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ABSTRACT 

Satellite-based multispectral imaging 
systems have been in operation since 1972 
and the latest in the Landsat series of 
sensors was launched in July 1982. One 
system parameter of interest is resolution 
and this paper discusses experiments to 
determine the actual overall resolution 
after launch. Atmospheric effects and 
postprocessing effects add to the pre
launch optical resolution. Scene struc
tures, such as roads and field edges, were 
used with numerical estimation procedures 
to predict resolution in Landsat-4 The
matic Mapper imagery. A nominal resolu
tion of 39 meters was determined as com
pared to the predicted 30 m prelaunch 
value.* 

I. INTRODUCTION 

In order to verify that a satellite
borne remote sensing syste@ is operating 
within specifications, it is necessary to 
estimate the system parameters by analysis 
of the measured data. One parameter of 
particular interest is the sensor point
spread function (PSF) which determines the 
resolution of the system. 

It is possible to obtain useful esti
mates of the PSF by analyzing data result
ing from scanning ground elements having 
identifiable geometric and radiometric 
structures. The data are processed in 
such a way as to estimate the coefficients 
in a basis function representation of the 
PSF or in some cases to directly provide 
the PSF itself. 

* This work was sponsored by the National 
Aeronautics and and Space Administration 
under Contract NAS5-26859. 

The measured data can be expressed in 
the spatial domain as a convolution of the 
scene with an overall point-spread func
tion: 

where 

g(x,y) = h(x,y) * f(x,y) 

f(x,y) is the earth scene 

h(x,y) is the overall 
point-spread function of 
the sensor system 

g(x,y) is the resulting image 

Given g(x,y), we wish to determine h(x,y). 
To do this, some deterministic element of 
the input f(x,y) must be known or assumed. 
Although the theory can take into account 
the tWO-dimensional nature of the element, 
the initial experiments have been limited 
to the one-dimensional case. If the ove
rall.PSF is separable, i.e., if h(x,y) can 
be written as a product h(x)h(y), then 
this approach provides a direct estimate 
of the two components. Otherwise it gen
erates cross sections through the two-di
mensional PSF along the x and y axes. 

Three scene elements that would be 
useful for this type of analysis are: 

1. An impulse represented by a narrow
width discontinuity along a row or 
column of the data. 

2. A step function represented by an 
abrupt change in gray level along a 
row or column of the data. 

3. A rectangular pulse represented by a 
sequence of two steps in opposite 
directions along a row or column of 
the data. 

Use of an impulse type scene element 
is the simplest since the sensor response 
is directly proportionate to the PSF. 
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However, it is difficult to identify a 
discontinuity that is narrow enough that 
it may be considered to approximate an 
impulse. Some initial work was done using 
roads for this purpose. It was found, 
however, that because their width is not 
negligible, they consistently led to com
puted impulse response estimates that were 
too wide. 

A general approach applicable to any 
type of (known) scene element has been 
developed. It is illustrated using scene 
elements of the second type listed above 
and gives results that appear to be in 
keeping with what would be expected based 
on the system specifications. 

II. DATA SELECTION 

There are a number of ways in which 
subsets of data from a scene can be 
selected for use in estimating parameters 
of the sensor. The one which is simplest 
to employ is to find a sequence of rows or 
columns in which a repetitive scene ele
ment of known geometrical configuration 
occurs. One example of this is a road 
that is bordered by constant reflectance 
materials on each side. It is not neces
sary that the reflectances be the same on 
each side, only that they be more or less 
constant. Another example is the border 
between fields containing different crops. 

Because of the orbital inclination of 
Landsat and the propensity of man to 
arrange linear features, such as roads and 
field boundaries, in the cardinal compass 
directions, it is generally found that 
there is a spatial displacement in the 
scene coordinates of the linear elements 
from one row or column to the next. This 
has the desirable effect of providing a 
fine grid of samples of the system res
ponse when values from adjacent rows or 
columns are combined after correction for 
the spatial shift of the scene element. 
The procedure for combining the data is 
quite straightforward and can be illus
trated as follows for a north-south road. 

The coordinates of the peaks in the 
row data corresponding to the road are 
determined for a sequence of N rows. 
These data are then fitted with a least
squares straightline, providing an analyt
ical expression for the road coordinates. 
The x-coordinates in each row are then 
modified by subtracting from them the 
least-squares estimate of the road loca
tion in that row. This converts the data 
to a coordinate system in which zero is 
the road center. Because of the small 
angular difference between the sensor 
coordinate system and the road direction, 

the change in road coordinates from row to 
row is only a fraction of the pixel spac
ing and so represents a sampled response 
to the scene element corresponding to a 
subpixel translation. By combining the 
data from a number of rows, a set of 
finely sampled data is found. These data 
can be graduated using splines or other 
smoothing functions to give an average 
response function from which to estimate 
the system point-spread function. 

III. ESTIMATION PROCEDURE 

A straightforward estimate of the 
system point-spread function can be 
obtained if it is represented in terms of 
a finite sum of basis functions. The sim
plest approach is to employ a sequence of 
rectangular pulses extending over the spa
tial extent of the PSF. This will give a 
staircase approximation to the PSF; but if 
narrow impulses are employed, the steps 
will be small and the fidelity will be 
good. A smooth curve can be passed 
through the approximation desired. In 
order for this procedure to be practical, 
it is necessary to know or estimate geome
trical structure of the scene element pro
ducing the measured response. In the case 
of a road, it is desirable to know the 
width of the road, the intensity level on 
each side of the road, and the intensity 
level of the road itself. For a field 
boundary, all that is required is to know 
the intensities on each side of the boun
dary. Since the scene elements are 
selected on the basis of regions of uni
form intensity on each side of a discon
tinuity, these levels can be found 
directly from the data. This is all that 
is required for a step type of discontinu
ity, such as a field boundary. In the 
case of a road, the peak value obtained 
when the sensor is centered on the road 
can be used. However, this value will be 
somewhat low and should be increased by a 
correction factor that can be computed 
from an initial analysis or from analysis 
of the step-response data. 

Mathematically, the analysis proce
dure can be carried out as follows: Con
sider the case of a separable point-spread 
function, i.e., one in which the total PSF 
can be expressed as the product of a PSF 
in the x-direction (rows) and a PSF in the 
y-direction (columns). Only the x-direc
tion analysis will be described; however, 
the y-direction analysis is exactly anala
gous. Let f(x) be the scene intensity as 
a function of the x-coordinate, let h(x) 
be the system PSF, and let g(x) be the 
system output. The output can be repre
sented as the convolution of the scene and 
the PSF, i. e. , 
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00 

g(x) f f(A) h(x-A) dA 

Now let h(x) be represented using a finite 
set of nonoverlapping rectangular basis 
functions. h(x) is assumed to extend over 
an interval of + P/2 and the rectangular 
basis functions -are assumed to have unit 
heights and widths of T units. Thus 

h(x) "c. rect(x-iT) -P/2T<i<p/2T L.. 1 T __ 
i 

f"'f(A) L cirect(X-A-iT) dA 
-00 i T 

g(x) 

L c i <Pi (x) 

i 

where: 
<P (x) fOOf ( A ) rect (X-A) d A 

_00 T 

<Pi(x) = <P (x-iT) 

The procedure is now to choose the 
unknown coefficients c. so as to give the 
best approximation to g(x). This can be 
done by minimizing the mean square error 
between the known (measured) g(x) and the 
estimated value over the region (x

l
,x

2
). 

The integral squared error is: 

x 
2 2 A 2 

E = f [g (x) - g (xl] dx 
Xl 

= ]2 [g(x) - L c i <P
i

(X)]2 dx 

xl i 

The coefficients ci are found by solving 
the system of equatlons that results from 
setting the partial derivatives with 
respect to each coefficient equal to zero. 
The resulting expression for the c.s is: 

1 

where c is a vector with elements c
i

' R is 
a symmetric matrix with elements 

r .. 
1J 

and b is a 

X
2 

r .. = f <Pi(x) <P .(x) J1 J xl 

vector with elements 

X
2 

b. 
1 

f g (x) <Pi (x)dx 
Xl 

dx 

For a typical problem, the PSF extent 
might be approximated by 20 or more c.oef
ficients extending over a spatiale~tent 
of 5-6 pixels. The solution would require 
computing the elements rij which are sam
ples of the autocorrelation function of 
the input image convolved with the rec
tangular basis function, computing the bi 
which are the projections of the output on 
the ith basis function, and then multiply
ing the inverse of the R matrix by the b 
vector. Because of the smoothing that was 
done in generating the original g(x) func
tion, the solution will be well-behaved. 

IV. EXPERIMENTAL RESULTS 

The procedure that has been described 
is suitable for use with a variety of 
scene events that can be identified in 
Landsat imagery. The simplest case and 
the one that will be considered here is 
that of a boundary between two different 
intensity levels that extends in a north
south direction. This corresponds to an 
underlying functional form of a step dis
continuity. Scene structures correspond
ing to field boundaries were selected from 
a rural area in Landsat-4 Thematic Mapper 
imagery of Webster County, Iowa** for use 
in the analysis. Data from consecutive 
rows on each side of the boundary were 
examined to be sure that no anomalous 
behavior was occurring. The least-squares 
straightline for the boundary representa
tion was computed and the system response 
for consecutive rows adjusted to corres
pond to a boundary position on the x
direction of zero. Data for two different 
boundaries are shown in Figures 1 and 2. 
In Figure 1, fourteen scan lines are 
employed and in Figure 2, twelve scan 
lines. 

The data of Figures 1 and 2 were 
smoothed using a cubic spline subroutine 
with five knots. The resulting response 
functions are shown in Figures 3 and 4 
along with the assumed intensity level of 
the underlying scene. Data from the 
smoothed response functions were used to 
solve for the coefficients in the basis 
function representation of the PSF, as 
described previously. For this analysis, 
the PSF was assumed to be limited in 
extent to 9 sampling intervals and a total 
of 21 coefficients was calculated. The 
resulting PSFs are shown in Figures 5 and 
6. 

** The data used were from Band 4 (.76-.90 
wm) of the Landsat-4 Thematic Mapper from 
Scene 40049-16264 obtained on Sept. 3, 
1982 from the fully corrected P tape. 
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In interpreting the results of 
estimating the PSF of a sensor, it is con
venient to use parameters that describe 
some of the general properties of the PSF. 
Two such parameters are the equivalent 
width, WeQ , and the half-amplitude width, 
W~, of tne main lobe. These are defined 
a~: 

1. Half amplitude width W~ = width at 
which the magnitude of fi{x) falls to 
one-half of its value at the origin. 

2. Equivalent width We 
h(x) dx 

h max 

This is the width of a rectangle having 
the amplitude of h{x) at its maximum and a 
width such that it has the same area as 
h{x). For the two scene elements ana
lyzed, these parameters are as follows: 

Table 1. Results of PSF Width Estimation. 

Parameter 

W 
eq 

W~ 

Data Set 1 

1. 53 

1. 44 

Data Set 2 

1. 38 

1. 28 

The units of Weq and W~ are sampling 
intervals. The sampling spacing for the 
Thematic Mapper imaging is 28.5 meters. 

Because of the special nature of the 
underlying scene element that produced the 
data used in this analysis, there is an 
alternative way to estimate the point
spread function. The scene element can be 
modeled as a step superimposed on a cons
tant background, i.e., 

f{x) A + B u{x) 

where A is the background and B is the 
amplitude change across the boundary. The 
output is then given by 

g{x) = [A + B u{x)] * h{x) 

Taking the derivative of both sides of 
this equation gives 

g~ (x) ~(A+B u{x» * h (x) 
dx 

h{x) 

B 8{x) * h{x) 

B h{x) 

I g~{x) 
B 

The PSF is therefore the derivative of the 
output (measured) function scaled by the 
amplitude of the step. This quantity can 
be computed directly from the smoothed 
representations given in Figures 3 and 4. 
The results of this computation are shown 
in Figures 7 and 8 along with the coeffi
cients previously determined. It is seen 
that there is excellent agreement between 
these figures and the results of the more 
general solution given in Figures 5 and 6. 

All of the estimates suggest the 
existence of sidelobes on the PSF. This 
is evidenced by the overshoot seen in Fig
ures 3 and 4 and in the resulting PSF 
estimates in Figures 5-8. More extensive 
analysis using different scene structures 
will be required to accurately quantify 
the nature and extent of the sidelobe 
structure. 

v. SUMMARY 

The problem of estimating the overall 
point-spread function of multispectreal 
scanner systems was studied using real 
scene data and known geometric structures 
in the scene. A direct solution to an 
approximate form of the PSF was made along 
with a method using the derivative of an 
estimated edge response. Both results 
agreed closely. The TM scanner system 
specifications are given in line-spread 
function width and these values are listed 
with the experimental results in terms of 
meters in Table 2. The estimated values 
are very reasonable, considering the num
ber of factors which could be influencing 
the result. The atmosphere will have a 
blurring effect on the overall PSF as well 
as on cubic convolution resampling effects 
and possible electronic effects not 
accounted for in the specification. Also, 

Table 2. Comparison of PSF Width Estimation Re
sults on Thematic Mapper Specifications 2 Based on 
Altitude of 705.3 km and pixel spacing of 28.5 M. 

Av. PSF Est. 
Width (Pixels) 
Wl;, Weg 

Av. PSF Est. LSF Width LSF Width 
Width (Meters) w Radians Meters 
W, W 

'2 eg 

1. 36 1.45 38.8 41.3 43.2 30.5 
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the specific definition of the LSF speci
fication is not known nor is the actual 
altitude at the instant the data were 
acquired. Thus the nominal overall PSF 
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Fig. 1. Fourteen row responses from Reg. 1 
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Fig. 3. Smoothed estimate of the row re
sponse from Region 1 and the underlying 
scene int~nsity. 

half-amplitude width of 39 m is 
able; however, a greater sample 
objects should be evaluated to 
verify this result. 
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Fig. 2. Twelve row responses from Reg. 2. 
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Fig. 4. Smoothed estimate of the row re
sponse from Region 2 and the underlying 
scene intensity. 
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Fig. 5. PSF estimate from smoothed data 
from Region 1. 
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Fig. 7. PSF estimate as derivative of 
step response based on data from Reg. 1 
superimposed on coefficient estimates 
given in Figure 5. 
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Fig. 6. PSF estimate from smoothed data 
from Region 2. 
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Fig. 8. PSF estimate as derivative of 
step response based on data from Reg. 2 
superimposed on coefficient estimates 
given in Figure 6. 
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