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Abstract

This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using 

an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the 

proposed algorithm has been developed for accurate attitude estimation during dynamic 

conditions, in which external acceleration is present. Although external acceleration is the main 

source of the attitude estimation error and despite the need for its accurate estimation in many 

applications, this problem that can be critical for the attitude estimation has not been addressed 

explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of 

the attitude and external acceleration. Experimental tests were conducted to verify the performance 

of the proposed algorithm in various dynamic condition settings and to provide further insight into 

the variations in the estimation accuracy. Furthermore, two different approaches for dealing with 

the estimation problem during dynamic conditions were compared, i.e., threshold-based switching 

approach versus acceleration model-based approach. Based on an external acceleration model, the 

proposed algorithm was capable of estimating accurate attitudes and external accelerations for 

short accelerated periods, showing its high effectiveness during short-term fast dynamic 

conditions. Contrariwise, when the testing condition involved prolonged high external 

accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as 

the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the 

estimation error, regaining its high estimation accuracy.
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Accelerometer; attitude estimation; external acceleration; gyroscope; inertial sensor; Kalman filter 
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I. Introduction

Inertial, such as accelerometers and gyroscopes, are widely used in many applications, and 

the number of applications is increasing exponentially as these inertial sensors continually 

shrink in size and cost through the advent of the microelectromechanical-systems 

technology [1]. In particular, the use of inertial sensors has already become popular in 

ambulatory applications such as detection of unconstrained walking [2] and pedestrian 

localization [3], [4]. In biomedical applications, miniature inertial sensors can work as 

“wearable sensors” that are attached unobtrusively and noninvasively to the body or part of 

clothing in order to monitor and track a wearer’s motion outside a specialized motion 

capture laboratory [5]–[7].

Orientation estimation using inertial sensors is an important research theme since it provides 

the angular position information to complement the primary sensor signals (i.e., angular 

velocities from gyroscopes and linear accelerations from accelerometers). In fact, most of 

the previous works concerning inertial sensing-based orientation estimation have focused on 

3-D orientations by combining the inertial sensor with a magnetometer, which forms an 

attitude and heading reference system (AHRS) [8]–[11]. In an AHRS, the attitude implies 

the roll and pitch of the Euler angles, while the heading implies yaw. In this configuration, 

the magnetometer provides the heading direction information by measuring the local 

magnetic field vector as the accelerometer alone cannot sense the rotation about the vertical 

axis [12]. However, many applications such as human balance (e.g., [13]) and vehicle 

stability control (e.g., [14]) problems require only the attitude states and not the heading 

states. In these applications, in which inertial sensors could be employed to measuring 

human falls or vehicle rollovers, the focus lies strictly on the estimation of the tilt angles 

with respect to the vertical axis (i.e., attitudes) in the presence of the gravity. This paper 

specifically deals with the attitude estimation problem using a six-axis inertial sensor 

comprised of a triaxial accelerometer and a triaxial gyroscope only.

The two underlying concepts (UC) behind the inertial sensing-based attitude estimation 

problem are as follows.

1. UC1: The accelerometer measurement can provide the fixed vertical reference, 

which is the gravitational acceleration. Note that the accelerometer signal is 

dominated by gravity only during static or quasi-static conditions (i.e., it is 

kinematic condition dependent).

2. UC2: The angular velocity from the gyroscope can be integrated to obtain the 

orientation or the attitude. Note that the gyroscope signal is dominated by the 

angular velocity regardless of kinematic conditions (i.e., it is kinematic condition 

independent).

However, these underlying concepts are faced with the following signal processing 

difficulties (DC).

1. DC1: During dynamic conditions, the accelerometer is sensitive to not only 

gravity but also the external acceleration of the object/body that the sensor is 

attached to. Therefore, the accelerometer signal is the summation of the 
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gravitational acceleration and the external acceleration. However, since the 

accelerometer reading is inherently expressed with respect to the sensor 

reference frame, the gravity component with respect to the sensor frame changes 

according to the changes in the sensor orientation. Thus, one cannot distinguish 

the gravitational acceleration from the external acceleration.

2. DC2: When the gyroscope signal is integrated, its measurement errors are also 

integrated and cause boundless orientation drift errors.

Therefore, a proper fusion of the accelerometer and gyroscope signals is needed to overcome 

the aforementioned difficulties. In particular, in order to obtain high estimation accuracy 

during dynamic conditions, DC1 needs to be properly addressed by the estimation 

algorithm.

In the literature, approaches to deal with DC1 can be categorized into the following two: 1) 

threshold-based switching approach and 2) acceleration model-based approach. First, the 

threshold-based switching approach that is more popular in the literature uses conditional 

switching of the measurement signals’ weights when dynamic conditions are detected, e.g., 

when the norm of accelerometer output is deviated from a pre-defined threshold near the 

gravity acceleration (9.81 m/s2). For example, in [15]–[17], smaller weights are assigned to 

the accelerometer output in comparison to those assigned to the gyro output in dynamic 

conditions by increasing the corresponding measurement noise covariances of their Kalman 

filters (KFs). In [11], an adaptive method is proposed, where the direction of external 

acceleration is estimated from the KF residual. This leads to weights being assigned to those 

accelerometer outputs that are affected by the external acceleration only, whereas the 

weights for the unaffected accelerometer outputs are kept constant during the estimation. 

Second, the acceleration model-based approach involves the use of an external acceleration 

model without relying on the conditional switching. One was presented in [18] and used in 

[9] in the same way when the algorithm was extended for the 3-D orientation estimation. In 

this paper, the proposed algorithm is based on the modification of this acceleration model 

concept. Although the aforementioned two approaches are conceptually different from each 

other and may present different pros and cons, they have not been compared explicitly in 

terms of the performance characteristics of each approach.

One important by-product of the orientation estimation using an inertial sensor is the 

estimation of the external acceleration from the accelerometer signal by subtracting the 

gravitational acceleration. It should be noted that the attitude information is sufficient for 

this subtraction and does not require the full 3-D orientation. This is essential if one wishes 

to estimate velocities and positions through the integration of the external acceleration in 

applications such as fall detection [19], [20]. However, although external acceleration is the 

main source of the attitude estimation error and despite the need for its accurate estimation 

in many applications, the problem of estimating the external acceleration during the 

orientation estimation has not been explicitly discussed in the literature. Furthermore, none 

of the previous works shows the performance in orientation estimation over various dynamic 

conditions.
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This paper proposes a new KF-based attitude estimation algorithm using a six-axis inertial 

sensor. In particular, the proposed algorithm has been developed to perform during the 

dynamic conditions in which external accelerations are present. Accordingly, experiments 

are carried out to evaluate the accuracy of the proposed algorithm in estimating not only 

attitudes but also external accelerations over a much wider range of dynamic conditions than 

previously considered, including severely perturbed conditions. The expansion of the 

experimental testing conditions provides further insight into the variations in the estimation 

accuracy of inertial sensors and their capabilities/limitations with respect to varying 

operating conditions. Furthermore, the properties of the proposed acceleration model-based 

approach are discussed in comparison to those of the threshold-based switching approach.

II. Method

A. Problem Definition

The coordinate transformation of a 3 × 1 vector x between the sensor frame S and the 

inertial frame I is

(1)

where the left superscripts I and S of x’s imply that the corresponding vectors are expressed 

in the inertial and sensor frame coordinates, respectively, and  is the rotation matrix of 

the sensor frame S with respect to the inertial frame I. Henceforth, the rotation matrix  is 

simply denoted as R for convenience. The rotation matrix R contains the three unit column 

vectors of the inertial coordinate system expressed in the sensor coordinate system as

(2)

Using the conventional Z – Y – X Euler angles, R can be expressed as

(3)

where α (yaw), β (pitch), and γ (roll) are the rotation angles about the Z-, Y -, and X-axes, 

respectively. Note that the last row of the matrix R of (3) (i.e., SZ) is expressed in terms of 

only γ and β, without α. Therefore, roll and pitch can be calculated only using SZ (= [SZ1 
SZ2 SZ3]T) as follows:
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(4)

Next, considering Ig (the gravity vector with respect to the inertial frame) is g × IZ where g 

is 9.8 m/s2, Sg (the gravity vector with respect to the sensor frame) can be expressed in terms 

of SZ as

(5)

Therefore, SZ is the sufficient information to calculate the attitude (i.e., roll and pitch) and 

also to compensate for the gravity effect in the accelerometer signal (i.e., not requiring a 3-D 

orientation such as R). Hence, the purpose of the proposed KF is to estimate SZ.

B. Algorithm Description

Sensor Modeling—Sensor signals from the gyroscope (G) and the accelerometer (A) are 

modeled, respectively, as follows:

(6a)

(6b)

where ω is the angular velocity, a is the external acceleration, and n’s are the measurement 

noises that are assumed to be uncorrelated and zero-mean white Gaussian. Note that every 

sensor exhibits bias errors that include not only constant offset errors but also moving bias 

errors. The bias errors are a highly complex function of environmental conditions, 

particularly to the ambient temperature. However, once the sensor signals have been 

stabilized following a few minutes of sensor warm-up time, the biases change very slowly, 

and their effect is minimal. Therefore, the proposed algorithm does not take biases into 

consideration. In (6b), the external acceleration Sa is modeled as a first-order low-pass 

filtered white noise process as in [18], i.e.,

(7)

where ca is a dimensionless constant between 0 and 1 that determines the cutoff frequency 

and εt is the time-varying error of the acceleration process model.
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KF Design—In the proposed algorithm, a linear KF is used, which can be defined by the 

following process and measurement models [21]:

(8a)

(8b)

where x is the state vector, z is the measurement vector, Φ is the state transition matrix, H is 

the observation matrix, and w and v are the white Gaussian process and measurement noises, 

respectively. Since the purpose of our KF is to estimate SZ, the state vector is simply defined 

as x = SZ.

First, the process model is based on the gyro measurement under UC2. Hence, the 

orientation can be found by considering a first-order approximation of a strapdown 

integration step

(9)

where Δt is the sampling time interval and the 3 × 3 matrix ω̃ denotes a skew-symmetric 

matrix function of the vector ω, the so-called cross-product matrix (i.e., ãb = a × b). The 

specific form of (9) for SZ is

(10)

Since the ideal angular velocity ω in (10) is unavailable in practice due to the measurement 

noise, (10) needs to be expressed using the actual gyro output yG(= ω + nG) which leads to

(11)

The derivations from (10) to (11) can be found in the Appendix. From (11), the transition 

matrix Φ t−1 and the process noise wt−1 can be defined as follows:

(12)

(13)
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The process noise covariance matrix Qk−1 is then defined by

(14)

where E is the expectation operator. Using (13), Qt−1 can be redefined as

(15)

ΣG in (15) is the covariance matrix of the gyro’s measurement noise and is defined as 

. ΣG is set equal to  where  is obtained by assuming that the gyro noise 

variance is equal in the x-, y-, and z-directions when the same type of gyro is used for all 

three axes.

Second, the measurement model is based on the accelerometer measurement under UC1. 

Although the role of the measurement model is to correct the estimation error introduced 

during the time propagation (associated with DC2) in the process model, the measurement 

model should properly address DC1 as well, in order to achieve high estimation accuracy 

during dynamic conditions. Therefore, the external acceleration model in (7) is inserted into 

the accelerometer model in (6b) along with (5). For this purpose, let us define the error of 

the predicted acceleration as

(16)

where the minus superscript denotes the a priori (or predicted) estimate while the plus 

superscript in (17) below denotes the a posteriori estimate after the filter correction. In (16), 

the predicted external acceleration of the current time step  is  which is available 

from the previous step. Then, (6b) can be rewritten as

(17)

Note that the left side of (17) represents the subtraction of the external acceleration from the 

accelerometer signal in order to keep UC1 valid even in the dynamic conditions so that it 

becomes capable of handling DC1. From (17), the measurement vector zt, the observation 

matrix H, and the measurement noise vt in the measurement model of (8b) are

(18)

Lee et al. Page 7

IEEE Trans Instrum Meas. Author manuscript; available in PMC 2012 September 11.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



(19)

(20)

The measurement noise covariance matrix Mt is defined by

(21)

Since  is uncorrelated to nA, (21) can be divided into

(22)

where Σacc is the covariance matrix of the acceleration model error and defined as 

 and ΣA is the covariance matrix of the accelerometer’s measurement 

noise and defined as . Now, using (16) and then assuming that  is 

uncorrelated to Sat, i.e.,  (by taking  and considering that a 

white noise process is serially uncorrelated), and that, on average, the expectation of external 

acceleration is zero, i.e., , ∑acc can be simplified as

(23)

Note that, since Σacc is time varying and cannot be analytically obtained, it is approximated 

to have only diagonal elements where the square of the vector norm of  is evenly 

distributed to each diagonal elements, i.e., . If we compare (17) 

with the corresponding equation during static conditions, i.e., yA,t = gSZt + nA, the 

covariance matrix Σacc plays a key role in compensating for the effect of external 

acceleration  by increasing Mt. Next, ΣA is set as  (similarly with ΣG) where 

is the accelerometer noise variance.

Once the process and measurement models are defined as the above, the procedure of the 

proposed linear KF can be summarized as follows.

1. Compute the a priori state estimate
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(24)

2. Compute the a priori error covariance matrix

(25)

3. Compute the Kalman gain

(26)

4. Compute the a posteriori state estimate

(27)

5. Compute the a posteriori error covariance matrix

(28)

Since Step 4) does not preserve the unit-norm property of , it needs to be normalized, 

i.e., , which is subsequently redefined as . In Steps 3)–5), a scalar matrix 

H reduces the overall computational cost. Once  is estimated, the external acceleration 

 is obtained by

(29)

The overall structure of the proposed algorithm is illustrated in Fig. 1.

III. Experimental Results

A. Test Setup

For verification of the proposed algorithm, which was implemented using C programming, 

an MTx inertial/magnetic sensor (from Xsens Technologies B.V., Netherlands) that includes 

a triaxial gyroscope and a triaxial accelerometer was used. It provided measurement inputs 

to the proposed algorithm at a 100-Hz sampling rate (i.e., Δt = 0.01 s). Also, in order to 

check the orientation estimation accuracy, VisualEyez VZ3000 3-D optical tracking system 

(from Phoenix Technologies Inc., Canada) was used with the same sampling rate. For taking 

simultaneous measurements, a plastic right triangle ruler (with a 14-cm hypotenuse) was 

mounted on top of the MTx sensor, and then, three LED markers from the VisualEyez 
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system were attached to each vertex of the ruler using double-sided adhesive tapes. These 

three markers form a plane that defines a unique 3-D orientation with respect to the optical 

tracker’s predefined reference frame. This 3-D orientation was used to obtain the reference 

attitude vector SZref. Next, the reference external acceleration Saref was obtained as yA − 

gSZref due to the unavailability of nA.

B. Various Test Conditions and Estimation Modes

To study the proposed algorithm’s performance under various dynamic conditions, three 

different tests in terms of the magnitude and duration of the external accelerations were 

performed. All tests involved rotating the sensor manually in a random manner by hand. Test 

A (related to Fig. 2) was carried out with slow movements: the averaged magnitude of the 

reference external acceleration, , of around 0.40 m/s2 with a maximum of 1.83 m/s2. 

Test B (related to Figs. 3 and 4) was performed with a considerable amount of external 

accelerations:  of around 3.06 m/s2 with a maximum of 16.71 m/s2. In this test, the 

sensor experienced two external accelerations, first for 2.4 s during 1.3–3.7 s followed by 

1.6 s of rest and then for 2.5 s during 5.3–7.8 s [see Fig. 3(a)]. Test C (related to Figs. 5 and 

6) involved much higher external acceleration magnitudes than Test B:  of around 

6.29 m/s2 with a maximum of 37.22 m/s2. The sensor was subjected to the major external 

accelerations, first for 8.0 s during 7.5–15.5 s followed by 1.4 s of rest, then for 5.8 s during 

16.9–22.7 s followed by 0.3 s of rest, and, lastly, for 2.4 s during 23.0–25.4 s [see Fig. 5(a)]. 

Therefore, in comparison to Test B, Test C was performed not only with a higher magnitude 

of external acceleration but also with longer acceleration and shorter resting periods. In 

addition, the sensor experienced repetitive and abrupt acceleration changes in terms of the 

direction, which makes the condition of Test C highly severe in relation to the algorithm 

providing accurate estimations. Note that the purpose of Test C is to see the limitation of the 

estimation capability of the proposed algorithm.

For each of the aforementioned tests, the orientation was estimated using three different 

estimation modes. First, Mode 1 is the proposed KF algorithm which adopts the acceleration 

model to deal with DC1. In the proposed KF, there are three parameters that need to be set: 

the gyroscope noise variance , the accelerometer noise variance , and the external 

acceleration model-related constant ca.  and  were set to 10−4 rad2/s2 and 10−4 m2/s4, 

respectively, which were obtained from static measurements with the sensor lying still on a 

floor. ca was set to 0.1, which was experimentally chosen by testing a range of trial and error 

values of ca that gives satisfactory results for the algorithm. Second, Mode 2 is based on the 

assumption of static accelerometer measurement without explicitly considering DC1, i.e., yA 

= Sg + nA instead of (6b). Accordingly, (18), (20), and (22) were replaced with zt = yA,t, vt = 

nA, and Mt = ΣA, respectively. Also, (7), (16), and (17) were not used in Mode 2. The rest of 

its procedure follows that of Mode 1. Third, Mode 3 is based on the aforementioned 

threshold-based switching scheme, which can be implemented by adding the following 

equation to the procedure of Mode 2:
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(30)

where εA is the threshold for the magnitude of the accelerometer output and was set to 0.2 

m/s2. This value was chosen since it produced the best estimation results in our tests (which 

will be shown in Table III). The same value was also chosen in the previous works [11] and 

[15]. It should be noted that, even during dynamic conditions, the norm of the accelerometer 

output, ||yA||, can still lie within the range designated as the static condition (i.e., [g − εA, g + 

εA]). An example of this case would be when the accelerometer quickly alternates between 

acceleration and deceleration [see Fig. 3(b)], resulting in ||yA|| passing in and out of the 

range. Therefore, in order to avoid erroneous switches from the dynamic phase (where ΣA,t 

= ∞) to the static phase (where ) in such a case, the switching condition ||yA|| − 

g| ≤ εA should be assured for a certain amount of time, i.e., nΔt where n was set to four. The 

only difference of Mode 3 from Mode 2 is the addition of the threshold-based conditional 

equation (30).

C. Estimation Results

In Test A, all of the three modes produced almost the same results (see Table I). Since Test 

A essentially simulates a quasi-static condition, UC1 was satisfied without encountering 

DC1, and even Mode 2 was able to provide accurate attitude estimations (see Fig. 2).

In Test B, the static accelerometer measurement assumption of UC1 was no longer valid 

because of the presence of large external acceleration magnitudes. Accordingly, Mode 2 

produced significant estimation errors [see Fig. 4(f)–(j)], which confirms that accurate 

attitude and external acceleration estimations during dynamic conditions cannot be achieved 

without a proper consideration of DC1. However, due to the explicit consideration of the 

external acceleration in the procedures, Modes 1 and 3 were able to provide accurate attitude 

and external acceleration estimates (see Fig. 4(a)–(e) and (k)–(o), respectively). Although 

the estimation accuracy from Mode 3 was slightly better than that from Mode 1, the 

difference was almost negligible (i.e., < 1° in angular position).

In Test C, which involves the most severe condition (see Fig. 5(a) for the magnitude of the 

applied external acceleration), Mode 1 experienced some degree of gradually increasing 

estimation errors during prolonged severely excited periods (see Fig. 5(b) for the magnitude 

of the estimated external acceleration error). However, when the sensor returned to the 

quasi-static condition (e.g., between 15.5–16.9 s and 22.7–23.0 s), the estimation accuracy 

was recovered gradually but quickly. Due to the prolonged exposure to the accelerated 

conditions as well as the acceleration changes that were applied in a repetitive fashion, as 

expected, Test C produced the largest estimation errors among the three results from Mode 1 

(see Fig. 6 for each estimation error). As expected, the estimation result from Mode 2 was 

severely deviated from the reference [see Fig. 5(c)]. Similarly with Mode 1, Mode 3 also 

experienced the gradually increasing estimation errors during the excited periods. However, 

while the estimation error from Mode 1 was decreased to zero in a gradual fashion when the 
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static conditions reappeared, the decrease was more abrupt for Mode 3 when the static 

condition in (30) was satisfied [see Fig. 5(d)]. Clearly, this is due to the conditional 

switching of the threshold-based method in Mode 3. However, because of the setting of the 

small threshold value and the requirement of some number of successive satisfactions of ||

yA|| − g| ≤ εA in (30), the onset of switching occurred later than that of Mode 1’s estimation 

recovery. In terms of Test C’s estimation accuracy, Mode 1 showed a slightly higher 

accuracy than Mode 3 (i.e., about 2° in angular position and 0.3 m/s2 in acceleration). This 

difference was mainly caused by the estimation performance after 25.4 s [see Fig. 5(d) in 

comparison to Fig. 5(b)]. Mode 3 was not able to enter the static phase via switching for the 

drift correction at around 25.4 s (when the motion condition became the static condition for 

a short time) and remained in the dynamic phase.

IV. Discussion

A. Mode 1

In Mode 1 (the proposed algorithm), the insertion of the external acceleration model in (7) 

plays a critical role in achieving the required high estimation accuracy during dynamic 

conditions. In the acceleration model, the constant coefficient ca is the only tuning parameter 

that can lead to variations in the estimation performance. Note that the effect of ca on 

estimation varies for each test conditions (see Table II). In Test A, a small ca such as 0.001 

worked well, while a large ca such as 1 caused relatively large estimation errors. On the 

other hand, in Test B, the estimation error showed the opposite tendency to that of Test A. 

Basically, ca adjusts how much the accelerometer signal affects the estimation. When ca is 

small, zt in (18) and Mt in (22) are close to yA,t and ΣA, respectively. If zt and Mt become 

yA,t and ΣA by setting ca = 0, the algorithm essentially becomes Mode 2, which is based on 

the assumption of static accelerometer measurement. Therefore, a smaller ca puts more 

weight on the accelerometer signal rather than the gyro signal. Inversely, a larger ca makes 

the algorithm rely more on the gyro signal. Fig. 7 shows representative examples of the 

effect of ca on the estimation. Since Test A was performed in a quasi-static condition, ca = 

0.001 produced accurate estimation [see Fig. 7(b)] while the estimation with ca = 1 exhibited 

a drift [see Fig. 7(c)] similar to the case when only the gyro signal was integrated without 

using the accelerometer signal [see Fig. 7(a)]. Contrariwise, since Test B was performed 

with short-period external acceleration, which required the gyro signal, the estimation with 

ca = 0.001 [see Fig. 7(e)] produced the similar result as in Mode 2 [see Fig. 7(d)], while the 

estimation with ca = 1 showed accurate results [see Fig. 7(f)]. Note that the accurate 

estimation from ca = 1 in Test B was only possible since the test duration of Test B was short 

(i.e., 10 s). In Test C, even with the optimally selected coefficient value (i.e., ca = 0.2), the 

estimation error gradually increased until the sensor returned to the static conditions as 

shown in Fig. 6. This accumulation of the errors can be explained from the requirement for 

the external acceleration of the previous time step  in (17). This implies that the 

measurement model is not only based on the current sensor measurement but also takes into 

account the previously estimated value. Hence, there is a propagation of errors in the 

estimation, indicating that the estimation during a prolonged accelerated condition may not 

be able to maintain an acceptable accuracy level. With regard to the comparison of the 

external acceleration model in our method to that in [18], although the model itself 
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represented in (7) is similar in form with the counterpart in [18], the detailed implementation 

of the model in each KF is different due to the entirely different KF structure. For example, 

in [18], the covariance matrix of εt in (7) is treated as constant while that of our method is 

dealt with a time-varying matrix as described in (23).

B. Mode 3 and Its Comparison With Mode 1

In Mode 3, there are two tuning parameters: the threshold εA and the time-related constant n 

in (30). First, regarding the threshold, a smaller threshold value (implying a narrower 

bandwidth for satisfying the static condition) decreases the chance for the drift to be 

corrected by the accelerometer signal, which is undesirable. However, it can avoid the 

chance for the estimation to be seriously affected by the perturbed accelerometer signal 

before the phase is switched from the dynamic phase to the static phase, which is desirable. 

By considering the noise level in the accelerometer measurement, εA needs to be larger than 

σA, which is the standard deviation of ||yA||(practically, larger than 3σA that corresponds to 

0.03 m/s2 in our accelerometer). Second, the requirement to assign some number (n) of 

successive satisfactions of |||yA|| − g| ≤ εA in (30) to enter (or switch back to) the static phase 

is important in avoiding a false entrance to the static phase during dynamic conditions. Such 

a case is typical when ||yA|| passes through the gravity level due to the fast direction change 

in the acceleration. For the given sampling rate, the number of samples that can be collected 

within the range [g − εA, g + εA] during the passing depends on the width of the range 

determined by the threshold. Therefore, the selection of n is related to the selection of εA, 

i.e., the larger εA requires the larger n. However, the larger n (implying more number of 

successive satisfactions of |||yA|| − g| ≤ εA) reduces the chance for the drift to be corrected by 

the accelerometer signal when actual static conditions are encountered by delaying the phase 

switching. Table III shows the attitude estimation results for different values of εA’s and the 

corresponding n’s. Trial and error was used to manually select the latter values to provide 

the best estimations. Although Test A was not sensitive to the setting of εA due to the quasi-

static motion condition, the estimation of Test B was severely deteriorated when εA was set 

to a large value as it was already affected by the perturbed accelerometer signal before the 

phase switching.

It is important to note that we do not make claims that the proposed method (Mode 1) is 

superior to Mode 3 in terms of the estimation accuracy based on the result of Test C in Table 

I since a different threshold in Mode 3 could produce a similar degree of accuracy in Test C. 

For example, in the case of εA = 1.0 m/s2 in Table III, Mode 3 entered the static phase for 

the drift correction at around 25.4 s in contrast to the estimation with εA = 0.2 m/s2 shown in 

Fig. 5(d). Also, a different test scenario may yield different accuracies for Modes 1 and 3. 

However, one particular problem with the threshold-based switching approach of Mode 3 is 

that the proper selection of εA and n is very tricky in practice because each test scenario may 

require different settings, while the estimation performance is highly sensitive to such 

settings. Note that, in the proposed acceleration model-based approach of Mode 1, a 

properly determined ca can work generally in most scenarios, which makes Mode 1 

relatively easy to use in practice. Furthermore, the threshold-based switching approach often 

produces discontinuity or abrupt changes in the estimation at the time of the phase 
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switching, depending on the set level of the threshold. This problem can be readily observed 

in Fig. 5(d).

C. Orientation Representation

In terms of the orientation representation, Euler angles, quaternion, and rotation matrix (also 

known as the direction cosine matrix) are the most common. First, the Euler angles are 

conceptually intuitive and have only three parameters that are the minimal number to 

represent a 3-D orientation. In case of the attitude estimation problem (i.e., 2-D orientation 

estimation), only two of the parameters (i.e., roll and pitch) are needed to be set as state 

variables (e.g., [22] and [23]). However, the singularity issue of the Euler angles hinders the 

estimation when full range rotations are involved. Second, the quaternion is very effective 

due to its singularity-free aspect and less computing time (e.g., does not require any 

trigonometric transformations to construct rotation matrices) and thus can arguably be 

considered as the most popular representation for 3-D orientation estimation (e.g., [8], [10], 

[11], and [15]). However, when it is used for the attitude estimation, all four parameters of 

the quaternion still need to be employed, which makes it not as efficient as when it is used 

for the 3-D orientation estimation. Last, since the rotation matrix has nine parameters, it is 

less popular than the Euler angles and the quaternion in the 3-D orientation estimation 

problem. However, the aforementioned advantage of the quaternion over the rotation matrix 

in the 3-D orientation problem (i.e., less number of parameters) does not apply for the 2-D 

attitude estimation problem. In fact, with respect to the attitude estimation, the rotation 

matrix can be considered as the best choice because only three parameters of the rotation 

matrix (composing one unit axis vector) can be used for the estimation without the 

singularity issue of the Euler angles. Therefore, the proposed algorithm uses the unit axis 

vector (SZ) for attitude representation in order to achieve both computational efficiency and 

nonsingularity.

D. Limitation and Future Work

As mentioned previously, the external acceleration estimation is a by-product of the attitude 

estimation problem. Accordingly, the estimation error of external acceleration (i.e., 

) is related to that of attitude (i.e., ). Using (29) and (6b), 

 can be expressed in terms of , i.e., . By considering the fact 

that SZ is a unit vector and ignoring nA, it can be noticed that each component of 

cannot exceed 2g in magnitude, regardless of the value of Sa and yA (i.e., the acceleration 

estimation error is bounded). In fact, during dynamic conditions, an exact orientation 

estimation requires an exact external acceleration estimation and vice versa, which are not 

possible in practice. In other words, any approaches that deal with the DC1 issue will exhibit 

some inherent limitations in this regard. Therefore, when we apply an inertial sensor to 

estimate attitude and/or external acceleration of a body or an object, the operating kinematic 

conditions must be considered in term of the duration and severity of the external 

accelerations in order to justify the accuracy and validity of the resulting estimation 

performance. For example, a moving automotive vehicle may generate significant and 

continuous accelerations, which will cause significant estimation errors if the estimation 
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algorithm is not given a chance to correct the accumulated errors from time to time. 

However, typical human motions pertain to slow motion conditions or only intermittent fast 

motion conditions, and thus, the inertial sensing-based estimations become more reliable and 

suitable for such applications. In order to increase the feasibility of applying the proposed 

method in various conditions, a potential future research direction would be to add an 

inference step or estimation scheme for learning the parameter (i.e., the constant coefficient 

ca) on the fly as the data come from the sensors in real time.

V. Conclusion

In this paper, a KF-based attitude estimation method has been presented. The proposed 

algorithm was evaluated under various conditions to investigate the variations in the 

estimation performance with respect to the attitude and also external acceleration. 

Furthermore, two different approaches, acceleration model-based (Mode 1) versus threshold-

based switching (Mode 3), that deal with dynamic conditions were discussed. Based on the 

external acceleration model, the proposed algorithm is capable of providing accurate 

estimates of attitude and external accelerations for short accelerated periods (e.g., a few 

seconds, which can vary depending on the sensor performance and the duration and severity 

of accelerations). When the testing condition involved prolonged high external accelerations, 

the proposed algorithm exhibited gradually increasing errors. However, as soon as the 

condition returned to static or quasi-static conditions, the algorithm was able to stabilize the 

estimation error, which tended to zero mean and a small variance. In terms of the estimation 

accuracy, due to the variations in accuracy with respect to varying operating conditions, this 

paper does not claim the superiority of the proposed model-based approach over the 

threshold-based approach. However, in terms of the stability and practicality, the proposed 

method may be advantageous due to its continuous estimation capability and simpler 

parameter settings, respectively.
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Appendix A

By applying  and  subsequently, (10) 

becomes

(31)

If we replace ω with yG − nG according to (6a) and use , (31) becomes

(32)

After expanding the right side of (32) and applying ñG,t−1
SZt−1 = −SZ̃t−1nG,t−1 to the last 

term, (32) becomes (11).
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Fig. 1. 

Overview of the proposed algorithm’s structure.
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Fig. 2. 

Results of Test A—(solid lines) attitude (i.e., roll and pitch) estimation errors with respect to 

(dashed lines) the reference attitude from (a and b) Mode 1 and (c and d) Mode 2.
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Fig. 3. 

Magnitudes of (a) the external acceleration and (b) the accelerometer signal of Test B. In (b), 

two horizontal dashed lines centered by the solid line represent the lower and upper bounds 

of the gravity range with the threshold of 0.2 m/s2.
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Fig. 4. 

Results of Test B—(solid lines) estimated attitudes and external accelerations in comparison 

to (dashed lines) the references from (a–e) Mode 1, (f–j) Mode 2, and (k–o) Mode 3. The 

first two rows are the roll and pitch, and the last three rows are the x, y, and z components of 

the external accelerations.
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Fig. 5. 

Results of Test C—(a) magnitude of external acceleration. (b–d) are the magnitudes (m/s2) 

of the estimated external acceleration errors from Modes 1–3, respectively.
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Fig. 6. 

Results of Test C from Mode 1—(a) magnitude of external acceleration. (b–f) (Solid lines) 

Attitude and external acceleration estimation errors with respect to (dashed lines) the 

references.
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Fig. 7. 

(Solid lines) Roll estimations in comparison to (dashed lines) the references of (a–c) Test A 

and (d–f) Test B. (a) When only the gyro signal was integrated without using the 

accelerometer signal. (b and e) When ca = 0.001 in Mode 1. (c and f) When ca = 1 in Mode 

1. (d) From Mode 2.
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