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Abstract. Aerosol characteristics can be measured with dif-

ferent instruments providing observations that are not triv-

ially inter-comparable. Extended Kalman Filter (EKF) is in-

troduced here as a method to estimate aerosol particle num-

ber size distributions from multiple simultaneous observa-

tions. The focus here in Part 1 of the work was on gen-

eral aspects of EKF in the context of Differential Mobil-

ity Particle Sizer (DMPS) measurements. Additional instru-

ments and their implementations are discussed in Part 2 of

the work. University of Helsinki Multi-component Aerosol

model (UHMA) is used to propagate the size distribution

in time. At each observation time (10 min apart), the time

evolved state is updated with the raw particle mobility distri-

butions, measured with two DMPS systems. EKF approach

was validated by calculating the bias and the standard devi-

ation for the estimated size distributions with respect to the

raw measurements. These were compared to corresponding

bias and standard deviation values for particle number size

distributions obtained from raw measurements by a inversion

of the instrument kernel matrix method. Despite the assump-

tions made in the EKF implementation, EKF was found to

be more accurate than the inversion of the instrument kernel

matrix in terms of bias, and compatible in terms of standard

deviation. Potential further improvements of the EKF imple-

mentation are discussed.

1 Introduction

Atmospheric aerosol particles have significant effects on vis-

ibility (Hand and Malm, 2007), cloud formation (McFiggans

et al., 2006), atmospheric radiative transfer (Myhre, 2009),

and public health (Pope and Dockery, 2006; Gurjar et al.,

2010). According to the Intergovermental Panel on Climate

Change (IPCC; Forster et al., 2007), uncertainties related to

the direct and indirect climate effects of aerosols are a sig-

nificant uncertainty factor in the climate change assessment.

Both particle size and chemical composition largely deter-

mine their climatic impacts, and are thus important to be ac-

curately characterized.

Atmospheric particles can cover several orders of magni-

tude in size, and contain various chemical species in inter-

nal and external mixtures. Consequently, there is no single

instrument capable of measuring the entire range of aerosol

quantities (McMurry, 2000). Rather, a number of instruments

are needed, each providing information on measurable quan-

tities, such as particle electrical mobility or light scatter-

ing intensity. In addition, mathematical techniques are often

needed to invert the raw observations into physical and/or

chemical particle properties (e.g., Kandlikar and Ramachan-

dran, 1999; Fiebig et al., 2005). Therefore, even though ob-

tained particle properties are related to each other, combining

them into a unique conceptual framework which accurately

describes the aerosol state has proven to be very challeng-

ing. For example, several algorithms have been developed to

determine the aerosol size distribution state starting from in-

dependently measured quantities from optical, aerodynamic

and electrical mobility detectors (Hand and Kreidenweis,

2002; Shen et al., 2002; Khlystov et al., 2010). However,

assumptions on aerosol particle shape, density or chemical

composition are needed to finally obtain the best possible

closure between the measurements. In this approach, the er-

rors introduced by each instrument are not easily accounted
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for and does not guarantee a physically justified continuity of

the obtained solution.

Here we will introduce data assimilation as an option

in aerosol physics to obtain a consistent state estimate

based on measured aerosol properties. Data assimilation is

a mathematical framework in which information from differ-

ent sources is blended to obtain a maximum-likelihood, or

minimum-variance, state estimate. It is widely used in geo-

sciences and engineering, for example in numerical weather

prediction (Lorenc, 1986; Rabier et al., 2000). In atmospheric

chemistry and aerosol modeling, data assimilation has been

applied in the context of air quality (Elbern et al., 2001), and

environmental monitoring (Dubovik et al., 2008; Chung et

al., 2010). Lately, it has also been used to improve aerosol

mass, aerosol optical depth or extinction profile measure-

ments (e.g. Lin et al., 2008; Tombette et al., 2009; Sekiyama

et al., 2010; Schutgens et al., 2010). In this article, data as-

similation is, as far as we know, for the first time introduced

as a potential unifying framework to estimate the particle

number size distribution from multiple in-situ measurements.

Data assimilation always incorporates time-evolution

models which carry the state estimate forward in time. Con-

sequently, the obtained state tends to maintain a temporal

continuity unlike a pure instrumental closure and is thereby

physically more justified. In the references above, these mod-

els were 3-dimensional chemical transport or general cir-

culation models. Focus in this article is on in-situ multi-

instrument aerosol measurements. The modeling framework

is thus a size segregated local 0-dimensional aerosol micro-

physical process model (a so-called “Eulerian box model”).

This enables very detailed time evolution of aerosol pro-

cesses but lacks the spatial aspects, similar to point-wise at-

mospheric aerosol measurements.

Here, in Part 1, Extended Kalman Filter (EKF) was only

applied with information from similar type of detectors with

different measurement ranges that slightly overlap. This lim-

ited approach is chosen for three reasons: it allows (1) to de-

tect how the general aspects of aerosol size distributions af-

fect the EKF implementation, (2) experimenting on how the

EKF implementation handles drastic changes in the aerosol

size distributions, and (3) examination of the statistical va-

lidity of the EKF implementation. The motivation for this

article is to demonstrate the applications of data assimila-

tion in interpretation of in-situ observations and to discuss

the strengths and weaknesses of this technique relative to in-

version of the instrument kernel matrix technique.

In Part 2 (Viskari et al., 2012), the EKF implementation

are extended to include information also from different in-

strument types simultaneously measuring different particle

size ranges.

2 The Kalman Filter

Kalman Filter (KF; Kalman, 1960) is a sequential state es-

timation method for linear dynamical systems. Extended

Kalman Filter (EKF; for text-book treatment, e.g., Kaipio

and Somersalo, 2004) is a standard extended version of KF

for non-linear systems. In both KF and EKF it is assumed that

observation and model errors are Gaussian with zero mean.

KF and EKF both proceed from one observation time to the

next in two alternating steps: time evolution and observation

updating. The difference between KF and EKF is that in EKF

the error propagation must be assumed to be dominated by

tangent-linear terms while in KF it is known to be linear.

The notation used here was defined in Ide et al. (1997).

At the time evolution updating, the prior state estimate, also

referred to as the background state estimate, xk at time k is

obtained by propagating in time the preceding state estimate

xa,k−1 at time k − 1 using

xk = M(xa,k−1) (1)

Here M is the non-linear time-evolution model. Note, that

the prior state estimate xk is the best estimate at time k be-

fore observations are available. The state estimate xa,k−1 at

time k −1, on the other hand, is a posterior estimate after the

observations are available.

The error covariance Bk of the prior state estimate xk is

obtained using

Bk = MBa,k−1MT
+ Q. (2)

The term MBa,k−1MT corresponds to the tangent-linear

time-evolution of the error covariance. Note, that M is

tangent-linear with respect to M . The model error term Q

represents the errors due to model discrepancies and system

noise, excluded from M. It should be noted that for EKF,

Eq. (2) is the approximated Bk as the non-linear evolution of

the Bk−1 is not accounted for.

At the observation updating, the posterior state estimate

xa,k at time k is obtained by optimally combining the prior

state estimate xk and the observations yk at time k using

xa,k = xk + Kk (yk − H(xk)) (3)

Here H is a possibly non-linear observation operator, which

produces a simulated observation corresponding to the prior

state. The observation minus model counterpart term is

called innovation. The Kalman gain Kk is defined as

Kk = BkHT
[

HBkHT
+ Ok

]−1
. (4)

Here Ok is an observation error covariance matrix and H is

a tangent-linear version of H . The Kalman gain optimally

weights observations and prior state based on their respec-

tive accuracies, and spreads the innovation to the different
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elements of the vector xa,k . The error covariance of the state

estimate xa,k is

Ba,k =

[

I − HT Kk

]

Bk. (5)

The error variances of the posterior state estimate are smaller

than in the prior due to introduction of new information con-

tained in the observations.

In essence, EKF estimates the new state by correcting the

time-evolved state with the recent observations. The relative

accuracies of the observations and prior state determine the

impact of the observation. More weight is laid upon the more

accurate information sources. In EKF, there are two implicit

information sources, on top of the observations: the prior

state, and the model. The prior state carries the information

of all the past observations forward in time. The evolution

model encapsulates our physical and chemical insight of the

system in a compact way, and the observation operator char-

acterizes the measurement event.

3 Information sources

3.1 Observations

Particle number mobility distributions were measured using a

Differential Mobility Particle Sizer (DMPS; Hoppel, 1978).

The DMPS classifies particles according to their electrical

mobility as a function of voltage, which can further be re-

lated to the characteristic particle size. A Differential Mobil-

ity Analyser (DMA) is used for particle classification and a

Condensation Particle Counter (CPC) for subsequent parti-

cle counting. The smallest, 3 to 40 nm, particles were mea-

sured using a DMPS consisting of a 10.9 cm long Vienna

type DMA (Winklmayr et al., 1991) and a CPC model 3025

manufactured by the TSI company (Stolzenburg and Mc-

Murry, 1991). The bigger, 10–1000 nm particles, were mea-

sured using a DMPS consisting of a 28 cm long Vienna type

DMA and a TSI CPC model 3010 (e.g. Quant et al., 1992).

The two DMPS systems were operated in parallel with an

overlapping size range from 10 to 40 nm. By changing the

voltage step-by-step in the DMAs, a full particle distribution

was obtained every 10 min. Prior to the DMPS instruments,

a radioactive bipolar neutralizer was used in order to obtain

a steady-state charge distribution. The charging probability

of the particles at different sizes was calculated according

to Wiedensohler (1988). Details of the DMPS measurement

system used are presented in Aalto et al. (2001).

The mathematical DMPS data inversion from raw obser-

vations to the geophysical quantities is performed as follows.

The particle number size distribution x is obtained as a solu-

tion of the equation

yr = Rx (6)

In the equation yr is the vector of raw measurements and R is

an instrument specific kernel matrix. Essentially, R takes into

account the particle charging probabilities (Wiedensohler,

1988), transfer functions of each DMPS channel (Stolzen-

burg, 1988) and particle size dependent losses, such as the

calibration based CPC detection efficiencies and diffusion

losses (Aalto et al., 2001). Different approaches (e.g. Strat-

mann and Wiedensohler, 1996; Stolzenburg and McMurry,

2008; Stolzenburg, 1988) for modeling and handling of the

DMA transfer functions can be used in the DMPS inversion,

but they lead to qualitatively similar results. Here, the theo-

retical transfer functions taking into account the diffusional

broadening in the DMA (Stolzenburg, 1988) were utilized.

The inversion of the instrument kernel matrix solution was

validated in Wiedensohler et al. (2012).

The solution for x in Eq. (6) is determined through the

following steps: (i) the size distribution diameters are calcu-

lated as transfer function peak diameters for DMPS 1 and 2.

The diameters for the overlapping size range are taken from

DMPS 1 only. (ii) Transfer functions for both DMPSs are

integrated separately for this diameter grid and combined

as a transfer matrix R. (iii) The best solution for concen-

trations is found using a least-square nonnegative pseudo-

inverse method where solutions in the overlapping region are

averaged from the two information sources.

The DMPS measurements deployed here are a part of

the EUSAAR network, thereby following the network qual-

ity standards (Wiedensohler et al., 2012). It is important to

note that the DMPS measures each channel at a separate

time instant over a 10 min measurement period. The parti-

cle size distribution, however, evolves during this period and

we assume here that the observations at different channels

are made simultaneously at the nominal observation time.

3.2 The time-evolution model

The University of Helsinki Multi-component Aerosol model

(UHMA) is a size-segregating aerosol dynamical box model

of the state evolution of a particle size distribution. The

model is discussed in more detail in Korhonen et al. (2004).

Essentially UHMA contains the major microphysical atmo-

spheric aerosol processes. The activation scheme (Sihto et

al., 2006; Kulmala et al., 2006) and the adjusted Fuchs-

Sutugin method (Fuchs and Sutugin, 1971; Lehtinen and

Kulmala, 2003) were used to determine nucleation and con-

densation rates, respectively. The coagulation kernel is calcu-

lated with the Fuchs equation (Fuchs, 1964). The dry deposi-

tion velocity is determined according to Rannik et al. (2003)

for 10–500 nm and extrapolated to particles smaller than

10 nm. Here, the model is discretized such that the size dis-

tribution is presented with 50 size bins, evenly spaced ac-

cording to the logarithm of particle diameter. The smallest

(largest) size bin is chosen to be 1.5 nm (2 µm) in diame-

ter. For this study, the UHMA model variables are the parti-

cle number and volume concentrations in each size bin. The

new particle formation is due to the nucleation process. Sud-

den changes in the particle size distribution due to external
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causes, such as precipitation, air mass change or external in-

flux of particles, are not included in the UHMA.

The model is initialized with a measured particle number

size distribution. The initial particle composition is approx-

imated as 40 % organic compound and 60 % sulphuric acid.

After each observation update step, the model re-initialized

with an estimated particle number size distribution. Ambient

vapour concentrations used in the model are based on mea-

sured vapour concentrations.

A tangent-linear version of the UHMA model required by

Eq. (2) was presented and validated in Viskari et al. (2008).

3.3 The observation operator for the DMPS instrument

The observation operator H computes the observed quantity

corresponding to the model state, that is, the particle num-

ber concentration within a size bin. In the model output, the

number concentration is given for discrete particle diame-

ters according to the model discretization. The DMPS mea-

sures electrical mobility for a defined voltage which can be

converted to a characteristic diameter corresponding to ge-

ometrical diameter for a spherical particle. The observation

operator for DMPS HDMPS is therefore

HDMPS = RP (7)

where an interpolation matrix P interpolates the model out-

put to the characteristic diameters of the DMPS, i.e., interpo-

lates from the model grid to the instrument grid. The instru-

ment kernel matrix R, same in Eq. (6), converts the interpo-

lated number concentrations at the characteristic diameters

to number concentrations at the electrical mobilities of cor-

responding voltages. The kernel matrix used here is constant

in time.

The actual interpolation was performed with a cumula-

tive distribution function (CDF) of the number concentra-

tion. The CDF for each model size bin is obtained by a sim-

ple summation of number concentrations in the model grid.

Then, 4th order Lagrange polynomials are used to interpolate

the CDF values to the characteristic diameters of the instru-

ment. Finally, particle number concentrations in the instru-

ment grid are computed by differentiating the CDF. We note

that both matrices in Eq. (7) are linear, and thus H is also a

linear.

The observation operator was tested and validated by com-

paring raw observations to the values computed by H from a

size distribution obtained with the inversion of the instrument

kernel matrix.

4 Implementation of EKF

4.1 Time evolution updating

The non-linear UHMA model is used to propagate the state

estimate xa,k−1 from time k − 1 to k. The tangent-linear

UHMA model, used in the error covariance evolution, has

been shown to be valid for time ranges up to about 30 min

(Viskari et al., 2008). As the observation intervals are 10 min

in this study and the simulations are re-initialized after each

interval, the tangent-linear hypothesis is considered valid in

this study. Auxiliary measurements of ambient sulphuric acid

and non-volatile organic vapour concentrations were used to

support the simulation (Petäjä et al., 2009; Paasonen et al.,

2010). The ambient vapour concentrations are required by

the UHMA model for the intermediate times between mea-

surements and these were computed from the measurements

using linear interpolation. A volatile organic vapour was in-

cluded in the simulation with concentrations parametrized

from the non-volatile organic vapour concentrations accord-

ing to Vuollekoski et al. (2010). Ambient atmospheric condi-

tions (e.g., temperature, pressure) were specified as constant

values due to the model being not particularly sensitive to

these values.

According to Eq. (2), the error covariance Bk of the prior

state is a sum of the time-evolved error covariance Ba,k and

the error model error Q. There are no tools available to prop-

erly estimate the model error term, which was therefore ne-

glected here. This simplifying assumption, though, does have

adverse effects. In EKF, the posterior error covariance de-

creases at each observation updating. If the error source is

neglected, the decrease due to observations may exceed the

increase due to time-evolution of the error covariance. As a

consequence, the state error covariance may become gradu-

ally smaller and smaller, as was the case here. This is both

unrealistic and undesirable: observations will have less and

less weight, and the filter eventually diverges from the ob-

servations. This problem is common for both KF and EKF

applications and is known as filter divergence (Whitaker and

Hamill, 2002). Proper inclusion of the model error would in-

crease the prior state error covariance.

In absence of a sound method to account for the model

error, an ad hoc solution is developed. Here, we scale the

prior state error variances before the observation updating. A

minimum relative error was chosen for the background error.

If the relative error value of the background error is smaller

than this limit, the relative background error in that particle

size is increased to the set limit, preventing the background

error variance from becoming too small. By choosing this

limit to be larger than the relative error of the observations,

it is ensured that EKF will not trust the model information

more than the observations. The downside of the approach is

that the chosen limit will not accurately represent the relative

errors of the background state. During the scaling, the back-

ground error covariances are adjusted so that the background

error correlations remain unchanged.

Next, we will elaborate the definition of the observation

error in the context of EKF. Let us consider the difference be-

tween observations and the model state in observation space

(Eq. 3). Obviously,
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εk = yk − Hxk (8)

where εk is the perceived mismatch, or “error” at time k. In

addition to the background state error, it is composed of three

components: (i) the observations contain instrument noise,

(ii) the xk is not representative of all the phenomena con-

tained in the observations, and (iii) the observation opera-

tor cannot exactly reproduce the instrument response. These

three components form the observation error. It is possible

to estimate the instrument error before forming the EKF,

but representativeness and observation operator errors need

statistical material, i.e. innovation sequences produced with

EKF (Dee and Da Silva, 1999).

In this study, we assume the observation error to be relative

to the measured number concentration, specifically 15 % for

DMPS I and 12 % for DMPS II (P. Aalto, personal commu-

nication, 2012). We also assume that the observations errors

are uncorrelated. In actuality the observation operator does

cause observation error correlation, but those covariances are

generally small enough for the observation error to be con-

sidered uncorrelated. The prior state error is scaled such that

the relative error for any particle size in the measurement

range cannot be smaller than 20 %. This specification ensures

that the observations will always be weighted more than the

background state in the posterior state estimate. Refinements

of this aspect are left for future work.

4.2 Observation updating

The observation updating is implemented without major sim-

plifications. In order to compute the Kalman gain, Singu-

lar Value Decomposition (SVD) was applied for the matrix

inversion. Additionally, in order to avoid numerical insta-

bilities, both the observation error covariance and the prior

state error covariance in the observation space were pre-

conditioned so that their error standard deviations were di-

vided by the corresponding observed number concentration,

i.e., the errors are relative to the corresponding observed val-

ues.

The errors in the small particle sizes, where majority of

particles are newly formed, and in particle sizes, where the

total surface area is large and thus the influence on the am-

bient vapour concentration is the strongest, i.e., where the

condensation sink values are high, are strongly correlated

(Viskari et al., 2010). At the beginning of a nucleation event,

there is usually a large difference between the background

and observed state, which due to the strong correlation cause

a large deviation in the estimated number concentration for

the particles in the size range of the highest condensation sink

value. This deviation, in turn, reinforces the initial difference

in the smaller particle sizes during the observation updating

via the background error covariance. The EKF implementa-

tion ultimately becomes unstable. To avoid this, the “length

scale” of the prior state error covariance was artificially re-

Fig. 1. The ambient vapour concentrations for sulphuric acid

(blue), non-volatile organic compound (red) and volatile organic

compound (green) as applied in the EKF implementation for 7

May 2007.

stricted at the observation update to 15 closest size bins in

maximum. In other words, a large innovation can only affect

the size distribution to a maximum distance of 15 size bins.

This restriction is known as variable localization (Hamill et

al., 2001).

No observation quality control was applied, except that

negative observations were discarded as erroneous during the

observation updating. The main reason for this omission is

that the inversion of the instrument kernel matrix, our bench-

mark, has no built-in quality control either. It is important to

note, though, that we assume that the observation error is al-

ways symmetric. However, due negative number concentra-

tions are impossible, for very small measured number con-

centration values the error cannot be symmetric. We do not

further focus on this here, as when the error becomes asym-

metric is beyond the scope of this paper.

5 Results and analysis

We report here a case study utilizing measurements from 7

May 2007 from the SMEAR II-station in Hyytiälä, Finland

(Hari and Kulmala, 2005). The measurements were a part of

the EUCAARI project (Kulmala et al., 2009). The date was

chosen because the measurements show different dynamical

events, such as a strong nucleation event, and non-dynamical

events, such as an apparent change in the air mass. The am-

bient sulphuric acid and non-volatile organic vapour concen-

trations used in the EKF implementation were also measured

and are presented in Fig. 1.

Applicability of EKF in estimating particle size distri-

butions was tested as follows. A size distribution obtained

by interpolating the inversion of the instrument kernel ma-

trix method for 00:00 local winter time (LT) to the model

grid was used as an initial state for EKF. The error standard

www.atmos-chem-phys.net/12/11767/2012/ Atmos. Chem. Phys., 12, 11767–11779, 2012
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Fig. 2a. Particle size distribution obtained with EKF (xEKF) on 7

May 2007 from SMEAR II in Hyytiälä, Finland. Note that the parti-

cle number concentrations are only presented from 106 to 109 m−3.

The color bar values are given as exponents of 10. The particle

size distribution divided in to time windows I (00:00–09:00 LT), II

(09:00–17:00 LT), III (17:00–19:00 LT) and IV (19:00–23:00 LT).

The black vertical lines represent the time division.

Fig. 2b. As in (a), but for inversion of the instrument kernel matrix

(xINV).

deviation of the initial state was set to 30 % of the initial num-

ber concentration and uncorrelated errors were assumed. The

relative large initial error was chosen so that the observations

weight relatively more in EKF at the very beginning.

The particle size distributions obtained with EKF (de-

noted as xEKF) and direct inversion of the instrument spe-

cific kernel matrix (cf. Eq. 6; xINV) are presented from 00:00

to 23:00 LT for 7 May 2007 in Fig. 2. Solutions for xEKF

(Fig. 2a) and xINV (Fig. 2b) are qualitatively close to each

other, although xEKF appears smoother compared to xINV.

The total number concentrations for particles larger than

3 nm for both size distributions are presented in Fig. 2c. The

differences in the total number concentrations are partially

due to the diameters for xEKF and xINV not being the same,

Fig. 2c. The total number concentrations for particles larger than

3 nm for xEKF (solid; blue) and xINV (dashed; green).

which makes it difficult to set the lower limit for xEKF when

calculating the total number concentration as the lowest di-

ameter of xINV. At approximately 15:00 and 17:00 LT, the

total number concentration is significantly larger for xEKF

than for xINV.

Validation based on independent observations was not

considered feasible due to lack of reliable independent obser-

vations. Instead, in order to better understand the characteris-

tics of the state estimate xEKF and to test self-consistency of

the implementation, we compared it to the DMPS raw obser-

vations y. A residual r = y −HxEKF has to meet two condi-

tions: (i) the bias and standard deviation of r has to be in the

equal or better than the residual computed from the inversion

of the instrument kernel matrix, (ii) large values of r are ei-

ther due to measurement noise or special circumstances (e.g.,

precipitation, change of air mass). It is important to note that

the focus in this article is not the inversion solution and we

do not address how well the inversion solution estimates that

state. Being the standard method to determine the particle

number size distribution, the solution xINV obtained by in-

version of the instrument kernel matrix was chosen as a ref-

erence for the comparison.

In order to quantitatively analyze the results, both xEKF

and xINV were converted with the observation operator to

the DMPS measurement channels at every measurement

time (i.e., every 10 min) and compared to the raw DMPS

measurements. The bias (the systematic difference between

the estimated size distribution and the raw measurements;

Fig. 3a) and standard deviation (the random difference be-

tween the estimated size distribution and the raw measure-

ments; Fig. 3b) are shown for both solutions over the time

window 00:00 to 23:00 LT. The bias for xEKF is largest in the

size range of 10 to 40 nm, which is the area where DMPS I

and II overlap (hereafter called the overlap region). The bias

of the xEKF with respect to the DMPS I and II are roughly

equal but of opposite sign in this region. Our interpretation

Atmos. Chem. Phys., 12, 11767–11779, 2012 www.atmos-chem-phys.net/12/11767/2012/
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Fig. 3a. The bias of xEKF (blue) and xINV (red) as compared to the

raw measurements from DMPS I (solid) and II (dashed) on 7 May

2007. The bias is on the y-axis [cm−3] and particle diameter on the

x-axis [m]. Note that the results are presented in the characteristic

diameters.

is that the biases are a consequence of the instruments not

completely agreeing in the overlap region. For the rest of the

size range, there is a relatively small positive bias for DMPS

I at particle sizes 8 to 11 nm and a small negative bias at 50 to

200 nm for DMPS II. At other particle sizes the bias is virtu-

ally zero. In comparison, the bias for xINV is generally larger

than for xEKF. In the overlap region, the bias of xINV is pos-

itive for both DMPS I and II. In addition, for xINV there are

large positive biases at particle sizes 60 to 80 nm and 600 to

800 nm and a large negative bias at 80 to 500 nm.

The standard deviation (Fig. 3b) is approximately as large

for xEKF and xINV in the smallest (below 10 nm) and largest

(above 300 nm) particle sizes. With respect to DMPS I, the

two solutions are of about equal quality. With respect to

DMPS II, xEKF has a smaller (larger) standard deviation than

xINV for particles smaller (larger) than 40 nm. Especially,

at 50 to 200 nm, xEKF has notably larger standard deviation

than xINV.

To better understand these results, the data set is divided

into four specific time windows: 00:00–09:00 LT (the aerosol

system state is quasi-stationary), 09:00–17:00 LT (a nucle-

ation event affects the size distribution), 17:00–19:00 LT (a

sudden change in the size distribution), and 19:00–23:00 LT

(a possible recovery phase). These correspond to time win-

dows I, II, III and IV (Fig. 2). The time separation is only

to facilitate the data analysis; it allows a more detailed data

analysis, but due to shorter time windows, there are less data

in each window which somewhat decreases the statistical re-

liability.

5.1 Common aspects for all time windows

The bias and standard deviation for each time window are

presented in Fig. 4. Both quantities are generally large in the

overlap region. This is related to the fact that the measure-

Fig. 3b. As in (a), but for the standard deviation.

ments of DMPS I and II are different in this region. In all

the cases the bias of xEKF is smaller than the bias of xINV,

especially in I and IV. It is our interpretation that the xINV is

not the optimal solution in the overlap region. This indicates

that xEKF performs very well in the overlap region, and this

is very promising regarding the multi-instrument retrievals.

For xINV, the bias with respect to DMPS I changes be-

tween time windows, whereas for DMPS II it remains ap-

proximately the same. There are positive biases at 60 to

80 nm and 600 to 800 nm ranges and a negative bias at 80

to 500 nm. The standard deviation for xINV is very small

outside the overlap region, except in time window I, where

there are large values in 80 to 300 nm range. In contrast,

the standard deviation of xEKF is significant for large par-

ticles outside the overlap region. This is mainly because of

(1) large random errors in observations which are filtered out

from xEKF but included in xINV, and (2) a sudden change in

state for which xINV readily adjusts to, unlike xEKF which

carries forward also the past information. These aspects will

be discussed below.

5.2 Specific aspects

5.2.1 Sudden changes in the system state

The bias of xEKF outside the overlap region is mainly due

to the “memory” of EKF, which is caused by inclusion of

the prior state estimate (and thereby past observations) into

the solution. This implies a reduced sensitivity to sudden

changes in observations. It tends to filter out measurement

noise and produce dynamically consistent solutions from one

observation time to another and from one particle size to the

next. However, there may appear sudden changes in the mea-

sured size distribution by external causes (i.e., atmospheric

processes not included in the 0-dimensional evolution model)

and the system may continue to evolve from the new state. In

this kind of a step-wise evolution, the “memory” of the previ-

ous observations delays the adjustment of xEKF to new obser-

vations. In such cases, xEKF is biased, and due to the gradual
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11774 T. Viskari et al.: Estimation of aerosol particle number distributions with Kalman Filtering

Fig. 4. The bias and standard deviation of xEKF (blue) and xINV (red) as compared to the raw measurements from DMPS I (solid) and II

(dashes) for time windows I to IV. The bias and standard deviation are on the y-axis [cm−3] and particle diameter on the x-axisis [m]. Note

that the results are presented for the characteristic diameters.

adjustment, this bias is a function of time. Additionally, this

“drift” appears both in the bias and in the standard devia-

tion as a time dependent bias cannot be statistically removed

from the data when determining standard deviation. The re-

sults presented here, especially for time window III, include

this phenomenon. Note how the bias of xEKF at 40 to 200 nm

range (Fig. 4, time window III) coincides with the large stan-

dard deviation. The sudden change in the system state in time

window III is possibly due to an air mass change.

This phenomenon also explains the large standard devia-

tion of xEKF in time window IV. Figure 2b reveals how the

number concentration at 50 to 300 nm range suddenly in-

creases and then decreases again shortly after. Because of the

two sudden changes of opposite sign within the time window

IV, there are two short-term biases of opposite signs within

the time window. They average each other out, which leads

to the small bias but large standard deviation of xEKF. Better

error estimation might alleviate this feature of our EKF im-

plementation, especially in case we have over-estimated the

observation errors and thereby increased the relative weight

of the prior estimate. The drift is also partially responsible

for the standard deviation for particles smaller than 20 nm

in time window II, as the system adjusts to the nucleation

event. We remind that our estimates of observation versus

background errors are very preliminary.

The impact of sudden changes in the system state tends to

be smaller in the overlap region. This is due to the fact that

two independent instruments measure the same particle sizes,

and provide mutually supporting evidence of the change in

the number concentration. This accelerates the adjustment of

EKF to the changes.

5.2.2 Measurement noise

Raw measurements contain random noise due to a variety

of reasons. It is characteristic to EKF to filter out this noise

whereas the inversion of the instrument kernel matrix tech-

nique aims to closely fit the solution to the measurements.

We illustrate this point as follows. Figure 5 presents raw mea-

surements from DMPS I and DMPS II for three consecutive

measurement times (12:00, 12:10, and 12:20 LT). The mea-

surements reveal large number concentration changes in par-

ticle sizes of about 10 nm and 100 nm, whereas in other par-

ticle sizes, the measurements remain far more stable. This

implies that the air mass was broadly the same over this half

an hour period. It is impossible to definitely partition these

changes to measurement errors, temporary particle emis-

sions, or other effects. In this particular case, xINV closely

follows the measurements (not shown) while xEKF is, as ex-

pected, far more conservative and smoother. Therefore, the

standard deviation of xEKF with respect to raw measurements

would be larger than of xINV.

The measurement noise is present in all time windows.

In time window II, at about 15:00 to 15:30 LT, the mea-

surements for DMPS I and II in the overlap region disagree
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significantly due to random noise (not shown). In this case,

xINV systematically underestimates both measured particle

number concentrations, while xEKF is a compromise between

the two measurements. This leads to larger values in the over-

lap region for xEKF than for xINV, with xEKF being closer to

the observed state. There are several possible reasons for the

large bias for xINV in the overlap region, but the exact reason

is difficult to determine as the focus here was not the features

of the inverse solution. Also in time window II, the signifi-

cant standard deviation in xEKF in particle sizes above 30 nm,

and some of the standard deviation in particles smaller than

20 nm, is due to the measurement noise. The same is also true

in time window I for particles smaller than 20 nm and at 100

to 200 nm range.

We conclude by noting that our analysis covered about two

months of EUCAARI measurements in April–May 2007. A

simultaneous analysis of several days is difficult due to the

bias being time-sensitive and the differences between the ob-

served and estimated size distribution values depending on

the absolute particle number concentration. To provide com-

parison with the results here, the bias and standard deviation

for six days (2, 9, 13, 16, 18 and 28 April 2007) are presented

in Fig. 6. These days were chosen because they contained no-

ticeable events in the particle size distributions. Common to

all days in Fig. 6 is: (i) in the overlapping measurement range

of 10–40 nm the bias for xEKF is smaller than for xINV, (ii) in

particle diameters of 50–200 nm the standard deviation for

xEKF is noticeably larger than for xINV, and (iii) for particles

smaller than 10 nm the statistics for xEKF and xINV are near

each other despite the large changes in those particle sizes

due to nucleation events. Detailed results presented here for

7 May 2007, though, are representative of the entire period

regarding the general behaviour of measurement inversion

techniques, including those results shown in Fig. 6. In par-

ticular, they high-light the merits and challenges of statistical

state estimation in dynamical systems by the EKF technique.

6 Discussion

The initial results concerning the application of EKF in es-

timation of aerosol particle size distributions are promising,

but also reveal limitations of the method and raise questions

about their interpretation. First, the encouraging results and

opportunities for EKF are summarized below.

i. Enhanced accuracy: despite the approximations made

in this implementation of EKF, the results are promis-

ing. Especially the treatment of the overlap region of

DMPS I and II is very good, and promising regarding

the multi-instrument retrievals. Improvements in micro-

physical modeling, for instance, will directly improve

the accuracy of the solution. In the so-called controlled

chamber experiments (Sipilä et al., 2010; Brus at al.,

2010) the ambient variables and conditions are well

known. Measurements from such experiments provide

Fig. 5. Observations from 12:00 (blue), 12:10 (red), and 12:20 LT

(green) on 7 May 2010 from SMEAR II in Hyytiälä, Finland for

DMPS I (solid) and DMPS II (dashed). Observed number concen-

trations are on the y-axis [cm−3] and particle diameter on the x-axis

[m]. Note that the observations are presented in the characteristic

diameters.

useful test data and opportunities to improve error esti-

mation.

ii. Multi-instrument retrievals: there are no principal ob-

stacles to include new measurements in the EKF inver-

sion, as long as an observation operator and an estimate

of observation error variance can be provided. The focus

here has been on a single variable, the particle number

concentration. However, it is possible in principle to ex-

tend EKF to simultaneous estimation of a multi-variate

state, for example particle number concentration, par-

ticle composition, and ambient vapour concentration.

The included measurements can be from size sensitive-

instruments (e.g. DMPS, Optical Particle Counter or

Aerosol Particle Sizer) and integral sensors (e.g. Neph-

elometer or Surface Area Monitor).

iii. Constraints: the EKF constraints the variable state esti-

mate with the previous state and observations over the

measurement range based on the error covariances. This

reduces the impact of random noise and thus smoothens

out the state estimate. It can also fill in data gaps due to

for example missing measurements.

iv. Applicable to any model: although in this study the

UHMA model was used, EKF is not limited to any par-

ticular model. More appropriate models and processes

for different cases or environments can be used to prop-

agate the state estimate. Improvements in the modeling

of the state evolution also improve the inversion results

obtained with EKF.

v. Benefitting from improved error estimation: the inclu-

sion of proper error covariance for background size dis-

tribution and observations should increase the accuracy

of the EKF implementation. This could enable more op-

timal solution during changes in air mass, for instance.
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Fig. 6. The bias and standard deviation of xEKF (blue) and xINV (red) as compared to the raw measurements from DMPS I (solid) and II

(dashes) for 6 days in April. The bias and standard deviation are on the y-axis [cm−3] and particle diameter on the x-axis [m]. Note that the

results are presented for the characteristic diameters.

vi. Additional information on the system: EKF provides

a minimum-variance state estimate, and also the as-

sociated error covariance. This aspect is missing from

the inversion of the instrument kernel matrix. In addi-

tion as the state estimate is based on the continuity of

the system, it is possible to use the innovation term to

determine when the system can be considered tempo-

rally continuous and when the system experiences large

changes in comparison to the previous measurements.

vii. Insensitivity to the initial state: EKF does not appear

to be very sensitive for the choice of initial state or the

associated error covariance at the very beginning of the

filtering.

The challenges concerning the current implementation of

EKF are listed below.

I. Discontinuities in measurements: in EKF, the back-

ground state is a prediction from the previous observa-

tion time. The limitation is that the state evolution only

includes the dynamical processes of the model. When

the system state suddenly changes due to external rea-

sons, there will be a gradual adjustment toward the new

state, lagged by the past information. Such situations

are related to, for instance, air mass changes, precipita-

tion, or particle influx from external sources. We hope

to improve on this in the future by detecting the air mass

change either by incorporating information from bound-

ary conditions (e.g. wind and temperature) or by deter-

mining a statistically significant change in the aerosol

number size distribution.

II. Model microphysics: the time evolution updating bene-

fits of an accurate and universal forward model, in our

case the UHMA model. There are numerous ways to de-

scribe microphysical processes to different conditions

and environments, but some parametrizations are not

necessary applicable to all situations. Accuracy of EKF

is sensitive to the choices made regarding modelling of

different processes, but it is very hard to quantify this

sensitivity.

III. Model input data: external quantities (i.e., boundary

conditions) influence the evolution of resolved state

variables. Regarding particle number size distribution,

for instance, the ambient vapour concentrations signif-

icantly affect nucleation and condensation processes.

In this article, measured ambient vapour concentrations

were used as boundary conditions. These are, however,

not always available.

IV. Error estimates: EKF relies on estimates of the obser-

vation and background error covariances. In this article,

the errors were not estimated but specified in a manner
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which is very likely to be sub-optimal. We intend to im-

prove our uncertainty approximations.

V. Non-Gaussian error: EKF assumes that the associated

error is Gaussian. However for very small number con-

centration values, the associated error cannot be con-

sidered Gaussian as the number concentrations cannot

be negative. Further information on the error estimates

is needed in order to determine when the error can no

longer be considered Gaussian.

7 Conclusions

Extended Kalman Filter (EKF) was introduced to estimate

particle number size distributions in a box-model context us-

ing observations from a DMPS instrument. Motivation for

the research lies in the fact that it is generally hard to esti-

mate size distributions from multiple observations, even of

the same measured variable, using an inversion of the instru-

ment kernel matrix technique. Here, a limited EKF imple-

mentation was applied to estimate the particle number size

distribution by adjusting the time-evolved background state

with observations from two DMPSs, which measure on dif-

ferent but partly overlapping particle size ranges. This al-

lowed focus on how the general aspects of aerosol physics

impact the EKF implementation.

The self-consistencies of the two solutions, EKF and an

inversion of the instrument kernel matrix, were tested by cal-

culating bias and standard deviation for the estimated size

distributions with respect to the raw measurements. This was

possible by applying the observation operators that are used

in EKF to compute the observation counterpart of the model

state vector. Despite the assumptions made in the EKF im-

plementation, EKF was found to be more accurate than the

inversion of the instrument kernel matrix method in terms of

bias, and compatible in terms of standard deviation. The anal-

ysis covered about two months of EUCAARI measurements

in April–May 2007. The detailed results were presented for

7 May 2007 which was selected as a representative example

of the entire period regarding the overall behaviour of these

inversion techniques.

Generally, the limited EKF implementation was found to

be satisfactory, and justifies the more extensive EKF imple-

mentation examined in Part 2 of this work. Potential further

improvements of the EKF implementation include more ac-

curate estimation of error covariance of the measurements

and the background state.
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M., Hoell, C., O’Dowd, C. D., Karlsson, H., Hansson, H.-C.,
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