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Abstract

We introduce in this paper a new mixture of regressions model which is

a generalization of the semiparametric two-component mixture model studied

in Bordes et al. (2006b). Namely we consider a two-component mixture of

regressions model in which one component is entirely known while the propor-

tion, the slope, the intercept and the error distribution of the other component

are unknown. Our model is said to be semiparametric in the sense that the

probability density function (pdf) of the error involved in the unknown regres-

sion model cannot be modeled adequately by using a parametric density family.

When the pdf’s of the errors involved in each regression model are supposed

to be zero-symmetric, we propose an estimator of the various (Euclidean and

functional) parameters of the model, and establish under mild conditions their

almost sure rates of convergence. Finally the implementation and numerical

performances of our method are discussed using several simulated datasets and

one real hight-density array dataset (ChIP-mix model).
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1 Introduction

Let U = (Ui)i≥1 be a label sequence of independent and identically distributed (iid)
random variables according to a Bernoulli distribution with parameter p ∈ (0, 1).
We consider an iid sample (Z1, . . . , Zn) where for all i = 1, . . . , n, Zi = (Xi, Yi) is a
bivariate random variable defined, relative to Ui, as follows:

{

Yi = a0 + b0Xi + ε
[0]
i , if Ui = 0,

Yi = a1 + b1Xi + ε
[1]
i , if Ui = 1,

(1)

where the design sequence X = (Xi)i≥1, is a sequence of iid random variables with
cumulative distribution function (cdf) H and probability density function (pdf) h,

when the errors ε[j] = (ε
[j]
i )i≥1, j = 0, 1, are respectively sequences of iid random

variables with cdf Fj and pdf fj . In addition we suppose that the sequences U , X,
and ε[j], j = 0, 1, are mutually independent. This model, called the 2-component
mixture of regressions model, belongs to the wide class of mixture of regressions
models which has been studied in Zhu and Zhang (2004); see also Yau et al. (2003)
in a LOS (length of stay) medical problem, Bouveyron and Jacques (2010) for pre-
diction, Young and Hunter (2010) in a nonparametric modelling context, or Hunter
and Young (2012) for a very recent work on a semiparametric EM-type algorithm
for general mixture of regressions models. Recently Martin-Magniette et al. (2008)
introduced this model in microarray analysis, specifically for the two color ChIP-chip

experiment. In their work, these authors suppose that the error sequences (ε
[j]
i )i≥1,

j = 0, 1, are such that ε
[j]
i = εi for all (j, i) ∈ {0, 1}×N

∗, where N∗ := N\{0} and εi
is a Gaussian random variable with mean 0 and variance σ2 (homoscedaticity with
respect to the so-called probe status Ui).

In this work, we propose to weaken this last assumption while completely spec-
ifying the regression model under the probe standard condition (the parameter
θ[0] := (a0, b0) ∈ R

2 and f0 are supposed to be entirely known). Note that this
kind of assumption arises naturally in microarray analysis. See model Bordes et al.
(2006) and references Benjamini and Hochberg (1995), Efron (2007), or Bordes et
al. (2006) where analytic expression of f0, characterizing probe expressivity levels
under a certain standard condition, is assumed to be available (generally derived
from training data and probabilistic computations). In particular we will suppose

that, in model (1), the distribution of the ε
[1]
i is seen as a nuisance parameter (it

cannot be modeled using a parametric distribution family), causing model (1) to be
a purely semiparametric model. Note that when θ[0] is known the observations Yi,
for i = 1, . . . , n, can be centered according to Yi := Yi − (a0 + b0Xi) which implies
the following simplification of model (1):

{

Yi = ε
[0]
i , if Ui = 0,

Yi = α+ βXi + ε
[1]
i , if Ui = 1,

(2)

where α := a1 − a0 and β := b1 − b0. We suppose that in model (2), which is from
now on our model of interest, the Zi = (Xi, Yi)’s distribution admits a pdf with
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respect to the Lebesgue measure on R
2 given by:

g(x, y) = h(x)gY |X=x(y)

= h(x)[pf(y − (α+ βx)) + (1− p)f0(y)], (x, y) ∈ R
2, (3)

where f denotes the unknown pdf of the ε
[1]
i , f0 the known pdf of the ε

[0]
i , h the

unknown pdf of the Xi, with f and f0 assumed to be zero-symmetric densities. We
will finally denote by ϑ := (p, α, β) ∈ (0, 1) × R

2 the unknown Euclidean parame-
ter of model (3). Model (2) corresponds exactly to a contaminated version of the
semiparametric additive regression model studied in Cuzick (1992a,b) and more re-
cently in Yu et al. (2011). On the other hand, this work extends for the first time
to the bivariate case, the asymptotic study (consistency and convergence rates) of
the semiparametric class of mixture models introduced by Hall and Zhou (2003) for
R
s-valued observations with s ≥ 3. We remind that semiparametric mixture models

were also studied in the univariate case, through two specific models:

g(y) = pf(y − µ1) + (1− p)f(y − µ2), y ∈ R, (4)

where (p, µ1, µ2) ∈ (0, 1/2) × R
2 and f , supposed to be even, are unknown, see

Bordes et al. (2006), Hunter et al (2007), Martin-Magniette et al. (2008), and

g(y) = pf(y − µ) + (1− p)f0(y), y ∈ R, (5)

where (p, µ) ∈ (0, 1) × R and f are unknown, f0 is known, and the pdfs f and f0
are supposed to be even, see Bordes et al. (2006), Bordes and Vandekerkhove (2010).

The paper is organized as follows. In Section 2 we present an M-estimating
method, inspired by Bordes et al (2006a), Bordes et al. (2006b) and Bordes and
Vandekerkhove (2010), that allows us to estimate the Euclidean and the functional
parameters of model (2). In Section 3 we address the semiparametric identifiability
problem in expression (3) and establish rates of convergence of our estimators. In
Section 4 we discuss the performances of our method on simulated examples and
also analyze one real high-density array dataset previously considered in Martin-
Magniette et al. (2008). Technical results and tedious proofs are relegated to the
appendix, Section 5.

2 Estimating method

In this section we generalize the estimating method proposed by Bordes and Vandek-
erkhove (2010) for model (5) and a fixed unknown location parameter µ, to model
(3), where the location parameter, given {X = x}, is equal to α + βx and changes
with x due to the non-zero slope parameter β. The main challenge of this paper
will consist then in establishing uniform asymptotic results close to those obtained
in Bordes and Vandekerkhove (2010) in spite of the introduction of this multiplica-
tive parameter. In particular, the difficulty generated by this change relates to the

3
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statement of minimal conditions on the functional parameters of the model in or-
der to allow a uniform control on the (bigger) classes of functions we will apply to
the (X,Y )-empirical process to get convenient approximation results (see, e.g., the

treatment of the terms T
(i)
1,n, i = 1, 2, in Section 6.6). In the spirit of Bordes et

al. (2006a), Bordes et al. (2006b) and Bordes and Vandekerkhove (2010), we will
assume that f and f0 are both zero-symmetric pdfs. To avoid trivial situations or
trivial non-identifiability problems (see Remark in Section 3.1), we will impose p 6= 1
and θ := (α, β) ∈ Φ ⊂ R×R

∗, where R∗ := R\{0}, which implies that the Euclidean
parameter ϑ will be assumed to belong to a parametric compact and convex space

Θ := [δ, 1− δ]× Φ ⊂ (0, 1)× {R× R
∗} , (6)

where δ ∈ (0, 1). For simplicity, we will endow the spaces Rs, s ≥ 1, with the ‖ · ‖s
norm (for clarity the dimension s is recalled in index) defined for all v = (v1, . . . , vs)
by ‖v‖s =

∑s
j=1 |vj | where | · | denotes the absolute value.

Let us introduce now the following notation:

θ ⊙ x := α+ βx, (θ, x) ∈ Φ× R.

Following the ideas developed by the authors mentioned above, it is possible to
use the symmetry of f to identify the true value of the Euclidean parameter. The
original idea of this paper consists of noticing that for θ fixed in Φ, the sample
(Y θ

1 , . . . , Y
θ
n ) obtained by considering the following θ-depending transformation of

the original dataset (so-called for simplicity θ-transformation),

Y θ
i := Yi − θ ⊙Xi, i = 1, . . . , n, (7)

is distributed according to

Ψθ(y) = p∗

∫

R

f(y + (θ − θ∗)⊙ x)h(x)dx+ (1− p∗)

∫

R

f0(y + θ ⊙ x)h(x)dx, (8)

where ϑ∗ = (p∗, α∗, β∗) ∈ Θ̊ denotes the true value of the parameter. In addition,
when θ = θ∗,

Ψθ∗(y) = p∗f(y) + (1− p∗)

∫

R

f0(y + θ∗ ⊙ x)h(x)dx, (9)

which is very close to model (5) studied in Bordes et al. (2006b) where the location µ
is known but the proportion p is unknown. These two major remarks are illustrated
and discussed on a simulated example in Section 4.1.

Isolating f in (9) and replacing ϑ∗ = (p∗, θ∗) by ϑ = (p, θ) one can define a new
parametric class of functions FΘ := {fϑ : ϑ ∈ Θ} where for all (y, ϑ) ∈ R×Θ

fϑ(y) =
1

p
Ψθ(y)−

1− p

p

∫

R

f0(y + θ ⊙ x)h(x)dx, (10)

that satisfies under ϑ = ϑ∗, and all y ∈ R

f(y) = fϑ∗
(y) = fϑ∗

(−y) = f(−y). (11)

4
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Note that, on the right hand side of (10), the second integral term is unknown
but can be estimated pointwise by a standard integration Monte Carlo method, see
expression (16), or a nonparametric Monte Carlo approach, see expression (22). The
intuition consists now in claiming that, if we vary ϑ over Θ and that we are able
to check that fϑ is zero-symmetric for a certain value of ϑ, then we have reached
the true value of the Euclidean parameter. A natural idea to detect this kind of
situation, and then to estimate ϑ = (p, θ), is to consider a contrast function based
on the comparison between the cdf version of fϑ(y)

H1(y;ϑ) := H1(y; p, Fθ, Jθ) :=
1

p
Fθ(y)−

1− p

p
Jθ(y), (y, θ) ∈ R×Θ,

and the cdf version of fϑ(−y)

H2(y;ϑ) := H2(y; p, Fθ, Jθ) := 1− 1

p
Fθ(−y) +

1− p

p
Jθ(−y), (y, θ) ∈ R×Θ,

where for all (y, θ) ∈ R× Φ,

Jθ(y) :=

∫ y

−∞
Iθ(z)dz, y ∈ R, with Iθ(z) :=

∫

R

f0(z + θ ⊙ x)h(x)dx, z ∈ R,

and Fθ(y) :=
∫ y
−∞ fθ(z)dz. Notice that for all θ fixed in Φ, Jθ(·) and Fθ(·) are the

cdfs respectively associated to the θ-transformed known component population (the
Yi such that Ui = 0 in (2)) and the θ-transformed whole data (the Yi such that
Ui = 0 or Ui = 1 in (2)). It is then convenient to define the comparison-function

H(y;ϑ) := H1(y;ϑ)−H2(y;ϑ), (y, ϑ) ∈ R×Θ. (12)

and to notice that under ϑ∗, using the symmetry of f ,

H(y;ϑ∗) = 0, y ∈ R.

To avoid numerical integration in the approximation of an empirical contrast func-
tion, based on the comparison function H over R, we proceed as follows. Let Q
be an instrumental weight probability distribution with pdf q with respect to the
Lebesgue measure. We assume that q is strictly positive over R and easy to simulate.
Then we consider

d(ϑ) :=

∫

R

H2(y, ϑ)dQ(y), (13)

where obviously d(ϑ) ≥ 0 for all ϑ ∈ Θ and d(ϑ∗) = 0. Let (V1, . . . , Vn) be an iid
sample from Q. An empirical version dn(·) of d(·) can be obtained by considering

dn(ϑ) :=
1

n

n
∑

i=1

H2(Vi; p, F̃n,θ, Ĵn,θ), ϑ ∈ Θ, (14)

where

Ĵn,θ(y) :=

∫ y

−∞
În,θ(z)dz, (y, θ) ∈ R× Φ, (15)

5
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with

În,θ(z) :=
1

n

n
∑

i=1

f0(z + θ ⊙Xi), (z, θ) ∈ R× Φ, (16)

which leads actually to the simple expression for Ĵn,θ(y)

Ĵn,θ(y) :=
1

n

n
∑

i=1

F0(y + θ ⊙Xi), (y, θ) ∈ R× Φ. (17)

In (14), the function F̃n,θ denotes a smooth version of the empirical cdf

F̂n,θ(y) :=
1

n

n
∑

i=1

1IY θ
i ≤y

, (y, θ) ∈ R× Φ,

defined by

F̃n,θ(y) :=

∫ y

−∞
Ψ̂n,θ(t)dt, (y, θ) ∈ R× Φ, (18)

where

Ψ̂n,θ(t) :=
1

nbn

n
∑

i=1

K

(

t− Y θ
i

bn

)

, (t, θ) ∈ R× Φ. (19)

In (19), we assume the standard condition ensuring, for each θ ∈ Φ, the L1 conver-
gence of Ψ̂n,θ towards Ψθ defined in (8) (see Devroye 1983), namely

bn → 0, nbn → +∞, (20)

and K is a symmetric kernel density function. Finally we propose to estimate ϑ∗ by
considering the M-estimator

ϑ̂n := (p̂n, θ̂n) = argmin
ϑ∈Θ

dn(ϑ). (21)

Once ϑ∗ is estimated by ϑ̂n a natural way to estimate F and f consistently is then
to consider the plug-in empirical versions of H1(·;ϑ) and (10), respectively defined
for all y ∈ R by

F̂n(y) := H1(y; p̂n, F̃n,θ̂n
, J̃n,θ̂n),

f̂n(y) :=
1

p̂n
Ψ̂n,θ̂n

(y)− 1− p̂n
p̂n

Ĩn,θ̂n(y),

where, for all θ ∈ Θ, Ĩn,θ and J̃n,θ are respectively nonparametric estimators of Iθ and

Jθ based on an iid simulated sample (ε̃
[0]
1 , . . . , ε̃

[0]
n ) from f0 obtained by considering

Ĩn,θ(t) :=
1

nbn

n
∑

i=1

K

(

t− (−θ ⊙Xi + ε̃
[0]
i )

bn

)

, (t, θ) ∈ R× Φ.

J̃n,θ(y) :=

∫ y

−∞
Ĩn,θ(t)dt, (y, θ) ∈ R× Φ,

6
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In this second plug-in step, we consider, for the sake of simplicity in our proofs,
the nonparametric estimates (22) and (22) instead of (15) and (16). This choice
allows us to use similar nonparametric results for both f̂n,θ and Ĩn,θ (see the proof
of Theorem 3.1 ii) and iii)), but the same results should be obtained, at the price of
an additional technical lemma, by considering directly the Monte Carlo estimators
(15) and (16).

3 Semiparametric identifiability and consistency

3.1 Identifiability

In this section we recall briefly why model (3) is identifiable under conditions similar
to those established in Bordes et al. (2006b) and summarized below. Let us define
Fs := {f ∈ F ;

∫

R
|x|sf(x)dx < +∞} for s ≥ 1, where F denotes the set of even pdfs.

When (f, f0) ∈ Fs with s ≥ 2, we denote m :=
∫

R
x2f(x)dx and m0 :=

∫

R
x2f0(x)dx.

In addition we will denote by λ⊗2 the product Lebesgue measure on R
2.

Definition 3.1 (Identifiability). Let (p1, θ1, f1, h1) and (p2, θ2, f2, h2) denote two
sets of parameters for model (3). The parameter in model (3) is said to be semi-
parametrically identifiable if

(p1, θ1, f1(y), h1(x)) = (p2, θ2, f2(y), h2(x)),

for λ⊗2-almost all (x, y) ∈ R
2, whenever we have:

(p1f1(y − θ1 ⊙ x) + (1− p1)f0(y))h1(x)

= (p2f2(y − θ2 ⊙ x) + (1− p2)f0(y))h2(x), (22)

for λ⊗2-almost all (x, y) ∈ R
2.

Lemma 3.1 If the Euclidean parameter space Θ is a subset of R × R
∗, supp(f) =

supp(f0) = R, supp(h) contains at least two intervals respectively in the neighborhood
of 0 and +∞ (or −∞), and the pdfs involved in model (3) satisfy (f0, f) ∈ F3 ×F3,
then the parameter in model (3) is identifiable.

Proof. Integrating (22) with respect to y over R, we then obtain that h1(·) = h2(·)
λ-almost everywhere. Let h(x) := h1(x) for all x ∈ supp(h) := supp(h1)∩ supp(h2).
Notice now that, for all x ∈ supp(h), (22) coincides with (5) when we replace the
location parameter µ by θ ⊙ x. In our case, the first three conditional moment
equations given {X = x} associated to (22) lead to







p1(θ1 ⊙ x) = p2(θ2 ⊙ x),
(1− p1)m0 + p1((θ1 ⊙ x)2 +m1) = (1− p2)m0 + p2((θ2 ⊙ x)2 +m2),
p1(3((θ1 ⊙ x)m1 + (θ1 ⊙ x)3) = p2(3((θ2 ⊙ x)m2 + (θ2 ⊙ x)3).

(23)

Replacing in Bordes et al. (2006b) formula (6) the location µ by θ1⊙x and noticing
that in our case θ = m1 and θ0 = m0, the solutions are either, for all x ∈ supp(h),

7
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(p1, θ1 ⊙ x) = (p2, θ2 ⊙ x), which implies (p1, α1, β1) = (p2, α2, β2), or































p2 = p1

(

2(θ1 ⊙ x)2

3m1 + (θ1 ⊙ x)2 − 3m0

)

,

θ2 ⊙ x = θ1 ⊙ x+
3m1 − (θ1 ⊙ x)2 − 3m0

2θ1 ⊙ x
,

m2 = m1 +
(m1 + (θ1 ⊙ x)2 −m0)(3m0 + (θ1 ⊙ x)2 − 3m1)

4(θ1 ⊙ x)2
.

(24)

Assume that β1 6= 0 and consider the limit when x → +∞ in the first row of (24).
We then necessarily obtain that p2 = 2p1 which is only compatible when we take the
limit as x → 0, with m1 = m0. Hence if m1 6= m0, model (3) is always identifiable.
If we assume m1 = m0, the second row of (24) leads to θ2 ⊙ x = (θ1 ⊙ x)/2. If we
introduce this last equation in the third row of (24), we obtain

m2 −m1 =
1

4
(θ1 ⊙ x)2, x ∈ R,

which is impossible when x → +∞ and thus provides us the global identifiability of
model (3). �

Remark. In Lemma 3.1 we have considered for simplicity the case where the slope
parameter β is supposed to be different than zero. Actually, this condition can be
technically relaxed if we allow θ to be equal to (α, 0) with α 6= 0. In fact, considering
the first row of (24) and taking the limit as x → +∞, we obtain β2 = β1 = 0.
To conclude, it is then enough to integrate (22) with respect to x over R which
leads to discuss the same condition as in Bordes et al. (2006b, p. 735, eq. 3).
Then Proposition 2 in Bordes et al. (2006b) provides an almost everywhere-type
identifiability result which unfortunately cannot be strictly compared to the result
stated in Lemma 3.1. For this reason we decided to reject θ = (α, 0), α ∈ R

∗ from
the sub-parametric space Φ, see (6).

3.2 Assumptions and asymptotic results

In the following we provide some general conditions ensuring the consistency of our
estimation method as well as semiparametric almost sure rates of convergence.

Regularity conditions (R).

i) The pdfs f and f0 are strictly positive over R and belong to F3.

ii) The pdfs f and f0 are twice differentiable over R with ‖f (j)‖∞ < ∞ and

‖f (j)
0 ‖∞ < ∞, where f (j) and f

(j)
0 denote respectively the j-th order deriva-

tives of f and f0, for j = 1, 2.

iii) The pdf h satisfies
∫

R
|x|2h(x)dx < ∞.

8
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iv) For i = 0 or i = 2,

∫

R2

|x|i|F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|h(x)dxdy < ∞,

and for i = 1 or i = 3, and all u ∈ R,

lim
y→±∞

yi(F0(y + u)− F0(y − u)) = 0.

v) There exist two collections of functions {ℓi,j}0≤i≤j≤2 and
{

ℓ0i,j

}

0≤i≤j≤2
belong-

ing to L1(R
2) and such that, for all (x, y) ∈ R

2 and all θ ∈ Θ

|xif (j)(y + (θ − θ∗)⊙ x)|h(x) ≤ ℓi,j(x, y),

and
|xif (j)

0 (y + θ ⊙ x)|h(x) ≤ ℓ0i,j(x, y).

For all z ∈ C, let denote respectively z̆ and ℑ(z) the conjugate and imaginary part
of z. We will also denote f̄ , f̄0 the Fourier transforms of f , f0, and define for all
κ = (κ1, κ2) ∈ R

2, νκ(t) := eitκ1 h̄(κ2t), where h̄ denotes the Fourier transform of h.

The following conditions mainly ensure the contrast property for the function
d defined in (13). We point out that these conditions are not equivalent, as it is
already the case in Bordes and Vandekerkhove (2010, p. 25), to those established to
prove the identifiability property in Lemma 3.1.

Contrast condition (C).

i) The density function h is not non-zero symmetric and the three first moments
of X satisfy E(X)(4E(X)2 + 3E(X2)) 6= −E(X3).

ii) The set of parameters ϑ = (p, θ) = (p, α, β) with p 6= p∗ that satisfies

p∗ℑ(νθ−θ∗(t))f̄(t) = (p∗ − p)ℑ(νθ(t))f̄0(t), t ∈ R, (25)

is empty or does not belong to the parametric space Θ.

iii) The second order moments of f and f0, respectively denoted m and m0, are
assumed to satisfy

m 6= m0 +
α3
∗ + 3α2

∗β∗E(X) + 3α∗β
2
∗E(X2) + β3

∗E(X3)

3(α∗ + β∗E(X))
.

Remarks. In order to control the non-symmetry of h required in (C) i), one can
use an adequate 95 %-confidence interval IX,95% for E(X) and check if 0 ∈ IX,95%,
which should make suspect that E(X) = 0. If such a situation happens we advice to
add a non-null constant c to the X in order to create a likely non-symmetric design
data, i.e., 0 /∈ IX+c,95%. This modification is slope-invariant and generates a new

9
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value for the intercept which is then equal to ρ := α − βc. Obviously, if (ρ̂n, β̂n)
is a strongly consistent estimator of (ρ, β) with a certain rate of convergence, then
α̂n = ρ̂n + cβ̂n inherits the same convergence properties. Note, in addition that if h
is symmetric about a non-null constant, then condition (C) i) is satisfied since E(X)
and E(X3) have the same sign.

We also point out that condition (C) ii), which is necessary to get the contrast
property for d over Θ, is quite difficult to figure out when nothing is specified on
f , f0 and h. We suggest, in the spirit of conditions C1 and C2 in Hohmann and
Holzmann (2012), to consider the sufficient and more intuitive regularity comparison-
type criterion for C ii)

∀θ ∈ Φ,

∣

∣

∣

∣

ℑ(νθ−θ∗(t))
ℑ(νθ(t))

f̄(t)

f̄0(t)

∣

∣

∣

∣

−→ +∞ or 0, as t → +∞, (26)

which is valid since, according to (25), the term on left hand side of (26) is equal to
|p− p∗|/p∗ ∈ [|p− p∗|, 1/δ] which is in contradiction with (26). However, condition
(25) is thoroughly discussed in the Gaussian case as done in the appendix, Section
6.1. We prove, in particular, that there exists at most one spurious solution satisfy-
ing (25) that has to be removed from the parametric space so it is not detected by
our estimation algorithm as shown in Fig. ??.

Kernel and Bandwidth conditions (K).

i) The even kernel density function K is bounded, uniformly continuous, and
square integrable, with bounded variation and second order moment.

ii) The even kernel density function K is twice differentiable and its first and
second derivatives belong to L1(R).

iii) The bandwidth bn satisfies bn ց 0, nbn → +∞ and
√
nb2n = o(1).

We state in the following lemma some basic properties of the discrepancy function
d and its estimator dn respectively defined in (13) and (14).

Lemma 3.2 (i) Under conditions (R) the function d is Lipschitz over Θ.

(ii) Under conditions (C) i) and ii) the function d is a contrast function, i.e., for
all ϑ ∈ Θ, d(ϑ) ≥ 0 and d(ϑ) = 0 if and only if ϑ = ϑ∗.

(iii) Under condition (C) iii) we have

d̈(ϑ∗) = 2

∫

R

Ḣ(y, ϑ∗)Ḣ
T (y, ϑ∗)dQ(y) > 0.

(iv) Under conditions (R) and (K) i) and iii), for any γ > 0, dn converges to d
almost surely with the rate

sup
ϑ∈Θ

|dn(ϑ)− d(ϑ)| = oa.s.(n
−1/2+γ).
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The proof of this lemma is relegated to the appendix, Section 6.6.

We state in the following theorem the asymptotic properties of our Euclidean and
functional estimators defined in (21), (22) and (22).

Theorem 3.1 i) If assumptions (R), (C) and (K) are satisfied then

‖ϑ̂n − ϑ∗‖3 = oa.s.(n
−1/4+γ), γ > 0.

ii) The estimator f̂n of f defined in (22) converges almost surely in the L1 sense
if n−1/4+γ/bn → 0, for all γ > 0.

iii) For any γ > 0, the estimator F̂n of F defined in (22) converges uniformly at
the following almost sure rate

‖F̂n − F‖∞ = Oa.s.(n
−1/4+γ/bn) +Oa.s.(b

2
n), γ > 0. (27)

The above rate is optimized by considering bn = n−1/12, providing the rate of
convergence Oa.s.(n

−1/6+γ), for all γ > 0.

The proof of this theorem is relegated to the appendix, Section 6.7.

Comment. Points ii) and iii) reveal the intuitive idea that the bandwidth bn must
not decrease too fast in order to allow the appropriate positioning of the plug-in
centered data in the expression of Ψ̂n,θ̂n

.

4 Numerical experiments

4.1 Role of the θ-transformation

We propose in this section to highlight the role played by the θ-transformation, see
(7), in our method. For this purpose, we consider an example which corresponds to

model (5) taking p∗ = 0.7, α∗ = 2, β∗ = 1, ε
[j]
1 ∼ N (0, 1), j = 0, 1 and X1 ∼ N (2, 3).

In Fig. 1 we plot successively a simulated data set (Xi, Yi)1≤i≤n, corresponding to
the previous description with n = 200, and the two θ-transformed datasets obtained
with θ = (1, 0.5) and θ = θ∗ = (2, 1). These figures are completed by adding their
corresponding 2nd-coordinate sample data histograms. Note that these histograms
are empirical estimates of the densities fθ defined in (8), with θ respectively equal
to (0, 0), (1, 0.5) and (2, 1). We see clearly through these three situations how a
progressive transformation of the data allows one to reach a tractable situation in
the sense that it looks strongly like the semiparametric contamination model (5)
studied in Bordes et al. (2006b) where a known density is mixed with a symmetric
unknown density, which corresponds to the behavior observed in the second row,
third column histogram in Fig. 1. Loosely speaking the second idea of our method
consists in arguing that once θ is close to θ∗ we are allowed to estimate the proportion
p according to a Bordes and Vandekerkhove (2010) type-method which corresponds
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Figure 1: First row: respectively plot of an original data (Xi, Yi)1≤i≤n according to
model (3) with n = 200, plot of a wrong θ-tranformation (θ 6= θ∗), plot of the true
θ∗-tranformation. Second row: respectively histograms of the corresponding first
row 2nd-coordinate sample data.

to the minimization step (21). In contrast to this technically satisfying idea, the θ-
transformation and the choice of the weight distribution Q introduced in (13) are two
sources of difficulty which have to be considered carefully. In fact when β∗ is large
and the law of the design data has heavy tails with respect to the tails of f , then the
θ∗ transformation will move the points coming from the F0-population and located
far from the origin to extremely distant positions, which implies intuitively that the
integral type density involved in (7) should be extremely heavily tailed. Thus in order
to capture the information contained in the tails of the θ-transformed data set it is
important to sufficiently weight the empirical index of symmetry H2(x; p, F̃n,θ, Ĵn,θ)
of expression (14) for large values of x, which reduces to choosing an instrumental
distribution Q with non-negligible tails with respect to Fθ∗ .

4.2 Preliminary discussion

The aim of this section is to illustrate graphically, on two-dimensionnal examples,
the behavior of the empirical distance dn(p, 0, β) (the parameter α is assumed to be
equal to zero) when p and β lie close to the true value of the parameter. For simplicity
the parameter will still be denoted ϑ := (p, β), with θ := β and dn(ϑ) := dn(p, 0, β).
The interest of this study is to understand closely the influence of the mixing propor-
tion p and the slope parameter β on the shape of the contrast function d (flatness,
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sharpness, smoothness, etc.). Our models of interest are denoted M1 and M2 and
defined according to (2) as follows

M1: (p∗, β∗) = (0.7, 1), V ∼ Q = N (0, 42), ε[j] ∼ N (0, 1), X ∼ N (2, 32),
M2: (p∗, β∗) = (0.3, 1), V ∼ Q = N (0, 22), ε[j] ∼ N (0, 1), X ∼ N (2, 32),

where j = 0, 1. In Fig. 2 we plot the mapping (p, β) 7→ dn(p, β) obtained from
an M1-sample, respectively M2-sample, of size n = 100, where (p, β) ∈ Θ1 =
[0.5, 0.8] × [0.9, 1.1], respectively (p, β) ∈ Θ2 = [0.1, 0.6] × [0.6, 1.4]. Notice that
according to discussion (CG) at the end of Section 5.1, since p∗ < 1/2 and m = m0,
model M2 is not necessarily consistently estimated since the parameter space Θ2 con-
tains the spurious solution ϑ∗∗ = (2p∗, β∗/2) (situation we voluntary want to investi-
gate from the numerical point of view). Fig. 2 which plots the level curves of dn eval-
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Figure 2: Plot of (p, β) 7→ dn(p, 0, β) with n = 100, β∗ = 1, ε
[j]
1 ∼ N (0, 1), j = 0, 1,

X1 ∼ N (2, 32), with the difference that on the left hand side p∗ = 0.7, V1 ∼ N (0, 42),
when on the right hand side p∗ = 0.3 V1 ∼ N (0, 22).

uated on a homogeneous 10× 10 grid of the rectangular domain [0.5, 0.8]× [0.9, 1.1].
Fig. 2 shows that the graph of dn looks like a sharp valley with a flat trough when β is
located near β∗ and p ranges [0.5,0.8]. Even if on this simulated example the argmin
of dn is very close to the true value of the parameter, the previous remark suggests
that the estimation of the mixing proportion will be less robust than the estimation
of slope parameter. The observation of the second plot in Fig. 2 is more unexpected
since the graph of dn does not really look like a contrast function, with its high near
p = 0.1 and its very large and flat trough that covers most of Θ2, suggesting more
instability in our estimating method in that kind of situation. To validate these
thoughts, we propose applying a large sample study of these two examples and a
third intermediary one obtained by considering model M2 with V ∼ N (0, 42). The
results of this study are summarized in Table 1.

To compute our M-estimator ϑ̂n = (p̂n, β̂n) we programmed a constrained quasi-
Newton FBGS optimization procedure, see Nocedal and Wright (1999), applied to
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the score function ḋn :=
(

∂
∂pdn,

∂
∂βdn

)T
and initialized at the true value of the pa-

rameter ϑ∗. Note that in practice, intercept and slope parameters deduced from an
“imaginary” straight line crossing the two extremities of the cluster likely labeled
1 and a proportion ratio evaluated by guesswork, provide in general a good initial
position candidate for the optimization procedure.

The kernel K used to compute (19) is a standard Gaussian kernel and the band-
width bn =

√

1 + 4p(1− p)(4/(3n))1/5 (proposed by Bowman and Azzalini (2003)
for Gaussian distributions and implemented in R), both obviously satisfying con-
dition (K). Two examples of stabilization/convergence of our gradient optimization
procedure are illustrated in Fig 2, where the successive positions (until stabilization)
of our algorithm are depicted by cross symbols.

Table 1: Mean and Std. Dev. of 100 estimates of (p∗, β∗).
n (p∗, β∗, σV ) Empirical means Standard deviation

100 (0.7,1,4) (0.705,1.005) [0.037,0.069]
200 (0.7,1,4) (0.697,0.996) [0.030,0.059]
500 (0.7,1,4) (0.695,1.005) [0.029,0.035]
100 (0.3,1,4) (0.310,0.958) [0.057,0.125]
200 (0.3,1,4) (0.296,0.985) [0.050,0.085]
500 (0.3,1,4) (0.297,1.017) [0.028,0.041]
100 (0.3,1,2) (0.397,0.858) [0.094,0.221]
200 (0.3,1,2) (0.398,0.914) [0.083,0.190]
500 (0.3,1,2) (0.331,0.968) [0.052,0.106]

Comments on Table 1. First of all, it is interesting to compare the performances sum-
marized in rows 1–3 of Table 1 to those obtained in Bordes and Vandekerkhove (2010,
p. 35, Table 1) where the model of interest is (5), with p = 0.7, µ = 3, and f0 and f
are respectively the pdfs corresponding to theN (0, 1) andN (0, (1/2)2) distributions.
Even if these two models are not strictly comparable, we think that this comparison
is very important to better understand the influence of the θ-transformation and
the instrumental distribution Q on the performances of our generalized estimation
method. From the numerical point of view, we see that the bias of our estimators,
for both models, is negligible. However it also appears that the standard deviation
associated to (p̂n, β̂n) decreases significantly slower than the standard deviation asso-
ciated to (p̂n, µ̂n) when n grows. The performance summarized in rows 4–6 of Table
1, which corresponds to p = 0.3 (which means that the population that will move
far from its initial position due to the θ-transformation will be more important), is
very highlightning. We observe that for small n (n = 100, 200) the standard devia-
tions associated to (p̂n, β̂n) are dramatically larger compared to those obtained with
p = 0.7. Let denote by std(n, p∗, β∗, σV ) the couple of standard deviations calculated
in the last column of Table 1 under (n, p∗, β∗, σV ). If we compute componentwise the
ratios std(n, 0.3, 1, 4)/std(n, 0.7, 1, 4) respectively for n = 100, 200, 500, we obtain
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approximately (1.54, 1.8), (1.67, 1.44), and (0.95, 1.17), which suggests that when n
becomes large the side effect of the θ-transformation vanishes (probably thanks to
the size of n, which increases globally the precision of the empirical estimates, and
the tails of Q, that allow the algorithm to take these improvements into account
efficiently). The performances summarized in rows 7–9 of Table 1, confirms the
concerns expressed about model M2. We recall that model M2 is badly affected by
the two following drawbacks : smallness of p∗ (synonymous with important popu-
lation shifted far by the θ-transformation and existence of a spurious solution) and
a smallness of σV which is then clearly not sufficient to counteract the smallness of
p∗ (and its consequences). In particular we think that, in model M2, the empirical
contrast dn is more easily closer to 0 under β∗∗ = β∗/2 since as explained in Section
4.1., this value is then significantly smaller than β∗. This last remark explains why,
in spite of the fact that our algorithms were initialized at the true parameter value,
our estimates are strongly biased (attracted quite often by the spurious solution ϑ∗∗).

4.3 Large sample study

We propose in this section to investigate the numerical performances of our method
in more general situations through the four following models: WO (Weakly Over-
lapped), MO (Moderately Overlapped), SO (Strongly Overlapped), and MIX (MIX-
ture noise) respectively defined, for all i ≥ 1, by:

WO: (p∗α∗, β∗) = (0.7, 2, 1), ε
[1]
i ∼ N (0, 1), Xi ∼ N (2, 32),

MO: (p∗α∗, β∗) = (0.7, 2, 1), ε
[1]
i ∼ N (0, 22), Xi ∼ N (2, 32),

SO: (p∗, α∗, β∗) = (0.7, 1, 0.5), ε
[1]
i ∼ N (0, 22), Xi ∼ N (1, 22),

MIX: (p∗, α∗, β∗) = (0.4, 2, 1), ε
[1]
i ∼ 0.5N (−0.5, 0.52) + 0.5N (0.5, 0.52), Xi ∼

N (2, 32),

where for all the above models ε
[0]
i ∼ N (0, 1). The characteristics of our models of

interest are illustrated in Fig. 3 and the performances of our method for various
choices of V ’s distribution, i.e., V ∼ N (0, σ2

V ) with σV ∈ {2σ̂, σ̂, σ̂/2} where σ̂
denotes the empirical standard deviation of the Yi, are summarized in Table 2. Let
us precise that in Table 2, the empirical mean of our estimators is given within
parenthesis and the standard deviation is given within brackets.

-6 -4 -2 0 2 4 6 8

-5
0

5
1
0

-5 0 5 10

-5
0

5
1
0

-4 -2 0 2 4 6

0
5

1
0

-5 0 5 10

0
5

1
0

Figure 3: Plots of original data (Xi, Yi)1≤i≤n with n = 200, generated respectively
from models WO, MO, SO and MIX.
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Table 2: Mean and Std. Dev. of 200 estimates of (p∗, α∗, β∗).
Model n 2σ̂ σ̂ σ̂/2

WO 100 (0.700,1.995,1.006) (0.696,2.001,1.007) (0.704,1.990,1.003)
[0.065,0.089,0.074] [0.061,0.097,0.081] [0.065,0.081,0.072]

WO 300 (0.701,1.998,1.005) (0.696,1.995,0.999) (0.704,1.996,0.994)
[0.034,0.063,0.045] [0.035,0.050,0.042] [0.031,0.034,0.038]

MO 100 (0.718,1.962,0.971) (0.732,1.975,0.956) (0.726,1.980,0.957)
[0.083,0.148,0.179] [0.082,0.134,0.178] [0.088,0.165, 0.171]

MO 300 (0.704,2.022,0.966) (0.707,1.983,0.994) (0.717,1.986,0.978)
[0.050,0.080,0.116] [0.045,0.074,0.099] [0.056,0.072,0.114]

SO 100 (0.766,0.958,0.444) (0.748,0.956,0.465) (0.728,0.961,0.471)
[0.104,0.200,0.136] [0.099,0.219,0.128] [0.098,0.211,0.134]

SO 300 (0.748,0.970,0.472) (0.729,0.999,0.471) (0.723,0.998,0.474)
[0.079,0.136,0.084] [0.069,0.156,0.083] [0.080,0.190,0.111]

MIX 100 (0.415,1.984,0.983) (0.408,1.964,1.016) (0.409,1.988,1.011)
[0.070,0.133,0.187] [0.073,0.172,0.213] [0.062,0.189,0.174]

MIX 300 (0.403,1.988,1.009) (0.407,1.974,1.013) (0.407,1.999,0.989)
[0.043,0.115,0.133] [0.039,0.158,0.138] [0.037,0.075,0.094]

Comments on Table 2. First of all let us remark, as it is generally expected, that
uniformly on the proposed choices for σV , the less the test model is overlapped the
best our method performs. Secondly it is important to notice that the best perfor-
mances of our method are achieved in weakly overlapped situations (models WO
and MIX) by taking σV = σ̂/2 (smallest choice). Contrarily, it also appears that
the best performances for model MO, respectively model SO, are achieved when
considering respectively σV = σ̂ regarding to the estimation of (p∗, β∗) or σV = 2σ̂
regarding to the estimation of α∗. These observations actually validate the follow-
ing intuitive idea: when the populations labelled 0 and 1 are weakly overlapped
(small variance of each population with respect to the variance of the design), then
the θ-transformation, for θ values near from θ∗, places population 1 almost zero-
symmetrically and very separately from population 0 (similarly to the situation
illustrated in the last plot of Fig. 1). Hence by taking a small variance σV asso-
ciated to the weight probability distribution Q, we force our method to be focused
on symmetry detection, according to (12) and (13), on a domain of R containing
the most relevant information. On the other hand, when populations 0 and 1 are
moderately or strongly overlapped, the previous “favorable” situation is no longer
true, which obliges us to increase σV in order to capture the symmetry information
contained in the tails of the comparison-function (12).

4.4 Application: NimbleGen high-density array

In this section we propose to analyze a real dataset of size n = 30000 extracted from
the ChipMix dataset (which true size is 176 343) considered in Martin-Magniette
et al., 2008)Section 3.3, and modeled according to (1). We sugest to consider the
estimated parameters provided by Martin-Magniette et al. (2008) as a starting point
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for our method. Let us recall the value of these estimated parameters respectively
obtained under the homoscedastic (Ho) and heteroscedastic (He) assumption:

p̂Ho = 0.26, âHo0 = 1.47, b̂Ho0 = 0.82, âHo1 = −0.47, b̂Ho1 = 1.16, σ̂Ho0 = 0.42, σ̂Ho1 = 0.42,

p̂He = 0.32, âHe0 = 1.48, b̂He0 = 0.81, âHe1 = −0.29, b̂He1 = 1.13, σ̂He0 = 0.56, σ̂Ho1 = 0.80.

Considering that (âHo0 , b̂Ho0 ) ≃ (a0, b0) is a good candidate to recenter our dataset
according to Y = Y − (a0 + b0X) (this fact is assessed in Fig. 4), our model of
interest (2) is then obtained by considering (α, β) = (a1 − âM0 , b1 − b̂M0 ) (so-called
centered version). We consider in addition that the pdf f0 is Gaussian with mean
0 and standard deviation σ̂0 = 0.686, this value corresponding to the empirical
standard deviation of the Y coming from couples (X,Y ) such that X > 14 (we
consider that upon this threshold the size of the population coming from label 1 is
negligible with respect to the size of the population coming from label 0). To estimate
ϑ∗ = (p∗, α∗, β∗), we initialize our algorithm at ϑ̂M = (p̂M0 , âM1 − âM0 , b̂M1 − b̂M0 ) =
(0.26,−1.94, 0.34), which provides the following estimation:

ϑ̂ = (p̂, α̂, β̂) = (0.31,−1.95, 0.34).

In the left side of Fig. 5 we plot our regularized estimation of the density f

f̃n(x) :=
f̂n(x)1If̂n(x)≥0

∫

R
fn(x)1If̂n(x)≥0dx

,

where f̂n is defined in (22) and compare it to the estimation proposed by Martin-
Magniette et al. (2008). It is interesting to observe that this two estimations are
surprisingly close (except the small bump located between −4 and −2 which insin-
uate that our method has detected a 2-mixture structure for f). In the right side
of Fig. 5 we suggest, in order to check the relevancy of the different methods, to
reconstruct the function Ψθ∗ defined in (9) by considering a kernel density estimate
based on the Y − (α̂ + β̂X) (free from mixture model structure), respectively the
plug-in estimation obtained by our method and the method of Martin-Magniette
et al. (2008), when we substitute (ϑ∗, f0, f) in (9) respectively by (ϑ̂, fN (0,σ̂0), f̃n)

and (ϑ̂He, fN (0,σ̂He

0
), fN (0,σ̂He

1
)) (the best reconstruction is actually obtained under the

heteroscedastic assumption), the integral term being estimated adequately by using
(16). We observe in that case that the semiparametric approach allows a better
fitting than the purely parametric approach, except between −3 and −1 where both
methods have difficulties in fitting the shape of the target nonparametric estimator.
This point should suggest that the true underlying model is in reality more complex
than a simple 2-component mixture of regressions model. It would be for example
interesting to investigate a generalization of model (1) where the design itself de-
pends on the random label U , i.e., X := X [i] if U = i, for i = 0, 1, allowing here
the possibility to model X [0] by a mixture of Gaussian distributions and X [1] by a
simple Gaussian distribution, as it is suggested by the two figures in the center and
the right side of Graph. 4 (we can actually observe two small clusters along the first
axis and a more spread one on top).
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Figure 4: Respectively the plots of an extracted data set of size n = 30000 com-
ing from the original NimbleGen high-density array dataset considered in Martin-
Magniette et al. (2008), its centered version and the histogram of the design distri-
bution.
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Figure 5: Left side: two estimators of f . In red, respectively in blue, the graph of
our semiparametric estimator f̃n and the graph of the fN (0,σ̂He) provided by Martin-
Magniette et al. (2008). Right side: three estimators of Ψθ∗ . In black a kernel
density estimate of the Y − (α̂n+ β̂nX)’s pdf, in red, respectively in blue, the graph
of the reconstruction of Ψθ∗ obtained with our estimators and the estimators of
Martin-Magniette et al. (2008).

5 Conclusion

We generalize in this paper the estimation method proposed in Bordes et al. (2006b)
and Bordes and Vandekerkhove (2010), for semiparametric mixture models where
one component is known, to mixture of regressions models with one known compo-
nent, extending consequently, for the first time, the statistical study of semipara-
metric mixture models to the bivariate case. We prove in particular that our model
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is semiparametrically identifiable under a set of conditions close to those suggested
in Bordes et al. (2006b), and also propose an M-estimator based on the search of a
“symmetry-point”when we apply a so-called θ-transformation to the original dataset.
Regarding our asymptotic results, we prove that our M-estimator (21) respectively
our functional estimator (22), converges towards ϑ∗, respectively the cumulative
distribution F , at the rate oa.s.(n

−1/4+γ) and Oa.s.(n
−1/6+γ), for all γ > 0. Let us

emphasize that the conditions stated to prove these results are generally satisfied in
the Gaussian framework, nevertheless we also prove that there exists, in very partic-
ular cases, a spurious solution to our M-estimation problem which can be avoided or
rejected by applying some explicit procedures discussed in this paper. We conclude
the presentation of our method by discussing, on very simple toy examples, its nu-
merical sensitivity to factors such as: the sample size n, the weight distribution Q
involved in (13), the existence of a spurious solution etc. Following the conclusions
coming from this preliminary numerical study, we carry out a large sample study in
order to highlight the influence of the weight distribution Q (sharpness and tails)
on the performances of our method through different kind of situations, i.e., from
weakly overlapped to strongly overlapped simulated datasets. The main conclusion
we learn from this study concerning the choice of the distribution Q can be sum-
marized as follows: “in weakly overlapped situations let favour a distribution which
probability mass is concentrated in a neighborhood of zero, when in strongly over-
lapped situations rather favour a heavily tailed distribution”. Finally we conclude
our study by considering a real data set extracted from the NimbleGen high-density
array dataset previously analyzed by Martin-Magniette et al. (2008). It turns out
from this study that the Euclidean estimator provided by our method is very close
to the estimator found in Martin-Magniette et al. (2008), when our respective func-
tional estimators of the pdf f differ slightly. In fact, we observe that our functional
estimator places an extra bump on the left side of 0, which symptom brings up the
possibility of having, in reality, a more complex link-structure between the ouptut
Y and the design X than it is supposed in (1). This last remark indicates that it
would be very challenging, in a futur work, to propose a semiparametric approach
adapted to a more versatile class of mixture of regressions models, and also having
the crucial ability to deal with very large datasets like the more and more popular
high-density arrays.

6 Appendix

6.1 Conditions (R) and (C) in the Gaussian Case

In this section we discuss conditions (R) and (C) when the true underlying model is
a contaminated Gaussian regression model with Gaussian design, i.e., f , f0, h are
respectively the pdfs of the N (0,m), N (0,m0), and N (E(X), σ2

h) distributions.

Comments on condition (R). Conditions (R) i-iii) are standard and easy to verify in
the above model. On the other hand, it is interesting to show how conditions (R)
iv-v) arise naturally in this case.
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Condition (R) iv). We show for simplicity that the first condition in (R) iv) (the same
kind of proof works also for the second one) holds when i = 0, θ∗ = (α∗, β∗) ∈ R

+∗2

and m0 = 1. We write the decomposition

|F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)| =
|F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|1Iy>1−θ∗⊙x, x<−α∗

β∗

+ |F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|1Iy>1+θ∗⊙x, x≥−α∗

β∗

+ |F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|1Iy<−1+θ∗⊙x, x<−α∗

β∗

+ |F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|1Iy<−1−θ∗⊙x, x≥−α∗

β∗

+ |F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|1I−1+θ∗⊙x≤y≤1−θ∗⊙x, x<−α∗

β∗

+ |F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|1I−1−θ∗⊙x≤y≤1+θ∗⊙x, x≥−α∗

β∗
.

Consider the first term on the right hand side of the above decomposition (the three
following terms being treated in entirely same way). For all y > 1 − θ∗ ⊙ x with
x < −α∗/β∗ we have y − θ∗ ⊙ x > y + θ∗ ⊙ x > 1. Since for t > 0 large enough, the
following inequality is valid

exp(−t2)√
2π

(

1

t
− 1

t3

)

≤ 1− F0(t) ≤
exp(−t2)

t
√
2π

,

we have in particular that for all t > 1, 0 ≤ 1 − F0(t) ≤ exp(−t2)/
√
2π. Hence it

follows that for y > 1− θ∗ ⊙ x with x < −α∗/β∗:

|F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)| ≤ exp(−(y + θ∗ ⊙ x)2) + exp(−(y − θ∗ ⊙ x)2)√
2π

,

which proves that this first term is h(x)dxdy integrable. Let us now sum the last
two terms of the above decomposition and notice that

|F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)|
×
(

1I−1+θ∗⊙x≤y≤1−θ∗⊙x, x<− α
β∗

+ 1I−1−θ∗⊙x≤y≤1+θ∗⊙x, x≥− α
β∗

)

≤ 21I−1−|θ∗⊙x|≤y≤1+|θ∗⊙x|.

We thus prove that this sum of terms is also h(x)dxdy integrable.

Condition (R) v). We consider for simplicity the construction of the bounding
function ℓ01,1 when (α, β) ∈ Φ = [α, α]× [β, β], with (α, β) ∈ R

+∗2 and m = m0 = 1.

Notice first that for all (x, y) ∈ R
2

|f (1)
0 (y + θ ⊙ x)| ≤ |y|+ α+ β|x|√

2π
exp

(

−(y + α+ βx)2

2

)

. (28)

Secondly, noticing that






0 ≤ y + βx ≤ y + α+ βx if x ≥ 0, y ≥ 0,

y + α+ βx ≤ y + α+ βx ≤ y + α+ βx if x ≥ 0, y ≤ 0,

y + α+ βx ≤ y + α+ βx ≤ y + α+ βx if x ≤ 0, y ∈ R,
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we then obtain that for all (x, y) ∈ R
2 and all θ ∈ Φ:

exp

(

−(y + α+ βx)2

2

)

≤ exp

(

−
(y + βx)2

2

)

1Ix≥0,y≥0

+ exp

(

−
min(|y + α+ βx|, |y + α+ βx|)2

2

)

1Ix≥0,y≤0

+ exp

(

−
min(|y + α+ βx|, |y + α+ βx|)2

2

)

1Ix≤0,y∈R

≤ BΦ(x, y),

where

BΦ(x, y) := exp

(

−
(y + βx)2

2

)

+ exp

(

−
(y + α+ βx)2

2

)

+exp

(

−(y + α+ βx)2

2

)

+ exp

(

−(y + α+ βx)2

2

)

+exp

(

−
(y + α+ βx)2

2

)

.

Since the product BΦ(x, y)h(x) ∝ BΦ(x, y) exp(−x2/2) has a Gaussian tail, and
thus admit any kind of moment, we can propose according to (28) and (R) v),
ℓ01,1(x, y) = |x|(|y|+ α + β|x|)/

√
2πBΦ(x, y) exp(−x2/2) as a candidate for the uni-

formly bounding function satisfying condition (R) v).

Comments on condition (C) ii). In the whole Gaussian case, i.e., when h(·) =
NE(X),σ2

h
(·), f0(·) = N0,m0

(·) and f = N0,m(·), expression of (25) becomes:

p∗ sin((α− α∗) + (β − β∗)E(X))t) exp

(

− t2

2
(σ2

h(β − β∗)
2 +m)

)

= (p∗ − p) sin((α+ βE(X))t) exp

(

− t2

2
(σ2

hβ
2 +m0)

)

. (29)

When p = p∗ we already know that condition (C) i) is satisfied (see Remarks on
condition (C) in Section 3.2). When p 6= p∗, we denote for convenience ξ := α +
βE(X), ξ∗ := α∗+β∗E(X), Σβ−β∗

:= σ2
h(β−β∗)

2+m, and Σβ := σ2
hβ

2+m0. Taking
the first and third order derivative of (29) at point t = 0 we get the conditions

p∗ξ∗ = pξ, and (p− p∗)ξ(3Σβ−β∗
+ ξ2) + p∗(ξ − ξ∗)(3Σβ + (ξ − ξ∗)

2) = 0. (30)

Introducing the first relation in (30) into the second one, we obtain

p− p∗
p

ξ∗p∗

(

3[Σβ − Σβ−β∗
] +

2p∗p− p2

p2
ξ2∗

)

= 0. (31)
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Now we observe that, to ensure the validity of expression (29), the factors multiplied
by the sin terms on both sides of (29) must be, at least, equivalent as t → ∞. This
last remark implies that Σβ = Σβ−β∗

, or equivalently β = β∗/2 + (m0 −m)/2β∗σ
2
h,

and thus (31) leads to

p = 2p∗. (32)

Using now the first relation in (29) and (32), we then obtain α = α∗/2+E(X)(m0−
m)/2β∗σ

2
h.

The consequences of the previous comments can be presented as follows:

Discussion (CG):

i) If p∗ > 1/2 then the set of parameters ϑ ∈ Θ satisfying condition (29) is always
empty, since p = 2p∗ > 1 is not an admissible solution.

ii) If p∗ ≤ 1/2 and if, for example, E(X) = 0 orm0 = m, then ϑ∗∗ = (2p∗, α∗/2, β∗/2).
In such a case it would be crucial to build a conveniently constrained parametric
space (most of the time a plot of the dataset helps in building reasonable con-
straints on the intercept and slope parameter spaces) expecting that it contains
ϑ∗ but not ϑ∗∗.

iii) More generaly one can expect that when the shape of the sample data (see e.g.
Fig. 1) suggest that (m0 − m)/2β∗σ

2
h is negligible with respect to α∗ and β∗,

which occurs when m0 is close to m or/and σ2
hβ∗ is very large, then the solution

proposed in ii) is loosely speaking still valid. Otherwise, if the situation is too
much tricky to define visually a convenient parametric space and that dn has
several local minima (which should make suspect the existence of various spuri-
ous solutions) one may select the argmin of dn that better recreate the density
g over a compact set C large enough of R2. Namely if ĝn,ϑ is the ϑ-plugged
version of (3) and ĝn is a kernel density estimate of g, we select the ϑ, among
the finite set of argmin values, which minimizes

∫

C |ĝn,ϑ − ĝn|dλ⊗2. Actually
such a methodolgy is asymptotically consistent since model (3) is known to be
identifiable over R2 under conditions established in Lemma 3.1.

6.2 Explicit formula of H(·, ϑ) and its derivatives

In this section all the expressions are valid for all (ϑ, y) ∈ Θ×R, and the computation
of the various derivative functions (under the integral sign) are all allowed according
to the Lebesgue Differentiation Theorem and condition (R). According to (8) and
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(10), we have

H(y, ϑ) =
p∗

p

(∫ y

−∞

∫

R

f(z + (θ − θ∗)⊙ x)h(x)dxdz

+

∫ −y

−∞

∫

R

f(z + (θ − θ∗)⊙ x)h(x)dxdz

)

+
p− p∗

p

(∫ y

−∞

∫

R

f0(z + θ ⊙ x)h(x)dxdz

+

∫ −y

−∞

∫

R

f0(z + θ ⊙ x)h(x)dxdz

)

− 1.

For simplicity we introduce

F θ(y) =

∫ y

−∞

∫

R

f(z + (θ − θ∗)⊙ x)h(x)dxdz,

F θ
0 (y) =

∫ y

−∞

∫

R

f0(z + θ ⊙ x)h(x)dxdz,

which leads to

∂

∂p
H(y, ϑ) = −p∗

p2

[

(F θ(y) + F θ(−y))− (F θ
0 (y) + F0θ(−y))

]

.

Let us denote

Ḟα(y) :=
∂

∂α
F θ(y) =

∫ y

−∞

∫

R

ḟ(z + (θ − θ∗)⊙ x)h(x)dxdz,

Ḟα
0 (y) :=

∂

∂α
F θ
0 (y) =

∫ y

−∞

∫

R

ḟ0(z + θ ⊙ x)h(x)dxdz,

and for

Ḟ β(y) :=
∂

∂β
Fθ(y) =

∫ y

−∞

∫

R

xḟ(z + (θ − θ∗)⊙ x)h(x)dxdz,

Ḟ β
0 (y) :=

∂

∂β
F0θ(y) =

∫ y

−∞

∫

R

xḟ0(z + θ ⊙ x)h(x)dxdz,

we obtain

∂

∂α
H(y, ϑ) =

p∗

p

(

Ḟα(y) + Ḟα(−y)
)

+
p− p∗

p

(

Ḟα
0 (y) + Ḟα

0 (−y)
)

.

∂

∂β
H(y, ϑ) =

p∗

p

(

Ḟ β(y) + Ḟ β(−y)
)

+
p− p∗

p

(

Ḟ β
0 (y) + Ḟ β

0 (−y)
)

.

At point ϑ = ϑ∗ the Hessian matrix of H(·, ϑ) defined in (36) is obtained by consid-
ering

Ḣ(y, ϑ∗) =









1

p

(

F θ∗
0 (y) + F θ∗

0 (−y)− 1
)

2f(y)
2f(y)E(X)









. (33)
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Let us denote now

F̈ β,α(y) =
∂2

∂β∂α
F θ(y) =

∫ y

−∞

∫

R

xf̈(z + (θ − θ∗)⊙ x)h(x)dxdz,

F̈ β,α
0 (y) =

∂2

∂β∂α
F θ
0 (y) =

∫ y

−∞

∫

R

xf̈0(z + θ ⊙ x)h(x)dxdz,

F̈α,α(y) =
∂2

∂α2
F θ(y) =

∫ y

−∞

∫

R

f̈(z + (θ − θ∗)⊙ x)h(x)dxdz,

F̈ β,β
0 (y) =

∂2

∂β2
F θ
0 (y) =

∫ y

−∞

∫

R

x2f̈0(z + θ ⊙ x)h(x)dxdz.

We then obtain

∂2

∂p2
H(y, ϑ) =

p∗

p3

[

(F θ(y) + F θ(−y))− (F θ
0 (y) + F0θ(−y))

]

,

∂2

∂u∂p
H(y, ϑ) = −p∗

p2

[

(Ḟ u(y) + Ḟ u(−y))− (Ḟ u
0 (y) + Ḟ u

0 (−y))
]

, u = α, β,

∂2

∂u∂v
H(y, ϑ) =

p∗

p

(

F̈ u,v(y) + F̈ u,v(−y)
)

+
p− p∗

p

(

F̈ u,v
0 (y) + F̈ u,v

0 (−y)
)

, u = α, β, v = α, β.

6.3 Boundedness

Boundedness of Ψθ(·) and Ψ′θ(·). If f and f0 are supposed to be bounded over R

then we clearly have from (8) that

|Ψθ(y)| ≤ ‖f‖∞ + ‖f0‖∞, (θ, y) ∈ Φ× R.

The same kind of argument holds to prove boundedness of ḟθ(·) when (R) ii) is
supposed.

Boundedness of H(·, ϑ). Since for all θ ∈ Φ the functions Fθ(·) and Jθ(·) are both
cdfs, we thus have, since δ ≤ p ≤ 1− δ, from expression (12):

H(y, ϑ) ≤ 4

δ
+ 1, (y, ϑ) ∈ R× Φ. (34)

6.4 Integrable Lipschitz property of Ψθ(·)
From (8), for all (y, θ, θ′) ∈ R× Φ2 we have

|Ψθ(y)− fΨθ′(y)| ≤ p∗

∫

R

|f(y + (θ − θ∗)⊙ x)− f(y + (θ′ − θ∗)⊙ x)|h(x)dx

+(1− p∗)

∫

R

|f0(y + θ ⊙ x)− f0(y + θ′ ⊙ x)|h(x)dx. (35)
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Consider for simplicity the first integral term on the right hand side of (35) (the same
argument holding for the second term). According to the Mean Value Theorem there
exists, for all (x, y) ∈ R

2 and (θ, θ′) ∈ Φ2, a value γ := γ(x, y, θ, θ′) belonging to the
line segment with extremities y+(θ− θ∗)⊙x and y+(θ′− θ∗)⊙x, or equivalently a
θ̄ := θ̄(x, y, θ, θ′) belonging to the line segment with extremities θ and θ′ such that
γ = y + (θ̄ − θ∗)⊙ x and

|f(y + (θ − θ∗)⊙ x)− f(y + (θ′ − θ∗)⊙ x)|
= |ḟ(γ)(α− α′ + (β − β′)x)|
= |ḟ(y + (θ̄ − θ∗)⊙ x)(α− α′ + (β − β′)x)|
≤ sup

θ∈Φ
|ḟ(y + (θ − θ∗)⊙ x)|(|α− α′|+ |β − β′||x|).

From condition (R) ii) there thus exists a nonnegative constant c such that
∫

R

|Ψθ(y)−Ψθ′(y)|dy

≤
∑

j=0,1

(|α− α′|1−j + |β − β′|j)
∫

R×R
|x|j(sup

θ∈Φ
|ḟ(z + (θ − θ∗)⊙ x)|+ sup

θ∈Φ
|ḟ0(z + θ ⊙ x)|)h(x)dxdz

≤ c‖θ − θ′‖2.

6.5 Uniform Lipschitz property of H(·, ϑ)
Let us write

H(y, ϑ)−H(y, ϑ′)

=
1

p
(Fθ(y)− Fθ′(y) + Fθ(−y)− Fθ′(−y)) +

p− p′

pp′
(Fθ′(y) + Fθ′(y))

+
1− p

p
(Jθ(y)− Jθ′(y) + Jθ(−y)− Jθ′(−y)) +

p− p′

pp′
(Jθ′(y) + Jθ′(−y)).

To prove the uniform Lipschitz property of H(·, ϑ) we need to prove it for Jθ(·) and
Fθ(·). We begin with the simplest term Jθ(·). According again to the mean value
theorem, for all y ∈ R, all (x, z) ∈ R

2 with z ≤ y, and all (θ, θ′) ∈ Φ2 there exists
θ̄ := θ̄(x, z, θ, θ′) belonging to the line segment with extremities θ and θ′ such that

|Jθ(y)− Jθ′(y)| ≤
∫ y

−∞

∫

R

|f0(z + θ ⊙ x)− f0(z + (θ′ ⊙ x)|h(x)dxdz

=

∫ y

−∞

∫

R

|ḟ0(z + θ̄ ⊙ x)(|α− α′|+ |θ − θ′||x|)h(x)dxdz,

≤
∫ y

−∞

∫

R

sup
θ∈Φ

|ḟ0(z + θ ⊙ x)h(x)dxdz|α− α′|

+

∫ y

−∞

∫

R

|x| sup
θ∈Φ

|ḟ0(z + ux)h(x)dxdz|β − β′|

≤ c‖θ − θ′‖2,
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where c denotes a nonnegative constant arising from condition (R) ii). Using the
same kind of argument we prove that there exists a nonnegative contant c′ such that
for all (y, θ, θ′) ∈ R× Φ2

|Fθ(y)− Fθ′(y)| ≤ c′‖θ − θ′‖2.

In conclusion, for all y ∈ R, there exists a nonnegative constant c′′ such that for all
(y, ϑ, ϑ′) ∈ R×Θ2

|H(y, ϑ)−H(y, ϑ′)| ≤ 2

δ
(c+ c′)‖θ − θ′‖2 + 4

|p− p′|
δ2

≤ c′′‖ϑ− ϑ‖3.

6.6 Proof of Lemma 3.2

i) From boundedness and the uniform Lipschitz property of H(·, ϑ), along with the
integrability and the integrable Lipschitz property of fθ(·) proved in Sections 6.3,
6.4 and 6.5, there exists a nonnegative constant c such that for all (ϑ, ϑ′) ∈ Θ2

∣

∣

∣

∣

∫

R

H2(y, ϑ)dQ(y)−
∫

R

H2(y, ϑ′)dQ(y)

∣

∣

∣

∣

≤
∫

R

∣

∣H(y, ϑ) +H(y, ϑ′)
∣

∣

∣

∣H(y, ϑ)−H(y, ϑ′)
∣

∣ q(y)dy

≤ c‖ϑ− ϑ′‖3,

which concludes the proof of i).
ii) To clarify the similarity between the semiparametric contamination model (5)

studied in Bordes et al. (2006b) and the contaminated regression model (3), we can
say that fθ(·) plays the role of g(· − µ) and that Iθ(·) plays the role of f0(· − µ).

If ϑ = ϑ∗ then d(ϑ) = 0. To prove the converse we notice that d(ϑ) = 0,
which implies, since H1(·, ϑ) and H2(·, ϑ) are continuous and q > 0 over R, that
H1(·;ϑ) = H2(·;ϑ) which leads, for almost all y ∈ R, to

Ψθ(y)− (1− p)Iθ(y) = Ψθ(−y)− (1− p)Iθ(−y).

Using formula (8), we obtain

p∗

∫

R

f(y + (θ − θ∗)⊙ x)h(x)dx+ (p− p∗)Iθ(y)

= p0

∫

R

f(−y + (θ − θ∗)⊙ x)h(x)dx+ (p− p∗)Iθ(−y), y ∈ R.

Considering the Fourier transform of the previous equality, using Fubini’s Theorem,
and noticing that f̄ and f̄0 are real-valued functions, it follows that

p∗e
−it(α−α∗)f̄(t)˘̄h((β − β∗)t) + (p− p∗)e

−itαf̄0(t)
˘̄h(βt)

= p∗e
it(α−α∗)f̄(t)h̄((β − β∗)t) + (p− p∗)e

itαf̄0(t)h̄(βt), t ∈ R.
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Using the notation introduced for the writing of condition (C), the previous equation
becomes (25).

Suppose that p = p∗ and take the first and third order derivative of (25) at point
t = 0. We then obtain α− α∗ + (β − β∗)E(X) = 0 and

3m[α− α∗ + (β − β∗)E(X)] + (α− α∗)
3 + 3(α− α∗)

2(β − β∗)E(X)

+ 3(α− α∗)(β − β∗)
2E(X2) + (β − β∗)

3E(X3) = 0,

which leads to

(β − β∗)(4E(X)3 + 3E(X)E(X2) + E(X3)) = 0,

and thus implies that θ = θ∗ if 4E(X)3 + 3E(X)E(X2) + E(X3) 6= 0.

Suppose now that p 6= p∗, then condition (C) ii) requires that ϑ = ϑ∗.

iii) First we have

d̈(ϑ∗) = 2

∫

R

(

Ḧ(y, ϑ∗)H(y, ϑ∗) + Ḣ(y, ϑ∗)Ḣ
T (y, ϑ∗)

)

q(y)dy

= 2

∫

R

Ḣ(y, ϑ∗)Ḣ
T (y, ϑ∗)q(y)dy, (36)

according to (9) and the fact that H(·, ϑ∗) = 0 on R. Let v be a vector in R
3. We

have

vT d̈(ϑ∗)v = 2

∫

R

(

vT Ḣ(y, ϑ∗)
)2

q(y)dy ≥ 0.

It follows that d̈(ϑ∗) is a positive 3 × 3 real valued matrix. Let us show that it is
also definite. If v ∈ R

3 is a non-null column vector such that vT d̈(θ∗)v = 0, then
vT Ḣ(y, ϑ∗) = 0 for almost all y ∈ R. According to (33) in the appendix, we have
to discuss the proportionality of f and F θ∗

0 (·) + F θ∗
0 (−·)− 1. Because f0 is an even

density, we have from Fubini’s theorem

f(y) =

∫

R
[F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)]h(x)dx

∫

R2 [F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)]h(x)dxdy
. (37)

Using integration by parts and assumption (R) iv), the denominator of the right
hand side of (37) can be expressed as follows

∫

R2

[F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)]h(x)dxdy

=

∫

R

{

[y(F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)]∞−∞
}

h(x)dx

−
∫

R

∫

R

y(f0(y + θ∗ ⊙ x)− f0(y − θ∗ ⊙ x))dyh(x)dx

= 2

∫

R

(α∗ + β∗x)h(x)dx = 2(α∗ + β∗E(X)).
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If we calculate now the second-order moment of f we obtain

m :=

∫

R

y2f(y)dy =

∫

R
x2[F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)]h(x)dx

2(α∗ + β∗E(X))
.

Using integration by parts and assumption (R) iv), the numerator of the right hand-
side of (37) can be expressed as follows

∫

R2

y2[F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)]h(x)dxdy

=

∫

R

{[

y3

3
(F0(y + θ∗ ⊙ x)− F0(y − θ∗ ⊙ x)

]∞

−∞

}

h(x)dx

−
∫

R2

y3

3
(f0(y + θ∗ ⊙ x)− f0(y − θ∗ ⊙ x))dyh(x)dx

= 2

∫

R2

3u2θ ⊙ x+ (θ ⊙ x)3

3
f0(u)duh(x)dx

= 2m0(α∗ + β∗E(X)) +
2

3
(α3
∗ + 3α2

∗β∗E(X) + 3α∗β
2
∗E(X2) + β3

∗E(X3)),

which leads to a contradiction if (C) iii) is assumed.

iv) Let us consider

|dn(ϑ)− d(ϑ)| ≤ T1,n(ϑ) + T2,n(ϑ),

where

T1,n(ϑ) :=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

H2(Vi;ϑ, F̃n,θ, Ĵn,θ)−H2(Vi;ϑ, Fθ, Jθ)

∣

∣

∣

∣

∣

,

T2,n(ϑ) :=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

H2(Vi;ϑ, Fθ, Jθ)− E
(

H2(V1;ϑ, Fθ, Jθ)
)

∣

∣

∣

∣

∣

.

Uniform almost sure rate of convergence of T1,n. Note first that from boundedness of
H(·;ϑ, F̃n,θ, Ĵn,θ) and H(·;ϑ, Fθ, Jθ) given by (34), there exist nonnegative constants
C and C ′ such that

T1,n(ϑ) =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(H(Vi;ϑ, F̃n,θ, Ĵn,θ) +H(Vi;ϑ, Fθ, Jθ))

×(H(Vi;ϑ, F̃n,θ, Ĵn,θ)−H(Vi;ϑ, Fθ, Jθ))
∣

∣

∣

≤ C sup
y∈R

|H(y;ϑ, F̃n,θ, Ĵn,θ)−H(y;ϑ, Fθ, Jθ))|

≤ C ′

(

sup
y∈R

|Ĵn,θ(y)− Jθ(y)|+ sup
y∈R

|F̃n,θ(y)− Fθ(y)|
)

.
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Let us now denote

T
(1)
1,n := sup

θ∈Φ
sup
y∈R

|Ĵn,θ(y)− Jθ(y)|,

T
(2)
1,n := sup

θ∈Φ
sup
y∈R

|F̃n,θ(y)− Fθ(y)|.

Convergence rate of T
(1)
1,n . For simplicity we will suppose that proj2(Φ) ⊂ [0, A],

where A is a nonnegative real number and for all (x, y) ∈ R
2, proj2 : (x, y) 7→ y.

Let us introduce PX
n = n−1

∑n
i=1 δXi

the empirical measure associated to the iid
sample (X1, . . . , Xn) with common probability distribution PX with pdf and cdf
respectively denoted by h and H). We use the functional notation Pf =

∫

fdP .
Notice now that, according to expression (17), we have for all y ∈ R:,

Ĵn,θ(y)− Jθ(y) =
1

n

n
∑

i=1

F0(y + α+ βXi)− E(F0(y + α+ βX))

= (PX
n − PX)F0(y + α+ β ·).

Let us consider the class of functions

F0 = {x 7→ F0(u+ βx); u ∈ R, β ∈ [0, A]} .

Since

(PX
n − PX)F0(u+ β ·) = (PX

n − PX)F0(y + β(· ∨ 0)) + (PX
n − PX)F0(y + β(· ∧ 0)),

it is enough to study the empirical process indexed by the classes of functions

F+
0 = {x 7→ F0(u+ β(x ∨ 0)); u ∈ R, β ∈ [0, A]} ,

F−0 = {x 7→ F0(u+ β(x ∧ 0)); u ∈ R, β ∈ [0, A]} .

For simplicity we denote Γy,α(x) = F0(y+α(x∨ 0)) and only consider the class F+
0 ,

the class F−0 being treated in a entirely same way. Since F0 is a cdf, for β1 ≤ β ≤ β2
and u1 ≤ u ≤ u2 we have

Γu1,β1
(x) ≤ Γu,β(x) ≤ Γu2,β2

(x), x ∈ R,

and, since F0 is supposed to be Lipschitz,

0 ≤ Γu2,β2
(x)− Γu1,β1

(x) ≤ C(u2 − u1 + (β2 − β1)(x ∨ 0)).

Let us consider now ε > 0, and (uε, uε) ∈ R
2 such that

F0(uε) ≥ 1− ε, and F0(uε) ≤ ε.

Note that uε and uε do not depend on β. For all N ∈ N, define

uε = u1,ε ≤ u2,ε ≤ . . . ≤ uN,ε = uε,
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and consider N(ε) the smallest integer such that ui,ε−ui−1,ε ≤ ε for i = 2, . . . , N(ε).
We denote by ⌈·⌉ the integer part function. For all ε small enough we clearly have

N(ε) ≤
⌈

uε − uε

ε

⌉

≤ 2
uε − uε

ε
.

Let us now define αi,ε = ε(i − 1), i = 1, . . . ,M(ε), where M(ε) = ⌈⌈A+ 1⌉/ε⌉ and
thus αM(ε),ε > A. Observe in addition that

‖Γui+1,ε,βj+1,ε
− Γui,ε,βj,ε

‖22,PX = c2E
(

(ui+1,ε − ui,ε + (βj+1,ε − βj,ε)(X1 ∧ 0))2
)

≤ 2c2ε2 + 2C2εE(X2
1 )

= 2c2ε2
(

1 + E(X2
1 )
)

.

Hence the expression

[Γui+1,ε,βj+1,ε
− Γui,ε,βj,ε

], 1 ≤ i ≤ N(ε), 1 ≤ j ≤ M(ε),

is a
(

c
√

2(1 + E(X2
1 ))
)

-covering of F+
0 in the L2(P

X)-norm sense. Using the stan-

dard notation N[](·) (see van der Vaart and Wellner, 1996) the covering number of

the class F+
0 is bounded as follows

N[]

(

ε,F+
0 , L2(P

X)
)

≤ cN(ε)M(ε) ≤ c′
uε − uε

ε2
.

Thus if there exist constants C and V such that

|uε| ∧ |uε| ≤ C/εV , (38)

we get N(ε)M(ε) ≤ C/εV+2 which allows us to use Theorem 2.14.9, p. 246 in van
der Vaart and Wellner (1996) since their Condition (2.14.7), p. 245 is then satisfied
after replacing their constant V by V +2. Let us discuss condition (38). For ε small
enough this condition is true if yε ≤ C/εV and uε ≥ −C/εV . Denoting by F←0 the
quantile function of F0, condition (38) becomes

F←0 (1− ε) ≤ C/εV and F←0 (ε) ≥ −C/εV . (39)

We consider for simplicity the first condition in (39) (the second one being treated
in the same way); it is equivalent to F0(C/εV ) ≥ 1 − ε, and taking t = C/εV this
condition turns into

F0(t) ≥ 1− C/t1/V .

Thus it suffices to have

lim inf
t→∞

− log(1− F0(t))

log(t)
> 0.

Finally, using the symmetry of f0, condition (38) holds if

lim inf
t→∞

−2 logF0(−t)

log(t)
> 0, (40)
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which is ensured by condition (R) vi). In conclusion if (40) is satisfied and E(X2
1 ) <

∞ then, according to Theorem 2.14.16, p. 248 in van der Vaart and Wellner (1996),
we obtain

sup
θ∈Φ

‖ Ĵn,θ − Jθ‖∞ ≤ ‖PX
n − PX‖F0

= oa.s(n
−1/2+γ), γ > 0.

Convergence rate of T
(2)
1,n . Recall that Fθ is the cdf of Yi − θ ⊙Xi, i.e.,

Fθ(y) = P (Yi − θ ⊙Xi ≤ y),

and

Fn,θ(y) =
1

n

n
∑

i=1

1IYi−θ⊙Xi≤y.

Let K be a kernel satifying (K). The K-regularized versions of Fθ and Fn,θ are

F̃θ = K ∗ Fθ, F̃n,θ = K ∗ Fn,θ.

Let us denote by PX,Y
n the empirical measure

PX,Y
n =

1

n

n
∑

i=1

δXi,Yi
,

and by PX,Y the law of (X1, Y1).
The set of functions for which (x, y) 7→ ax+ by+ c being a 3-dimensionnal vector

space, Corollary 2.5 in Kuelbs and Dudley (1980) shows that the class of sets

C =
{{

(u, v) ∈ R
2 : au+ bv + c < 0

}

; (a, b, c) ∈ R
3
}

,

is a Strassen log-log class, which implies that a.s.

lim sup
n→∞

sup
C

√

n

2 log log(n)
(PZ

n − PZ)(C) = sup
C∈C

√

PZ(C)(1− PZ(C)) ≤ 1/2.

Since C contains the class

S :=
{{

(u, v) ∈ R
2 : v − (α+ βu) < y

}

; (α, β; y) ∈ Φ× R
}

,

it follows that, for all set S ∈ S, PZ(S) =
∫

S dPX,Y (u, v) = P (Y − (α+βX) < y) =
Fθ(y) and for the same reason PZ

n (S) = Fn,θ(y), we have

lim sup
n→∞

sup
(θ,y)∈Φ×R

√

n

log log(n)
(Fn,θ − Fθ)(y) ≤ 1/2 a.s. (41)

Now if we replace Fn,θ by its regularized version F̃n,θ the approximation is controlled
as follows,

F̃n,θ(y)− Fn,θ(y)

= F̃n,θ(y)− E(F̃n,θ(y)) + E(F̃n,θ(y))− Fθ(y) + Fθ(y)− Fn,θ(y)

= F̃n,θ(y)− E(F̃n,θ(y))− [Fn,θ(y)− E(Fn,θ(y))]

+ E(F̃n,θ(y))− Fθ(y), (42)
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recalling that E(Fn,θ(y)) = Fθ(y). The first term on the right hand side of (42)
satisfies

F̃n,θ(y)− E(F̃n,θ(y)) =

∫

R

K(y − u)d(Fn,θ − E(Fn,θ))(u)

=

∫

R

(Fn,θ − E(Fn,θ))(u)dK(y − u)

=

∫

R

(Fn,θ − E(Fn,θ))(y − s)dK(s).

Thus, if we denote ∆n,θ(y) := Fn,θ(y)− E(Fn,θ(y)) = Fn,θ(y)− Fθ(y), we obtain

∣

∣

∣
F̃n,θ(y)− E(F̃n,θ(y))− [Fn,θ(y)− E(Fn,θ(y))]

∣

∣

∣

≤
∣

∣

∣

∣

∫

R

(∆n,θ(y − s)−∆n,θ(y))dK(s)

∣

∣

∣

∣

≤ sup
(θ,y)∈Φ×R

|∆n,θ(y)| ‖K‖TV .

The last bias-term on the right hand side of (42) can be studied using the R2n bound
in Shorack and Wellner (1986, p. 766, eq. e), which establishes that for each θ ∈ Φ

sup
y∈R

|E(F̃n,θ)− Fθ|(y) ≤
‖ḟθ‖∞k2

2
. (43)

If K is replaced by Kn(·) = K(·/bn) and we let k2,n :=

∫

R

x2dKn(x) = b2nk2, then

(41–43) lead to

lim sup
n→∞

√

n

log log(n)
sup

(θ,y)∈Φ×R
(Fn,θ − Fθ)(y) < ∞ a.s., (44)

whenever lim sup(n/ log log(n))1/2k2,n < ∞ which holds when

lim sup
n→∞

√

n

log log(n)
b2n < ∞,

and supθ∈Φ ‖ḟθ‖∞ < ∞ which has been proved in Section 5.3 under Condition (R) ii).

Uniform almost sure rate of convergence of T2,n. Considering for all i ≥ 0, the
random variable Wi(ϑ) := H2(Vi;ϑ), where ϑ ∈ Θ, we see that

sup
ϑ∈Θ

T2,n(ϑ) = sup
ϑ∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Wi(ϑ)− E(Wi(ϑ))

∣

∣

∣

∣

∣

,

where the right hand term is the supremum of an empirical process indexed by a
class of Lipschitz bounded functions, which is known to be oa.s.(n

−1/2+γ) for all
γ > 0, see Bordes et al. (1996b) for details, which concludes the proof.
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6.7 Proof of Theorem 3.1

i) The proof follows entirely the proof of Theorem 3.1 in [5] and uses the technical
results proved in Lemma 3.2.

ii) Consider the following decomposition:

|f̂n − f | =

∣

∣

∣

∣

[

1

p̂n
Ψ̂n,θ̂n

− 1

p∗
Ψθ∗

]

−
[

1− p̂n
p̂n

Ĩn,θ̂n − 1− p∗
p∗

Iθ∗

]∣

∣

∣

∣

=

∣

∣

∣

∣

[

1

p̂n
(Ψ̂n,θ̂n

− Ψ̂n,θ∗) +
1

p̂n
Ψ̂n,θ∗ −

1

p∗
Ψθ∗

]

−
[

1− p̂n
p̂n

(Ĩn,θ̂n − Ĩn,θ∗) +
1− p̂n
p̂n

Ĩn,θ∗ −
1− p∗
p∗

Iθ∗

]∣

∣

∣

∣

≤ 1

p̂n

(

|Ψ̂n,θ̂n
− Ψ̂n,θ∗ |+ |Ψ̂n,θ∗ −Ψθ∗ |

)

+Ψθ∗

∣

∣

∣

∣

1

p̂n
− 1

p∗

∣

∣

∣

∣

+
1− p̂n
p̂n

(

|Ĩn,θ̂n − Ĩn,θ∗ |+ |Ĩn,θ∗ − Iθ∗ |
)

+Iθ∗

∣

∣

∣

∣

1− p̂n
p̂n

− 1− p∗
p∗

∣

∣

∣

∣

. (45)

It is now enough to study the behavior of |Ψ̂n,θ̂n
− Ψ̂n,θ∗ | and |Ĩn,θ̂n − Ĩn,θ∗ |. For all

t ∈ R, we have

|Ψ̂n,θ̂n
(t)− Ψ̂n,θ∗(t)| ≤ 1

nbn

n
∑

i=1

∣

∣

∣

∣

∣

K

(

t− Y θ̂n
i

bn

)

−K

(

t− Y θ∗
i

bn

)∣

∣

∣

∣

∣

. (46)

Consider K a kernel density satisfying (K) ii). We propose to study in a generic
way the difference of kernels involved on the right hand side of the above expression.
For all (w, z) ∈ R

2, and letting h := (z − w)/b, we write the second-order Taylor
expansion with integral remainder term:

K

(

t− w

b

)

−K

(

t− z

b

)

= hK̇

(

t− z

b

)

+
h2

2

∫ 1

0
(1− u)K̈

(

t− ru
b

)

du

where ru := (1 − u)z + uw. Using the symmetry of K and Fubini’s Theorem we
obtain

1

b

∫

R

∣

∣

∣

∣

K

(

t− w

b

)

−K

(

t− z

b

)∣

∣

∣

∣

dt ≤ 2h

∫ +∞

0

∣

∣

∣
K̇(t)

∣

∣

∣
dt+ h2

∫ +∞

0

∣

∣

∣
K̈(t)

∣

∣

∣
dt (47)

Replacing w, z respectively by the Y θ̂n
i and Y θ∗

i , and b by bn in (47) we then obtain
from (46) the following bound for the L1 error:

‖Ψ̂n,θ̂n
(t)− Ψ̂n,θ∗(t)‖L1

≤ C‖θn − θ∗‖2
bn

× 1

n

n
∑

i=1

(

|Xi|+ |Xi|2
)

, (48)
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the same kind of bound being available for ‖Ĩn,θ̂n(t) − Ĩn,θ∗(t)‖L1
. In conclusion,

according to the decomposition (45), point i) of Theorem 3.1, the respective L1 a.s.
convergence of Ψ̂n,θ∗ and Ĩn,θ∗ towards Ψθ∗ and Iθ∗ under (20), we get from (48)

and the strong law of large numbers that ‖f̂n − f‖L1
→ 0 almost surely as n → ∞

whenever n−1/4+γ/bn = o(1).

iii) The proof uses an integrated version of decomposition (45) and the fact that,
for all y ∈ R, the approximation |F̂n,θ̂n

− F̂n,θ∗ |(y) is controlled by

|F̂n,θ̂n
− F̂n,θ∗ |(y) =

∣

∣

∣

∣

∣

∫ y

−∞

1

n

n
∑

i=1

K

(

t− Y θ̂n
i

bn

)

−K

(

t− Y θ∗
i

bn

)

dt

∣

∣

∣

∣

∣

≤ 1

n

n
∑

i=1

∫

R

∣

∣

∣

∣

∣

K

(

t− Y θ̂n
i

bn

)

−K

(

t− Y θ∗
i

bn

)∣

∣

∣

∣

∣

dt

≤ C‖θn − θ∗‖2
bn

× 1

n

n
∑

i=1

(

|Xi|+ |Xi|2
)

, (49)

the last term on the right hand side of above inequality being independent from y.
The same bound holds for |Ĩn,θ̂n − Ĩn,θ∗ |(y) by a similar argument. To conclude, it
is enough to use (49) and Corollary 1 p. 766 in Shorack and Wellner (1986), which
allows us to control the terms ‖F̂n,θ∗−Fθ∗‖∞ and ‖Ĩn,θ∗−Iθ∗‖∞, to obtain (27). The
rate on the right hand side of (27) is optimized by considering bn = n−1/12 which
then turns into Oa.s.(n

−1/6+γ), for all γ > 0.
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