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Abstract

Aims

There are numerous grassland ecosystem types on the Tibetan Pla-

teau. These include the alpine meadow and steppe and degraded al-

pine meadow and steppe. This study aimed at developing a method

to estimate aboveground biomass (AGB) for these grasslands from

hyperspectral data and to explore the feasibility of applying air/sat-

ellite-borne remote sensing techniques to AGB estimation at larger

scales.

Methods

We carried out a field survey to collect hyperspectral reflectance and

AGB for five major grassland ecosystems on the Tibetan Plateau and

calculated seven narrow-band vegetation indices and the vegetation

index based on universal pattern decomposition (VIUPD) from the

spectra to estimate AGB. First, we investigated correlations between

AGB and each of these vegetation indices to identify the best esti-

mator of AGB for each ecosystem type. Next, we estimated AGB for

the five pooled ecosystem types by developing models containing

dummy variables. At last, we compared the predictions of simple

regression models and the models containing dummy variables to

seek an ecosystem type-independent model to improve prediction

of AGB for these various grassland ecosystems from hyperspectral

measurements.

Important findings

When we considered each ecosystem type separately, all eight veg-

etation indices provided good estimates of AGB, with the best pre-

dictor of AGB varying among different ecosystems. When AGB of all

the five ecosystems was estimated together using a simple linear

model, VIUPD showed the lowest prediction error among the eight

vegetation indices. The regression models containing dummy varia-

bles predicted AGB with higher accuracy than the simple models,

which could be attributed to the dummy variables accounting for

the effects of ecosystem type on the relationship between AGB

and vegetation index (VI). These results suggest that VIUPD is the best

predictor of AGB among simple regression models. Moreover, both

VIUPD and the soil-adjusted VI could provide accurate estimates of

AGB with dummy variables integrated in regression models. There-

fore, ground-based hyperspectral measurements are useful for esti-

mating AGB, which indicates the potential of applying satellite/

airborne remote sensing techniques to AGB estimation of these grass-

lands on the Tibetan Plateau.
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INTRODUCTION

The Tibetan Plateau may play a significant role in influencing

climate because of its vast area and height and thermal influ-

ences on atmospheric circulation (Chapin et al. 2008; Kutzbach

et al. 1993; Manabe and Terpstra 1974). Grasslands are the

most extensive vegetation type covering the Tibetan Plateau,

which covers an area of >2.5 million km2. An accurate estima-

tion of aboveground biomass (AGB) of the vegetation across

this large area is needed to understand how the vegetation

on the Plateau might influence climate, through changes in

surface albedo or carbon storage. However, AGB in these grass-

lands is highly heterogeneous across the Plateau.While studies

have investigated AGB across the Tibetan Plateau using direct

field measurements at local sites (e.g. Fan et al. 2008), empir-

ical ecological models across the plateau (e.g. Luo et al. 2002)

and remotely sensed data for local regions (e.g. Kumpula et al.

2004), no appropriate approach is currently available to accu-

rately estimate the AGB of these heterogeneous grasslands at

lager spatial scales.

Remote sensing technology provides an important approach

for estimating AGB at large spatial scales. To apply this tech-

nique, it is critical to understand the relationship between the

AGB and spectral features of reflectance from aboveground

vegetation (Friedl et al. 1994; Schino et al. 2003). Many studies

have demonstrated that, among various kinds of spectral fea-

tures, narrow-band vegetation indices are sensitive to varia-

tions in AGB. Holzgang (2001) found that the simple ratio

calculated from reflectance in 808 and 677 nm can be used

to assess the aboveground phytomass of sub-alpine and alpine

grasslands. Hansen and Schjoerring (2003) evaluated the rela-

tionships between green biomass and all two-band combina-

tions in the normalized difference vegetation index (NDVI)

and revealed a number of grouped wavebands (mainly in

the red-edge spectral region, from 680 to 750 nm) with high

correlation for biomass estimation. Mutanga and Skidmore

(2004a) found that the vegetation indices calculated from

wavelengths located in the red edge are good estimators of pas-

ture biomass at high canopy density. In a study of a Mediter-

ranean shrubland, NDVI calculated from reflectance at 900

and 679 nmwas found to be sensitive to both biomass and phe-

nology changes (Filella et al. 2004). These studies demonstrate

that vegetation indices are useful for estimating AGB within

a single vegetation type. However, no general model of esti-

mating AGB has been tested against multiple alpine ecosys-

tems on the Tibetan Plateau.

Since there are various types of alpine ecosystems on the

Tibetan Plateau due to its large spatial extension and high het-

erogeneity in water availability and temperature as well as an-

thropological activities, a large number of ground-truth data

are required for developing AGB estimation models by using

ecosystem type-dependent models. Moreover, such ecosystem

type-dependent models may have different formulas and

parameters. These make the estimation of AGB complicated

and laborious across large spatial scales and heterogeneous

landscapes. Therefore, a general ecosystem type-independent

model for AGB estimation is needed.

The in situ hyperspectral data are of higher quality compared

with data from satellite-borne sensors since there is little atmo-

spheric effect and the solar-view geometry is strictly con-

trolled. Therefore, the relationships between AGB and

spectral features based on ground measurements are more

reliable. Such relationships are required for building Spec-

tra-AGB models with inputs of satellite data, especially in veg-

etation index (VI) selection and model form selection. In this

study, we examined the relationships between AGB and each

of seven narrow-band vegetation indices and that between

AGB and the vegetation index based on universal pattern de-

composition (VIUPD, Zhang et al. 2007) calculated from in situ

hyperspectral data in five typical grassland ecosystems on the

Tibetan Plateau. Our objectives were (i) to identify the best VI

based on hyperspectral data—such a VI is also possibly col-

lected by satellite/airborne sensors, for estimating the AGB

for each ecosystem type on the plateau grasslands and (ii)

to build a multiple-ecosystem model for estimating AGB inde-

pendently of ecosystem type by evaluating the predictions

of the multiple-ecosystem models with and without dummy

variables.

METHODS
Study sites

Five grassland types (Table 1) were identified for the measure-

ments of AGB and spectral reflectance based on their extensive

spatial distribution on the Tibetan Plateau (Fig. 1 and Table 1).

Themeasurements were taken between 24 July and 10 August

2006, when the AGB approached the annual maximum and

was relative stable for a short duration of time. These five grass-

lands representmajor grassland ecosystems on the Tibetan Pla-

teau. The sampled ecosystems cover the areas with annual

precipitation from 201 to 440 mm and annual mean temper-

ature from �5.6 to 3.3�C. In each type of grassland, we mea-

sured the AGB and spectral reflectance in 12–15 circles, each

with a radius of 15 cm. The 12–15 circles were selected to span

relatively low to relatively high AGBwithin the grassland type

in order to encompass large data variation for the models. De-

tailed information is provided in Table 1.

Measurements of biomass and spectral reflectance

Hyperspectral measurements of sampling circles were carried

out at five sites along the Tibetan highway (Fig. 1). We made

all the measurements between 10:00 and 14:00 h (local time)

in clear sunshine. Spectrum measurements were taken using

a portable spectroradiometer (MS-720, EKO Instrument Co.

Ltd, Tokyo, Japan) and a white panel. The spectroradiometer

samplingwavelength range is 350–1050nmand its spectral res-

olution is 10 nm. The sensor, with a field of view of 25�, was

mounted on a tripod at a zenith position of 67 cm above the
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vegetation surface, which allowed coverage of a circular area

with a radius of ;15 cm. The mean reflectance for each sam-

pled circle was calculated as the average of five replicates. After

the spectral measurement, the AGB of all the sampling circles

was harvested. After oven drying for 48 h at 70�C, the resultant
drymatter wasweighed on an electronic scalewith a sensitivity

of 0.01 g. The spectra of the harvested pure vegetation and the

soil surface after harvesting were both measured.

Data analysis

We calculated two categories of indices from the hyperspectral

data: the narrow-band vegetation indices and the VIUPD. The

narrow-band vegetation indices have been widely used and

provide reliable estimates of canopy characteristics including

leaf area index (LAI), chlorophyll concentration, nitrogen

concentration, water content and biomass (Hansen and

Schjoerring 2003; Kokaly and Clark 1999; Mirik et al. 2005;

Mutanga and Skidmore 2004a, b; Thenkabail et al. 2000; Todd

et al. 1998; Tucker 1977). VIUPD is a sensor-independent index

that has been proved to be sensitive to vegetation signal

(Zhang et al. 2007). Each of the vegetation indices and VIUPD

were used as independent variables in linear regressionmodels

for estimating AGB for each of the five ecosystem types. We

then built regression models between each of these indepen-

dent variables and AGB for all the five ecosystems com-

bined with dummy variables included to integrate effects of

ecosystem type.

Narrow-band vegetation indices.

We used seven different narrow-band vegetation indices to

evaluate their performance in AGB estimation. Because some

of the study areas were sparsely vegetated, the enhanced veg-

etation index (EVI, Liu and Huete 1995), soil-adjusted vegeta-

tion index (SAVI, Huete 1988) and the modified soil-adjusted

vegetation index (MSAVI, Qi et al. 1994) were used since they

take soil background effects into consideration. We also

Table 1: location (longitude, latitude and altitude), vegetation characteristics, soil type, AGB indicated by mean 6 standard deviation,

sampling number (N) and soil water content of study sites

Ecosystems Kobresia meadow Stipa steppe Degraded steppe Achnatherum grassland Degraded meadow

Longitude (�E) 91.9148 92.5925 99.5525 98.2270 92.3757

Latitude (�N) 32.8401 34.3279 36.7029 36.4412 34.1068

Altitude (m) 5142 4571 3571 3244 4736

Dominant species Kobresia pygmaea Stipa purpurea Oxytropis melancalyx,

Carex sp.

Achnatherum

splendens

Leontopodium leontopodioides,

K.pygmaea

Soil typea Alpine meadow–steppe

soils

Alpine steppe soils Subalpine meadow

soils

Typic brown pedocals Alpine steppe soils

AGB (gm�2)b 232 6 85 65 6 31 218 6 78 140 6 83 94 6 43

N 13 12 15 15 13

Soil water content (%)c 9.5 3.3 21.3 19.7 6

Precipitation (mm)d 439.7 (Anduo) 262.2 (Wudaoliang) 362.8 (Tianjun) 200.6 (Dulan) 282.6 (Tuotuohe)

Temperature (�C)d �2.73 �5.60 �1.50 3.31 �4.22

Area (104 hm2)e 5387.7 3166.9 160.8 1620

a According to soil map of China, 1979, edited by Nanjing Institute of Soil Science, Chinese Academy of Science.
b The mean of AGB was obtained from 12 to 15 circles at each site.
c Soil water content was measured with a time domain reflectometry when the spectral reflectance measurement was done.
d Precipitation and temperature are 18-year (1982–99) averages of annual mean values, calculated from daily data recorded by meteorological

station nearest to the investigated site. Those inside brackets are the places where stations located in.
e The total area of grassland on the Tibetan Plateau is 11229.63 104 hm2, of which alpine meadow covers an area of 5387.73 104 hm2. Here, we

consider that alpine meadow includes Kobresiameadow and degraded meadow. Both Stipa steppe and degraded steppe are considered as alpine

steppe, which covers an area of 3166.9 3 104 hm2 on the plateau. The area of Achnatherum grassland is considered as the area of humoral

grassland since Achnatherum grassland is the dominant species of this kind of grassland on the plateau. These data are available on the

Web site—http://www.grassland.net.cn/data/d61.htm. The area of the degraded meadow is according to Lan (2004).

Figure 1: The Tibetan Plateau (gray) in China and locations of the in-

vestigated sites (solid triangles) on the plateau.
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selected NDVI (Rouse et al. 1973), the chlorophyll-corrected

triangular vegetation index (TVI, Hall and Rao 1987) and

the simple ratio vegetation index (RVI, Jordan 1969) and dif-

ference vegetation index (DVI, Tucker 1979) as independent

variables in estimating AGB (Table 2).

VIUPD.

VIUPD was developed from pattern decomposition and is sen-

sitive to vegetation characteristics, especially under high LAI

conditions (Zhang et al. 2007). VIUPD was developed from

a linear spectral unmixing model with both vegetation and soil

contained in the model; we used an identical approach in this

analysis:

RiðkÞ=CsiPsðkÞ+CviPvðkÞ; ð1Þ

where RiðkÞ was the measured reflectance of sample i, and

PsðkÞ and PvðkÞ were normalized spectral patterns of pure soil

and vegetation. PsðkÞ and PvðkÞ were calculated through nor-

malization equations as

PsðkÞ=
RsðkÞ

R 960

400
dkR 960

400
jRsðkÞjdk

; ð2Þ

PvðkÞ=
RvðkÞ

R 960

400
dkR 960

400
jRvðkÞjdk

; ð3Þ

where RsðkÞ and RvðkÞ were the measured reflectance of pure

soil and vegetation, respectively. Here, the wavelength range

used was 400–960 nm to avoid water absorption of radiation

around 980 nm. Csi and Cvi were the decomposition coeffi-

cients. They could be obtained by ordinary least squares

(OLS) method as same as the traditional unmixing method.

After Csi and Cvi were obtained, VIUPD was calculated as (re-

vised from Zhang et al, 2007)

VIUPD=
Cvi � 0:13Csi

Csi +Cvi
: ð4Þ

Regression analysis.

Linear regression was used to develop regression model be-

tween AGB and each of the vegetation indices mentioned

above. Because the relationship between AGB and VI might

vary among different ecosystems, we analyzed the relation-

ships for each of the five ecosystems separately. We then

pooled the VI and AGB data for all five ecosystems and con-

ducted the regression (referred to as the ‘general model’ be-

low). We resized the sample for each site to 12 sample

points by randomly dropping the excess data before building

the general model since the different sample size in each site

may exert extra impact on the dummy variables. To validate

the general model, all 60 sample points (12 sample points for

each ecosystem) of the five ecosystems were randomly sepa-

rated into two data sets, one with 45 points for building model

and the other with 15 points for testing the model. The model

predictions were compared using root mean square error in

prediction (RMSEP) calculated from the test data set.

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

i=1

�
AGBobs � AGBpre

�2
N

s
; ð5Þ

where AGBobs and AGBpre were the observed and predicted

AGB, respectively. N equals 15, the number of samples in

the test data set.

The simple general regression model between each VI and

AGB, where data from the five ecosystems were pooled, was

specified as

AGB= b0 +b1VI + e: ð6Þ

In this model, the intercept and slope were obtained by OLS

method (we refer to this as the ‘simple general model’ below).

Because the linear relationships between AGB and the veg-

etation indices maybe different for each ecosystem, we intro-

duced dummy variables into the regression models to assess

the impacts of ecosystem type.We compared these results with

those of the simple linear regression model as specified by

Equation (6).

Dummy variables are widely used to represent categorical

variables in regression models. In this study, the dummy var-

iables represented the five different ecosystem types. The re-

gression model between AGB and VI containing dummy

variables (referred to as the ‘sophisticated general model’ be-

low) was

AGB= b0 + b1VI+ b2D1 +b3D2 +b4D3 +b5D4 +b6D1VI

+b7D2VI+b8D3VI+ b9D4VI + e;
ð7Þ

where VI was vegetation index such as NDVI, SAVI or VIUPD,

D1–D4 were the dummy variables, b0, b1, . . ., b9 were the re-

gression coefficients and e was random error. For example, if

Table 2: narrow-band vegetation indices from reflectance used in

estimating AGB of the alpine grasslands

VI Equation Reference

DVI DVI = R875 � R680 Tucker (1979)

RVI RVI = R875/R680 Jordan (1969)

NDVI NDVI = (R875 � R680)/(R875 + R680) Rouse et al. (1973)

SAVI SAVI = 1.5 3 (R875 � R680)/(R875 +

R680 + 0.5)

Huete (1988)

MSAVI MSAVI = 0.5 3 [2 3 R875 + 1 �
((2 3 R875 + 1)2 � 8 3

(R875 � R680))
0.5]

Qi et al. (1994)

TVI TVI = 0.5 3 [120 3 (R750 � R550) �
200 3 (R670 � R550)]

Hall and Rao (1987)

EVI EVI = 2.5 3 (R863 � R680)/(1 +

R863 + 6 3 R680 � 7.5 3 R493)

Liu and Huete (1995)
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Kobresia meadow was set as a bench ecosystem, the regression

model between AGB and a VI could be specified using binary

values assigned in Table 3. Here, the ecosystem for which D1–

D4 were all assigned 0 was named as the bench ecosystem:

Kobresia meadow AGB= b0 +b1VI + e;

Stipa steppe AGB= b0 +b2 + ðb1 + b6ÞVI+ e;

Degraded steppe AGB= b0 + b3 + ðb1 +b7ÞVI + e;

Achnatherum grassland AGB= b0 +b4 + ðb1 +b8ÞVI + e;

Degraded meadow AGB= b0 +b6 + ðb1 + b9ÞVI+ e: ð8Þ

We considered the differences in regression intercepts and

slopes between VI and AGB in the regression functions for

each ecosystem type. The difference between the intercepts

and slopes was expected to be caused by the ecosystem type

effects on the AGB–VI relationship since the vegetation type,

canopy structure, phenological phase and soil type could vary

among these ecosystems. In following sections, we use the

form I(ecosystem type) and S(ecosystem type) to refer to

the effects of a given ecosystem on the intercept and slope

of the AGB–VI relationship, respectively. For example, b2
and b6 in Equation (8) indicate the effects of Stipa steppe

on the intercept and slope of the AGB–VI relationship and

they were written as I(Stipa steppe) and S(Stipa steppe),

respectively.

To examine the ecosystem type dependence of dummy vari-

able definition, the bench ecosystem was changed when

implementing regression on AGB and VI. In detail, first Kobre-

sia meadow was set as the bench ecosystem (Table 3) which

was then replaced by Stipa steppe in another regression. There-

fore, for each VI, five general regression models were obtained

by setting each ecosystem as the bench ecosystem once, and

their predictions were compared by RMSEP calculated from

the test data set.

The analysis provided tests of the significance for VI and eco-

system type effects on the regression and the significance of the

model. Useful variables were selected by stepwise elimination

of non-significant variables with large P values. In all the sta-

tistical tests in the study, we used a= 0.10 as the cut-off for the

null of hypothesis.

RESULTS
Spectral reflectance of the five ecosystems

A general vegetation spectral reflectance pattern was observed

for all the five ecosystems on the Tibetan Plateau with higher

reflectance in the near infrared (NIR) region due to mesophyll

multiscattering and relatively low reflectance in the red region

around a wavelength of 670 nm attributed to chlorophyll ab-

sorption (Fig. 2). The degraded steppe had the lowest reflec-

tance ;0.06 in the red region due to strong absorption of

chlorophyll since the study area was densely vegetated with

a mean AGB of 218 gm�2. Although Kobresia meadow had

comparable AGB as the degraded steppe, the spectral curve

of Kobresia meadow had higher reflectance in the red region

and lower reflectance in the NIR region. For the other three

sites, there was significantly higher reflectance in the red re-

gion and thus flatter uptrend from the visible to NIR region

comparedwith either the degraded steppe orKobresiameadow.

Relationships between AGB and VI in individual

ecosystem

As shown in Table 4, when AGB of each ecosystem was esti-

mated from the VI, all the regression models were significant

(most P values < 0.01) with high coefficients of determination.

The VI–AGB relationship with the highest R2 for Kobresia

meadow, Stipa steppe, the degraded steppe, Achnatherum grass-

land and the degradedmeadowwere RVI (R2 = 0.79), RVI (R2 =

0.68), VIUPD (R2 = 0.61), SAVI (R2 = 0.86), VIUPD (R2 = 0.71)

and RVI (R2 = 0.79), respectively.

Though the coefficients of determination for the regression

models were high, their values varied among different ecosys-

tems. Among the five ecosystems, AGB of Achnatherum grass-

land and the degraded meadow, both of which were of middle

vegetation density, was estimated with higher coefficients of

determination than the other three ecosystems. In addition,

for each of these two ecosystems, all eight vegetation indices

estimated AGB with similar R2 values. The R2 values for Kobre-

sia meadow were relatively higher than the densely vegetated

degraded steppe and sparsely vegetated Stipa steppe. Addition-

ally, for a given ecosystem with either high or low vegetation

density, these various vegetation indices showed obviously dif-

ferent performance in estimating AGB.

Relationships between AGB and VI for five

ecosystems

Simple regressions.

As shown in Table 5, each of the eight vegetation indices

showed significant relationship with pooled AGB for all the

five ecosystems (P value < 0.001). All the regressions had high

Table 3: an example of dummy variables values assignment in the

general model for the five ecosystems in linear regression

D1 D2 D3 D4 If observation is for

0 0 0 0 Kobresia meadow

1 0 0 0 Stipa steppe

0 1 0 0 Degraded steppe

0 0 1 0 Achnatherum grassland

0 0 0 1 Degraded meadow

In this example Kobresia meadow was set as the bench ecosystem.
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coefficients of determination (R2 > 0.499). The regression be-

tween AGB and VIUPD had the highest R2 (0.734), followed by

SAVI, NDVI, EVI, TVI, MSAVI, DVI and RVI. Accordingly, the

regression model with higher R2 values predicted AGB with

higher accuracy, as indicated by RMSEP calculated from the

15 samples of the test data set. However, RMSEP values for

most vegetation indices were;50 gm�2 which was a consider-

able fraction of 159.2 gm�2 as the mean of 15 samples of the

observed AGB in the test data set.

Regression models containing dummy variables.

To seek a better estimate of AGB, dummy variables were added

into regression models to integrate the effects of ecosystem

type on the relationship between AGB and VI. Because VIUPD,

SAVI and NDVI had the top three R2 values in simple regres-

sion among all the eight vegetation indices (Table 5), each of

these three vegetation indices and dummy variables corre-

sponding to ecosystem types were used as independent varia-

bles to estimate AGB. Generally, the sophisticated general
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Figure 2: The spectral reflectance of different grasslands. The middle curve for each ecosystem indicates the mean reflectance from 12–15 circle

areas with five replicates each. And the top and bottom lines for each ecosystem indicate the standard deviation of the spectral reflectance from the

12–15 circles.
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models showed higher R2 values and predicted AGB with sig-

nificantly lower RMSEP values than the simple general models

did (Tables 5 and 6). Similar to the simple models, the sophis-

ticated general model between VIUPD and AGB had higher R2

values and lower prediction errors than the models for NDVI

and SAVI. Additionally, therewere no apparent differences be-

tween prediction errors by models using NDVI and SAVI.

The differences in ecosystem characteristics caused differen-

ces in the model structures and parameters. Variations in the

selected independent variables for a given VI occurred as

the bench ecosystem changed; this led to the differences in

the coefficients of determination and the prediction errors.

For NDVI, the same model was established by stepwise regres-

sion despite switches in the bench ecosystem selection among

the degraded meadow, Achnatherum grassland, Stipa steppe or

Kobresia meadow. The independent variables of the model

were intercept, NDVI and I(degraded steppe). When the de-

graded steppe was set as the bench ecosystem, the slopes for

Kobresia meadow and Achnatherum grassland were different

from the other ecosystems. On the other hand, the selected

variables were intercept, NDVI, S(Kobresia meadow) and

S(Achnatherum) when the degraded steppe was chosen as

the bench ecosystem. As to SAVI, intercept, SAVI and S(de-

graded steppe) were selected as predictors when the degraded

meadow, Achnatherum grassland, Stipa steppe or Kobresia

meadow was set as the bench ecosystem. When the degraded

steppewas set as the bench ecosystem, the significant indepen-

dent variables were intercept, SAVI, S(Kobresia meadow),

S(Achnatherum) and I(degraded meadow). However, the larger

number of predictors led to lower prediction accuracy.

The sophisticated general models between AGB and VIUPD

had the highest R2 (0.893 and 0.905) and the lowest RMSEP

(33.18 and 30.15 gm�2) than those for NDVI and SAVI. Setting

Kobresiameadow as the bench ecosystem led to a higher R2 and

a lower RMSEP than setting any of the other four sites as the

bench ecosystem. When setting the degraded meadow as the

bench ecosystem, only S(Kobresia meadow) was included in

the model. If Kobresiameadowwas set as the bench ecosystem,

S(degraded meadow), S(Stipa), S(Achnatherum) and S(de-

graded steppe) were included as predictors in the model. How-

ever, this did not result in much improvement in prediction, as

indicated by the RMSEP values.

DISCUSSION

This study aimed to build a general model to estimate AGB

from hyperspectral measurements for the five major grassland

types on the Tibetan Plateau. Effectiveness of explanatory var-

iables for AGB estimation relies on the radiation absorption in

the red band by pigments such as chlorophyll and various

types of carotenoid and energy reflection as well as mesophyll

multiscattering in the NIR region. However, there were eco-

system type-dependent characteristics that added extra varia-

tion to these spectral features. These additional variations in

spectral features come from the differences in vegetation type,

fractional coverage of vegetation, phenological stage of plant,

amount of standing litter and soil type among these ecosys-

tems. First, as shown in Table 1, the dominant species of each

ecosystem differed from one another, which could cause dif-

ferences in canopy structure and result in multiscattering of

energy in the NIR band given same AGB value. Second, the

vegetation density showed large differences among various

ecosystems, as indicated by mean AGB ranging from 65

gm�2 for Stipa steppe to 232 gm�2 forKobresiameadow, leading

to great variations in reflectance, particularly in the red band,

as indicated in Fig. 2. Third, the large elevation span among

Table 4: results of linear regression between AGB and various

vegetation indices for each ecosystem separately

Ecosystems

Kobresia

meadow

Stipa

steppe

Degraded

steppe

Achnatherum

grassland

Degraded

meadow

RVI (R2) 0.79 0.68 0.58 0.82 0.79

P value <0.001 <0.001 <0.001 <0.001 <0.001

DVI (R2) 0.54 0.65 0.43 0.84 0.72

P value 0.003 0.002 0.008 <0.001 <0.001

NDVI (R2) 0.73 0.67 0.57 0.86 0.78

P value <0.001 0.001 0.001 <0.001 <0.001

SAVI (R2) 0.65 0.67 0.49 0.86 0.76

P value <0.001 0.001 0.004 <0.001 <0.001

MSAVI (R2) 0.64 0.67 0.49 0.86 0.75

P value <0.001 0.001 0.004 <0.001 <0.001

TVI (R2) 0.56 0.54 0.45 0.84 0.78

P value 0.002 0.006 0.006 <0.001 <0.001

EVI (R2) 0.64 0.67 0.46 0.85 0.76

P value <0.001 0.001 0.005 <0.001 <0.001

VIUPD (R2) 0.77 0.54 0.61 0.84 0.74

P value <0.001 0.006 <0.001 <0.001 <0.001

Table 5: simple linear regression models between each VI and

AGB for the five ecosystems using the data set for building model

and the predictions of each model using an independent test data

set

VI

Simple linear regression model (n = 45)

RMSEP (n = 15)P value R2

DVI <0.001 0.663 52.76

EVI <0.001 0.673 52.17

MSAVI <0.001 0.666 52.6

NDVI <0.001 0.68 50.69

RVI <0.001 0.499 60.45

SAVI <0.001 0.685 50.93

TVI <0.001 0.672 53.06

VIUPD <0.001 0.734 49.81

RMSEP (gm
�2) is the root mean square errors in prediction of the sim-

ple general model using the independent test data set.
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grassland types (Table 1) added additional differences in phe-

nological status among these ecosystems; this could cause dif-

ferences in pigment concentration and thus cause extra

variation in reflectance even for similar vegetation density

or AGB. There was no apparent difference in AGB level among

grassland types (Table 1), but evident difference in the mean

reflectance both in red and NIR bands between the degraded

steppe and Kobresia meadow. Compared with the degraded

steppe, the higher reflectance in the red band and lower reflec-

tance in the NIR band of Kobresiameadow were mainly caused

by differences in phenological status. When the spectra were

measured, Kobresiameadow was beginning to senesce and the

degraded steppe was still growing to seasonal climax. Finally,

variations in soil type or standing litter could also result in dra-

matic changes in reflectance (Numata et al. 2008). In this

study, there was obvious standing litter within the canopy

of Achnatherum splendens. The soil water availability and soil

type also showed significant variations among the different

ecosystems (Table 1). Soil water content is one of the main

sources of changes in spectral characteristics of soil (Huete

1988).

Differences in ecosystem characteristics could explain the

variations in the performances of each vegetation indices in

estimating AGB. Among the seven used narrow-band vegeta-

tion indices, RVI, DVI and NDVI are determined from only the

red and NIR reflectance bands. Among these three indices, RVI

andNDVI aremore sensitive to chlorophyll absorption, but can

be impactedmore easily by variations in soil characteristics and

standing litter. Therefore, for densely vegetated Kobresia

meadow and the degraded steppe, both NDVI and RVI showed

Table 6: Regression models between AGB and each VI including dummy variables

VI
Regression models with dummy variables

Bench ecosystem Selected predictors Coefficients P value

R2

RMSEP (gm�2)R2(adj)

NDVI Degraded meadowa Intercept �91.30 <0.001 0.833 36.97

NDVI 644.47

I(degraded steppe) �140.00 0.826

Degraded steppe Intercept -40.55 <0.001 0.805 42.34

NDVI 384.04

S(Kobresia meadow) 159.40 0.792

S(Achnatherum) 157.77

SAVI Degraded meadowb Intercept �102.86 <0.001 0.799 35.75

SAVI 951.87 0.790

S(degraded steppe) �258.92

Degraded steppe Intercept �72.27 <0.001 0.809 37.84

SAVI 635.92

S(Kobresia meadow) 248.93 0.792

S(Achnatherum) 204.60

I(degraded meadow) 39.96

VIUPD Degraded meadowc Intercept �29.10 <0.001 0.893 33.18

VIUPD 921.53 0.889

S(Kobresia meadow) 513.34

Kobresia meadow Intercept �13.5 <0.001 0.905 30.15

VIUPD 1357.49

S(degraded meadow �645.75

S(Stipa) �653.84 0.895

S(Achnatherum) �502.17

S(degraded steppe) �456.61

For regression with each VI, each of the five ecosystems was set as the bench ecosystem once to test the ecosystem type dependence of dummy

variables definition. RMSEP (gm
�2) is the root mean square errors in validation using the independent test data set. I(ecosystem type) and S(eco-

system type) are dummy variables to explain the effects of ecosystem type on the intercept and slope in the function of AGB–VI relationship. R2

(adj): adjusted R2. P value is the significance level in F-test.
a There was no difference in the regression model despite changes in the bench ecosystem setting among the four ecosystems: the degraded

meadow, Stipa steppe, Kobresia meadow and Achnatherum grassland.
b The same as (a), but for SAVI.
c There was no difference in the regressionmodel despite changes the bench ecosystem setting among the four ecosystems: the degradedmeadow,

Stipa steppe, the degraded steppe and Achnatherum grassland.
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higher R2 than the other five vegetation indices (Table 4). Fur-

thermore, compared with the degraded steppe, the lower chlo-

rophyll concentration due to senescence of the Kobresia

pygmaea resulted in the higher coefficients of determination

of the regression between AGB and NDVI or RVI. This was

caused by the difference in chlorophyll concentration due to

different phenological stages of the vegetation in these two

ecosystems, as indicated by the reflectance values in the red

and NIR regions in Fig. 2. As well known, high chlorophyll

concentration directly determines the saturation of red reflec-

tance and in turn the vegetation indices that are calculated

from only the red and NIR reflectance. Compared with the de-

graded steppe with similar vegetation density, the senescing

K.pygmaea of Kobresia meadow had lower chlorophyll concen-

tration and turned to alleviate saturation effect of red reflec-

tance, which resulted in the higher coefficients of

determination of regression between AGB and NDVI, RVI or

DVI. DVI is sensitive to variations in soil background and

standing litter at lower vegetation cover (<20%) and insensi-

tive to variations in vegetation at higher vegetation coverage

(>80%). Thus, DVI showed poorer performance than both

NDVI and RVI in this study. For Stipa steppe and the degraded

meadow, the close R2 values of all the three vegetation indices

resulted from lower variation in the soil background and lower

vegetation coverage, which could also explain why the three

soil-adjusted vegetation indices, SAVI, MSAVI and EVI did not

improve estimation of AGB compared with NDVI. SAVI,

MSAVI and EVI are considered to eliminate effects of soil back-

ground and tend to weaken vegetation signals. Therefore,

these indices showed poorer performance than NDVI and

RVI for densely vegetated Kobresia meadow and the degraded

steppe. Close to the area of the triangle defined by the green

peak, the chlorophyll absorptionminimum and the NIR shoul-

der in spectral spade, TVI could provide a good estimate at in-

termediate chlorophyll concentration but poor estimate at

both high and low chlorophyll concentration, as indicated

in Table 4. VIUPDwas reported to bemore sensitive than NDVI

and EVI at high vegetation density (LAI > 4, Zhang et al. 2007).

In this study, VIUPD gave the best estimate for the degraded

steppe and a good estimate for Kobresia meadow, Achnatherum

grassland and the degraded meadow. And for Stipa steppe, the

lowest chlorophyll concentration due to senescence was rea-

sonable for the poor performance for VIUPD because VIUPD in

this study is based on spectral reflectance of only pure green

vegetation and soil while Stipa purpurea was beginning to sen-

esce when its spectra was measured. In the Zhang et al. (2007)

study, VIUPD was calculated from decomposition with four

components includingwater, soil, green vegetation and yellow

vegetation and thus showed advantage over NDVI and EVI

when coping with samples including senescing leaves. There-

fore, yellow vegetation component should be included in case

there is senesced leaves in the canopy.

When the regressions were conducted for each ecosystem

separately, AGB of each ecosystem was estimated with high

accuracy. The sophisticated general models predicted AGB

with higher accuracy than the simple pooled ecosystemmodel

since the dummy variables could account for the ecosystem

type effects (Table 6). For example, the intercept in the relation

between NDVI and AGB for the degraded steppe was different

from the intercept for the other four ecosystems if the de-

graded meadow was set as the bench ecosystem (Table 6).

The relationship between NDVI and AGB for the degraded

steppe was

AGB= � 231:30+644:47NDVI: ð9Þ

Thus, an NDVI value <0.359 will result in negative AGB.

Therefore, the degraded steppe should be set as the bench eco-

system if AGB was to be estimated from NDVI.

The differences between the R2 values of the simple general

models and the sophisticated general models are the partial R2,

which were 0.125 for NDVI, 0.124 for SAVI and 0.171 for

VIUPD. The differences in prediction errors (RMSEP) were

8.35, 15.18 and 19.66 gm�2 for NDVI, SAVI and VIUPD, re-

spectively. The larger number of selected dummy variables

for VIUPD was reasonable for the more notable improvements

by the sophisticated general models compared to the simple

models.

CONCLUSIONS

AGB was estimated from narrow-band vegetation indices and

VIUPD calculated from in situ hyperspectral reflectance for five

typical grasslands on the Tibetan Plateau. RVI and NDVI

showed strong relationships with AGB for each ecosystem.

SAVI and MSAVI were found not suitable for estimating

AGB at high chlorophyll concentration but useful in estimat-

ing AGB for ecosystems with low and middle vegetation den-

sity. VIUPD could predict AGB reliably for both densely and

sparsely vegetated areas, but provided poor estimation for Sitpa

steppe. Though these vegetation indices could predict AGB for

each ecosystem separately, their relationshipswith AGB varied

due to the differences in characteristics among the five ecosys-

tems; this resulted in poorer performance of these explanatory

variables when AGB was estimated when all ecosystem were

pooled. Dummy variables could account for the effects of eco-

system type and significantly improve the predictions of AGB.

Regression models between AGB and VIUPD including

dummy variables for ecosystem types provided the best predic-

tion among all the candidate predictors, with a RMSEP of 30.15

gm2, compared with 159.2 gm�2 as the mean of observed AGB

in the test data set. These results demonstrate that in situ hyper-

spectral measurements and satellite/airborne remote sensing

techniques are a useful tool for estimating AGB of diverse

grassland and steppe ecosystems across large spatial scales. Us-

ing dummy variables is a practical way to remove variability in

AGB estimates due to the presence of multiple ecosystem

types.

Satellite/airborne remote sensing techniques are useful for

monitoring AGB dynamics because they provide spatial and
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historical information on AGB. Although this analysis was

based on in situ hyperspectral data, the proposed models for

AGB estimation could be directly used to estimate AGB from

satellite/airborne remotely sensed data when adequate spatial,

temporal and spectral resolution data are available from satel-

lite/airborne sensors and when strict atmospheric and topo-

graphical corrections are available. While there is considerable

heterogeneity in vegetation and soil characteristics across the Ti-

betan Plateau, the sampling area in this study is small compared

with the pixel size of the global operational vegetation indices

such as MODIS NDVI, SPOT NDVI and NOAA/AVHRR NDVI.

Moreover, the solar and viewing geometry and spectral resolu-

tions of these data also differ from the plot scale, field observa-

tion. Therefore, additional research on estimating AGB from

remotely sensed images with a high spatial resolution (from doz-

ens of centimeters to several meters) is required to refine our

ability to monitor AGB dynamics using these coarse resolution

NDVI data.
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