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A b s t r a c t .  The problem of estimating a smooth quantile function, Q(.), at a 
fixed point p, 0 < p <: 1, is treated under a nonparametric smoothness con- 
dition on Q. The asymptotic relative deficiency of the sample quantile based 
on the maximum likelihood estimate of the survival function under the pro- 
portional hazards model with respect to kernel type estimators of the quantile 
is evaluated. The comparison is based on the mean square errors of the esti- 
mators. It is shown that the relative deficiency tends to infinity as the sample 
size, n, tends to infinity. 
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1. Introduction 

Let  (X1, ] I1 ) , . . . ,  (X~, Yn) be an iid sequence of pairs of nonnegat ive random 
variables. Assume tha t  Xi and Y~ are independent  r andom variables with dis- 
t r ibut ion  functions F and G respectively. Under  the r andom censorship model,  
Xi  and Yi can not  be observed separately. One only observes Zi -- Xi A Yi and 
5i -- I (X i  <_ Y~) for i = 1 , . . . ,  n, where I (A)  denotes the indicator  of the  set 
A. Let  T'(t) = P ( X  > t), G(t) = P ( Y  > t) and [-I(t) = P ( Z  > t) denote  the 
survival functions associated with X,  Y and Z respectively. In the usual r andom 
censorship model  one assumes only tha t  the censored and the censoring sequence 
are independent  and hence, the expected propor t ion  of uncensored observations is 
given by 

(1.1) a = P(5 = 1) = / G d F  and [-I(t) = F(t)G(t).  

However, in many  situations, it can be assumed tha t  T' and G are related and 
can be expressed as G(t)  -- (F ( t ) )  f~, for all t > 0, where f~ > 0 is some fixed 

unknown constant .  This  model  is known as the propor t ional  hazards model  and 
was considered in its present form by Koziol and Green (1976) and subsequently by 
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Hollander and Proschan (1979), CsSrg6 and Horv£th (1981), Abduskhurov (1984, 
1987), Cheng and Lin (1987), Ghorai and Rejt6 (1987) and Cs6rg6 (1988, 1989). 
The assumption of the proportional hazards model of random censorship is not 
unrealistic. An example where such a model is appropriate is the Channing House 
data analyzed by Efron (1981) and by CsSrg5 (1989). Using various tests Cs6rg6 
(1989) has clearly demonstrated that this model fits the data very closely. Under 
this proportional hazards model of random censorship 

(1.2) ~ ----- (1 ~- ~)--1 and /~(t) = ( / t ( t ))  ~. 

Abduskhurov (1984, 1987) and Cheng and Lin (1987) proposed and studied the 
large sample properties of the maximum likelihood estimate of F(t). The maxi- 
mum likelihood estimate, henceforth called ACL-estimator, is given by 

(1.3) FACL(t) = (1 -- H~(t)) "~, 

where, 

n n 

(1.4) na~ = E 6i and nHn(t) = E I(Zi <_ t). 
i = 1  i----1 

We define the p-th quantiles of F a n d  /WACL as 

(1.5) 
(1.6) 

Q(p) = inf{t : F(t) >_ p}, 
Qn(p) = inf{t : FACL(t) _> p}. 

Since 1 -Hn( t )  = i-In(t) is a step function, the empirical quantile function, Qn(p), 
based on FACL will also be a step function even if the true quantile function Q(p) is 
continuous. In the case of no censoring Falk (1984) had defined kernel smoothed 
estimators of the quantile function. Falk (1984) has shown that certain kernel 
type estimators are better than the sample quantile in terms of relative deficiency. 
Large sample properties of the product limit quantile function have been studied 
by Sander (1975), CsSrg5 (1983), Cheng (1984), Aly et al. (1985), Lo and Singh 
(1986) and Gijbels and Veraverbeke (1988). A kernel type estimator for the smooth 
quantile function in the case of arbitrary right censored data was introduced by 
Padgett (1986). Its large sample properties were subsequently studied by Lio et 
al. (1986) and Lio and Padgett (1987). Lio and Padgett (1987) have shown that 
under certain conditions on the kernel function the mean square error of the kernel 
type estimator of the quantile function is less than that of the PL-quantile function. 
Ghorai and Rejt5 (1989) have established a deficiency result similar to Falk (1984) 
for the product-limit quantite function. The goal of this paper is to establish a 
similar result for the ACL-quantile. A kernel type estimator of a smooth quantile 
function, based on Qn(.) and a kernel function k(.) is defined as 

(1.7) /01 Qn(p) = Qn(t) k dt. 
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In this paper we investigate the mean square errors of Qn(p) and Qn(p) respectively 
and establish an asymptotic representation of the relative deficiency, (i(n) - n), of 
Qn(p) with respect to On(P), where i(n) is defined as 

(1.8) i(n) = min{j : MSE(Qj(p))  < MSE(Qn(p))}. 

In particular, we show that the relative deficiency, (i(n) - n), tends on infinity as 
n ~ co, if the kernel function satisfies some conditions. The question of relative 
deficiency of Qn(p) with respect to On(P) was also raised by Cshrg6 (1989). Our 
results provide an answer to his query. 

We now introduce some more notations and assumptions on the kernel func- 
tion, k(.). T h e / - t h  derivative of any function g will be denoted by g(0. It will 
be assumed that the kernel function, k(.), is a bounded Borel measurable function 
with the following properties. 

CONDITION K. 

(i) k ( x ) =  O, for [xl > 1, 

(ii) f l  l k (x)dx  = 1, 

(iii) fl_ 1 x~k(x)dx = 0 for i : 1 , . . . , m ,  and, 

(iv) M : f l  1 lxlm+llk(x)ldx < oo. 

For future use define, 

(1.9) f K(x )  = k(t)dt. 
o o  

2. Main results and proofs 

In our proofs we will make use of the asymptotic representation of FACL due to 
Cheng and Lin (1987). For convenience we state their result in Lemma 2.1. Gijbels 
and Veraverbeke (1989) have studied the almost sure behavior of the Bahadur 
representation of the ACL-quantile. However, for fixed n, their result does not tell 
us anything about the order of magnitude of the MSE of the ACL-quantile. In 
Theorem 2.1 we derive the order of magnitude of the second moment of the error 
of the Bahadur representation of the ACL-quantile. This is then used to derive the 
MSE of the ACL-quantile. The result is stated in Theorem 2.2. The asymptotic 
expansion of the mean square error of the kernel type estimator, Qn(p) is given 
in Theorem 2.3. Finally, the deficiency result is stated in Theorem 2.4. Define 
TF = sup{t:  F(t)  > 0}. 

LEMMA 2.1. (Cheng and Lin (1987)) For t < TF, we have 

(2.1) 
n 

i:1 
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where, 

(2.2) ~i(t) = a([-I(t))~-l[I(Zi > t) -/-it(t)] + (5~ - a)(f-I(t)) ~ l og / t ( t ) ,  

and for T < TF, 

(2.3) Esupr~(t)  = O(n-2) .  
t<_T 

THEOREM 2.1. Let p, 0 < p < 1, be fixed and f = F'. Suppose F is twice 
differentiable in the neighborhood of Q(p) with f ( Q(p) ) > 0 and f '  ( t ) is bounded 
in the neighborhood of Q(p). If  EIZll 2+~ < cx~ for some 77 > O, then one can write 

1 
~i(Q(p)) + I~(p),  

(2.4) Q'~(P) - Q(P) = n i = 1  f(Q(P)-----~ 

where ~(.) is given in (2.2) and 

(2.5) ER2n(p) = 0(n-3/2).  

Remark 2.1. In the case of no censoring Duttweiler (1973) has shown the 
same result under a slightly weaker condition. 

PROOF. Define 0n = 1 - (1 -p)l[a,~ and ~? = 1 - (1 -p)l /¢, .  Then it is easy 
to show that  Q(p) = F- l (p )  = H-I( t~)  and Qn(p) = FA~L(P) = H ~ I ( 6 , J .  For 
given g,~, H~-I(O,~) is an order statist ic of Z 1 , . . . ,  Zn. Suppose H~-l(~n) = Z(m), 
m-th order statistic of Z1 . . . .  , Zn. For en = cv/( log n)/n, define the  event 

(2.6) A n  = {l n - < 

We now decompose the difference, Q,~(p) - Q(p), into various terms and extract  
the iid component .  

(2.7) Q,~(p) - Q(p) = Q,(p)I(A~) + (Qn(p)I(A,~) - Q(p)) 

where the second term can be expressed as 

(2.8) Qn(p)I(A,~) - Q(p) = H~l(t?,~)I(An) - H-I(O) 
= ( g ~ l ( 0 n )  - H-l(6n))I (An)  

+ (g-l(On) - H-I(O))I(An) - H-I(O)I(A~). 

The first te rm in (2.8) can be wri t ten as 

(2.9) (H~l(On) - H-~(On))I(An) 

= [ a([-I(Q(p)))~-I ] ([-In(Q(p)) - [-I(q(p)))I(A~) + Rn~ + Rm2, 
[ f(O(p)) J 
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where 

/ /a ( /~(Q(P)))~-I  ~ ([-In(Q(p)) - [-I(Q(p)))] I(An), 
- \  f(Q(p)) . l  

The second term in (2.8) can be writ ten as 

(2.12) ( g - l ( e n )  - g- l (O)) I (An)  
-- [H- l (1  - (1 - p ) ' / ~ " )  - H-1(1  - (1 - p)l/~)]I(An) 

= (an - c~) d--~ ( H - l ( 1  - (1 -- p) l/(~'))l(A,~i ) 

1 d 2 
+ ~. (oen - c~)2d--~(H-l(1 - (1 _p)U~))I,~=~" I(An) 

= (C~n - c~) (H(Q(p)))a  log/-I(Q(p)) I(An) + Rna, 
I(Q(p)) 

where 

I d:  

and c~* is between c~ and an.  Now using (2.9) and (2.12) in (2.8) we get 

(2.14) Q,~(p)I(An) - Q(p) 

= [a( /~(Q(P)))~-~I  ([-In(Q(p)) - f I(Q(p)))I(An) 
[ f(Q(p)) J 

+ (a,~ - a)  (/t(Q(P)))'~ log [-t(Q(p)) I(An) 
f(Q(p)) 

+ Rnl + Rn2 + Rn3 

1 

n i=1 f(Q(P))  

Substi tut ing (2.14) in (2.7) and writing I(An) = 1 - I (An) we get 

(2.15) Q,~(p) _ Q(p) = 1 
~(Q(p)) 

n i=~ f(Q(P)~ + R~(p) 

where 

(2.16) 1 ~ ~i(Q(p))i(AC ~ R,~(p) = Qn(p)I(A c) - n i=1 ~ ' nJ + P~I + Rn2 + Rn3. 
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To complete the proof of the theorem it is enough to show that  the expected value 
of the square of each term in (2.16) is 0(n-3/2). Since under the proportional 
hazards model Z1 , . . . ,  Zn are independent of 51, . . . ,  6n, it is not too difficult to 
show that  E(~(Q(p))) 2 = CrML(Q(p), Q(p)), where for s < t (see Cheng and Lin 
(1987)), 

(2.17) O'ML(8, t) = O~2(/~(S))a-l(/~(t))a(1 --/ 'I(s)) 

+ a(1 - a ) ( /4(s ) / t ( t ) )  a log/ t ( s )  log/ t ( t ) .  

Also using the Bernstein's inequality (see Serfling (1980), p. 59) we get 

( 2 . 1 8 )  P(A~)  = P(lan - al > +n) < doe -dlnE~ 

= doe-dlc: log ~ = O(n-d, c2). 

Since do and dl are absolute constants, by choosing the constant c in the definition 
of £n appropriately we can get 

(2.19) P(A~) --- O(n-6).  

Using (2.17) and (2.19) we get 

(2.20) E [I  ~-~i(Q(P))I(AC]]2=O(n-2) ~ , nJj 

To handle the first term in (2.16), recall that  Qn(p) = H~l(on), where On -- 
1 - (1 -p) l / ,~n.  Since the random variables Z+'s are assumed to be nonnegative, 
clearly 0 <_ Qn(p) = H~l(On) <_ ZO 0. Hence by using the HSlder's inequality, for 
r />O,  

E(Qn(p)I(AC)) 2 < [E(Qn(p))2+~]2/(2+V)(EI(AC)) ~/(2+v), (2.21) 

where 

(2.22) ~0 (:X5 E(Q~(p)) 2+" < E(Z(~)) 2+v = P((Z(n)) 2+v > t)dt 

/5 = [1 - P(Z(~) < tl/(2+'7))]dt 

/Y = [1 - (I-I(tl/(2+'7)))'+]dt 

/Y _< n (1  - H(tl/(2+'7)))dt = nE(Z~+' ) .  

Now using (2.22) and (2.18) in (2.21) we get 

(2.23) E(Q,+(p)I(A~)) 2 = O(n -[dlc2~/(2"+-~)]+1) 

, lo/ 5_, 
=O(n -3/2) if c >  V 2dl~? " 
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To get a bound on ER23 first observe tha t  

( J ~ H - I ( 1 -  ( 1 -  p)I/~) I~=~.) 2I(An) 

can be bounded above by a fixed constant  since a* is between an  and a and 
Jan - a] <_ en. Hence 

(2.24) ER23 = O(E(an - a)  a) = O(n-2) .  

2 To get a bound on ERn2 , recall tha t  m is such tha t  Hnl(O~) = Z(m). This implies 
tha t  (m - 1)/n < O n ~_ m / n  o r  IOn -- m/(n  + 1)1 < n -1. Using this and the mean 
value theorem we get 

[( ] ER22 -- E On n + 1 \ dt (t) It=o~ I(An) (2.25) 

( 2 . 2 6 )  = O(n-2). 

In (2.25), Inn - a I < en and hence 0* is in the neighborhood of/9. Finally, to get a 
bound on ER21 again recall tha t  Z1, . . . ,  Zn are independent  of 61 , . . . ,  5n. Hence 
using Theorem 2 and Remark 1 of Duttweiler (1973) we get, for fixed O~ n in An, 

(2.27) ER21 = E[E(R~I Inn e An)]I(An) 
= O(n -3/2) if E Z  2 < oc. 

Now using (2.20), (2.23), (2.24), (2.26) and (2.27) we get ER~(p) = 0(n-3/2). 
This completes the proof of the  theorem. [] 

THEOREM 2.2. Let p, 0 < p < 1, be fixed. Suppose F is twice differentiable in 
the neighborhood of Q(p) with f(Q(p)) > 0 and f '  is bounded in the neighborhood 
of Q(p). / f E l Z l l  2+n < oc for some ~ > O, then 

(2.28) nMSE(Qn(p)) = a2(p) + 0(n-1/4), 

w h e r e  

(2.29) cr2(p) = aML(Q(p), Q(p))/(f(Q(p)))2, 

and aML(S, t) is given in (2.17). 

Remark 2.2. aML(Q(p), Q(p)) in (2.29) can be simplified as 

(2.30) CrML(Q(p), Q(p)) = a2(1 -p)2[ (1  _ p ) - - l / .  _ 1] + 1 - a ( (  1 _p) log(1  _p))2.  
a 
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PROOF. Using the representation given in (2.4) we get 

MSE(Qn(p)) = E(Qn(p) - Q(p))2 
2 

~=~ I(Q(p)) 

+ R (p) 1 

i=1  f (Q(P))  
= I + II + III. 

It is easy to show that nI = a2(p). Also ER2(p) = O(n -3/2) and the CS-inequality 
together imply that nIII = 0(n-1/4). Hence 

nMSE(Qn(p) ) = ( r 2 ( p )  -t- O(n-1/4) .  [] 

Our next theorem gives an asymptotic expansion of the mean square error of 
the kernel type estimator (~(p) .  

THEOREM 2.3. Let p, 0 < p < 1, be fixed. Assume that (i) EIZlJ 2+~ < oc 
for some 7/> 0, (ii) for m >> 2, F is (m + 1) times differentiable with f(Q(p)) > 0 
and IF(m+l)l is bounded in the neighborhood of Q(p). Then 

nMSE(Q,n(p) ) - [a2(p) - h ( ( 1 -  p)I-1/~~T2~ ) j ub(u)du] I 

<_ O(nh 2m+2) + O(n -1/4) + O(nl/4h re+l) + O(h2), 

where, b(u) = 2k(u)g(u). 

PROOF. Condition (ii) on F implies that there exist constants a0, . . .  ,am 
and b0, . . . ,  bm and A > 0, B > 0 such that 

F(x) ~ ai AI x~rt_+ ~) Q(p)p+l (2.31) - o~ . (x -Q(p) ) i  <__ , 

in the neighborhood of Q(p) and 

Q(t) m B ] t -  pl m+l 
(2.32) - E ( t - p )  ~ < 

i=0 - (m + 1)! ' 

in the neighborhood of p. Starting with the definition of (~n (P), it is easy to show 
that 

(2.33) (~n(P) - Q(p) = (Qn(t) - Q(t)) n dt 

f 
ph-h 

= An + B,~(p,h). 
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Hence, 

(2.34) MSE(Qn(p) )  -~ EA~ + S2(p, h) + 2Bn(p, h)EAn. 

The  second t e rm in (2.34) can be handled in the  usual way giving 

(2.35) IB,~(p,h)l 2 = 0 \ \-(-mT-~! ) ] " 

Now writ ing An in (2.33) as 

(2.36) An (Qn(t) Q(t)) nk dt 
Jp-h 

Jv-h ~=~ f(Q(p)) k 
dt 

= An1 + An2, 

we get, 

(2.37) 

where, 

(2.38) 
and 

(2.39) 

EA 2 = EA21 + EA2n2 + 2EA.aA~2, 

nEA22 = O(n-ll  2) 

× (f(Q(s))f(Q(t)))-aaML(Q(s), Q(t))dsdt 

× (f(Q(s))f(Q(t))) -1 

× [o~2(1 -- s ) l - l / a ( 1  -- t)(1 - (1 - s) 1/a) 
] .  

1 - a  ] 
+ - - ( 1  - s)(1 - t ) log(1 - s) log(1 - t) dtds 

a 

= V + V I .  

The  first t e rm in (2.39) can be simplified as 

2 fp+h 1 (2.40) V -  2(~ Sp-h -~k ( ~ - )  (f(Q(s)))-l(1 - s ) l - 1 / a ( 1 - - ( 1  - s) 1/c~) 
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2 i p+h 1 

= VII + VIII. 

Now using the notat ion 

(2.41) w(s) = ( 1 - _ s  ~ 2 \ f ( Q ( s ) ) )  ((1 - s) - l la  - 1), 

the first t e rm in (2.40) can be simplified as 

(2.42) Ll1( ) VII = ~2 -~b w(s)ds 

Y = a 2 b(u)w(p - hu)du 
1 

~ [ 1  h2u22 _'1 = a 2 b(u) w(p) - huwO)(p) + w(2)(p*)] du 

// --- ff2w(p) -- ol2hw(1)(p) ub(u)du 4- O(h2). 
1 

Similarly denoting 

1 - s  ) 
(2.43) c ( . )  = f~ -~D)  ( ( 1 -  ~ ) - , /~  _ ~) and 

d 1 - t  

the second te rm in (2.40) can be simplified as 

(2.44) V I I I  = 2~ 2 C(s)  K ( -R( t ) )d tds  
sp-h ~k J S  

i_ S/ = - 2ha 2 k(v)C(p - hv) K(u)R(p  - hu)dudv 
1 1 

= - 2ha  2 k(v)[C(p) - hvCO)(p*)] 
1 

× K(u) [R(p) - huR (1) (p**)]dudv 
1 
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= - 2hC(p)R(p)(~ 2 K(u) k(v)dvdu + O(h 2) 
1 

f = - 2hc~2C(p)R(p) K(u)(1 - K(u))du + O(h 2) 
1 

f = - 2 h ~ 2 C ( p ) R ( p )  ~b(u)du + O(h~). 
1 

Hence using (2.42) and (2.44) in (2.40) we get 

(2.45) V = VII + VIII 

= a2w(p) - ha2[wO)(p) + 2C(p)R(p)]/ub(u)du + O(h 2) 

[(1- p)1-1/  1 f = a2w(p) - h [ ~ ( f ( ~ j  j ub(u)du + O(h2). 

The second term in (2.39) can be handled easily. Define 

( 2 . 4 6 )  g(s)  = (1  - s ) l o g ( 1  - s )  

f(Q(s)) 

Now we can simplify VI in (2.39) as 

( a )  ( /P+hl  (~ f f _ )  )2 
(2.47) ~ VI = \Jp-h -~k g(s)ds 

2 

= (g(p) + O(hm+l)) 2 
= g2(p) + O(h2). 

Using the expressions of w(p) and g(p), it is easy to see that  

(2.48) a2(p) = c~2w(p) + ( ~-~_) g2(p). 

Now put t ing (2.45), (2.47) and (2.48) in (2.39) we get 

(2.49) 

Hence 

(2 .50)  

(2 .51)  

757 

( (1  _ p)1-1/,~,~ / ub(u)du q- O(n -1/4) q- O(h2). nEA21 = a2(p) - h \ ~ ~  ) 

nlEA,~An21 = O(n -1/4) and 

nEA~ = nEA~I + 0(n-1/4). 
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Finally, to get a bound on the third term in (2.34) observe that  

(2.52) IEA~I = O(n-3/a). 

Hence 

(2.53) nlEAnB (p, h)l = nlBn(p, h)EA, I 

-- nIB (p, h)llEAnl = O(nU4hm+l). 

The conclusion of the theorem now follows from (2.35), (2.49) and (2.53). [] 

Remark 2.3. The limiting value of nMSE of Qn(p) and Qn(p) are equal to 
a2(p) where a2(p) is given in (2.29). The corresponding values from Theorem 3.1 
and Theorem 4.1 of Lio and Padgett  (1987)are given by a ~ p ( p ) =  ~ ( 1 - p ) 2 [ ( 1 -  
p ) - l / ~ _  1]/(f(Q(p)))2 under the proportional hazards model. It is not too difficult 
to show that  aL~p (p) > a 2 (p). 

We now state the main theorem of this section. It gives the relative deficiency 
result of Qn with respect to (~n. 

THEOREM 2.4, Assume that the conditions of Theorem 2.3 hold. Further, 
assume that h is such that nh 2"~+1 --* 0 and (nh4) -1 --+ 0 as n --+ oc. Then 
MSE(Q~) and MSE((~)  are finite for large n and 

(2.54) 
(i(n__)) -- n ~  _-- (1 -- p) l -1/¢~ f 2xk(x)K(x)dx 

lira 
\ nh ] off2(Q(p))a2(p) 

Remark 2.4. For m _> 2, h could be taken as h = o(n-1/(2m+l)). This choice 
of h is different from the optimal choice of h = O(n71/3) as mentioned in Azzalini 
(1981). For the choice of h = O(n -1/3) the MSE of Qn(p) may not be smaller than 
that  of Qn(p). Azzalini (1981) did not s tudy the problem of relative deficiency. In 
the case of no censoring Falk (1984) has established the relative deficiency of the 
sample quantile with respect to the kernel smoothed quantile under the similar 
conditions on h as the ones stated in this paper in Theorem 2.4. 

Remark 2.5. In the case of no censoring, a = 1 and hence the right hand 
side of (2.54) reduces to the expression given in Falk (1984). 

Remark 2.6. If the kernel is such that  f xk (x )K(x )dx  > 0, then the kernel 
type estimators of the quantile are better than the ACL-quantiles. In this case 
(i(n) - n) tends to infinity as n ~ co. 

PROOF. It is clear from the definition of i(n) that  i(n) --+ oc as n -+ co. Also 
nMSE((0n) --+ ~2(p) as n -+ co. Since MSE(Qi(n)(p)) <_ MSE((~n(p)), it follows 
that  

a2(p) O(z(n) -1/4) 
(2.55) MSE(~)n) _> ~ + i(n) 
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Hence, 

(2.56) i(n) > a2(p) + O(i(n) -1/4) -~ 1 as n --* co. 
n - nMSE((~,~) 

It also follows from the definition of i(n) that  if n* < i(n), then MSE(Q~(p)) _> 
MSE((~n). Hence using the above arguments we get 

n* a2(p) + O((n*) -1/4) 
(2.57) - -  < 

n - nMSE((~n(p)) 

In particular, taking n* = i ( n ) - I  and letting n --* co, we get limsup~(i(n)/n) <_ 1. 
Combining these we get 

(2.58) lim i(n) = 1. 
n n 

Using the asymptotic representations of MSE(Q~ (p)) and MSE(Q~ (p)) and taking 
the difference we get 

( 1  1 I ( (1 -p )~- l / '~ f2xk (x )K(x )dx )+o(n_5 /4 )  (2.59) o (p) = h 

~- O(n-3/4h re+l) 'F O(i(n) -5/4) 
Jr O(rt-lh 2) Jr O(h2(m+l)), 

Now multiplying both sides of (2.59) by i(n)(ha2(p)) -1 and taking limit, we get 

(2.6o) ( i (n)_-n~ _ ( l - p )  1-1/~ f 2xk(x)K(x)dx 
lim 

\ nh ] af2(V(p))a2(p) 

This completes the proof. [] 
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