∣

∣

∣

+
∣

∣

∣f̂wP2
(x) · f̂P2,true(x)− wP2(x) · f̂P2,true(x)

∣

∣

∣

+
∣

∣

∣wP2(x) · f̂P2,true(x)
∣

∣

∣

≤ c23 · (max{‖f‖∞, 1})2 ·
1

M2p
.

�

Proof of Theorem 2. Let P1 and P2 be the partitions defined as in (8). We set

P1,1 = P1 and P2,1 = P2

and define for each v ∈ {2, . . . , 2d} partitions P1,v and P2,v, which are modifications of
P1,1 and P2,1 where at least one of the components it shifted by 1/(2M2). To avoid that
the approximation error of the networks increases close to the boundaries of some cube
of the partitions, we multiply each value of f̂P2,v with a weight

wv(x) =

d
∏

j=1

(

1− 2 ·M2 ·
∣

∣

∣

∣

(CP2,v (x))
(j)
left +

1

2 ·M2
− x(j)

∣

∣

∣

∣

)

+

. (27)
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It is easy to see that wv(x) is a linear tensorproduct B-spline which takes its maximum
value at the center of CP2,v (x), which is nonzero in the inner part of CP2,v (x) and which
vanishes outside of CP2,v (x). Consequently we have w1(x)+ · · ·+w2d(x) = 1 for x ∈ R

d.

Let f̂1, . . . , f̂2d be the networks of Lemma 6 corresponding to the partitions P1,v and P2,v

(v ∈ {1, . . . , 2d}), respectively. Each P1,v and P2,v form a partition of Rd and the error

bounds of Lemma 6 hold for each network f̂v on M. We set

f̂net(x) =

2d
∑

v=1

f̂v(x).

Using Lemma 6 it is easy to see that this network is contained in the network class
F(L, r) with

L = 5 + ⌈log4(M2p)⌉ · (⌈log2(max{q, d} + 1)⌉ + 1)

and

r = 2d · 64 ·
(

d+ q

d

)

· d2 · (q + 1) · ⌈c13 ·Md∗⌉.

Since

f(x) =
2d
∑

v=1

wv(x) · f(x)

it follows directly by Lemma 6

∣

∣

∣
f̂net(x)− f(x)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

2d
∑

v=1

f̂v(x) −
2d
∑

v=1

wv(x) · f(x)

∣

∣

∣

∣

∣

∣

≤
2d
∑

v=1

∣

∣

∣
f̂v(x) −wv(x) · f(x)

∣

∣

∣

≤ c24 ·
(

max
{

3a, ‖f‖Cq(Rd)

})4(q+1)
· 1

M2p
.

�
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