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Abstract. Due to costs, size and mass, commercially available inertial navigation
systems are not suitable for small, autonomous flying vehicles like ALEX and
other UAVs. In contrast, by using modern MEMS (or of similar class) sensors,
hardware costs, size and mass can be reduced substantially. However, low-cost
sensors often suffer from inaccuracy and are influenced greatly by temperature
variation. In this work, such inaccuracies and dependence on temperature variations
have been studied, modelled and compensated in order to reach an adequate quality
of measurements for the estimation of attitudes. This has been done applying a
Kalman Filter-based sensor fusion algorithm that combines sensor models, error
parameters and estimation scheme. Attitude estimation from low-cost sensors is
first realized in a Matlab/Simulink platform and then implemented on hardware by
programming the micro controller and validated. The accuracies of the estimated
roll and pitch attitudes are well within the stipulated accuracy level of±5◦ for
the ALEX. However, the estimation of heading, which is mainly derived from the
magnetometer readings, seems to be influenced greatly by the variation in local
magnetic field.

Keywords. Estimation of attitudes; sensor fusion algorithm; inertial navigation
systems; Kalman Filters low-cost sensors; miniatured inertial platform.

1. Introduction

Inertial measurement units (IMUs) have the ability to compute attitude in dynamic environ-
ments. When combined with GPS, the IMU/GPS system can provide critical information
needed for navigation. A traditional IMU system typically consists of a set of spinning-mass
vertical gyros that provide analog outputs. They are usually heavy and expensive to maintain.
Furthermore, due to its analog nature, the traditional IMU requires data conversion when
interfacing to a sophisticated digital navigation system, thereby increasing the overall system
cost and complexity. High performance inertial-grade IMUs used in avionics systems exhibit

A list of symbols and abbreviations is given at the end of the paper
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superior performance specifications but, because of the high cost of such units, their use in
many applications is prohibitive.

A combination of low-cost MEMS sensors and digital signal processing techniques can
provide an inexpensive and compact-sized adaptable alternative to existing IMUs. Closely
coupled integration of the sensors, data acquisition elements and a Kalman Filter-based fusion
algorithm allow the MEMS IMU to provide an accurate representation of the attitude of
flight vehicles with performance comparable to older technology IMUs. Furthermore, the
digital architecture’s flexible interface allows easy integration of MEMS IMUs into most
applications.

This paper describes how attitudes are derived accurately from the low-cost sensor platform
using Kalman Filter-based sensor fusion algorithm.

2. Objective and approach

At the Institute of Flight Systems of the German Aerospace Center (DLR), two small and
extensively instrumented vehicles ALEX-I and ALEX-II (shown in figure 1) were developed
and flight tested in order to identify the dynamic behaviour of a parafoil-load system and to
investigate guidance, navigation and control (GNC) concepts for autonomous landing (Doherr
& Jann 1997; Jannet al1999; Jann 2001).

As a spin-off of this project, a small sensor platform called MIP (miniaturized inertial
platform) shown in figure 2 and consisting of small, low-cost accelerometers, rate gyros,
magnetometers and a temperature transducer was developed. The main objectives of this
small, low-cost MIP is to reduce the overall weight of the ALEX and to prove the low-cost
sensor technology for GNC application for small aerial vehicles like ALEX and other UAVs.

For ALEX, as data from the GPS receiver are available, deriving the position information
from this small sensor box is not that critical. In contrast, attitudes are required to be computed
from the output of the three angular rate sensors in the platform using the strapdown algorithm.
Due to integration, measurement errors are accumulated, if no corrections are applied and the
Kalman Filter provides this correction in a very optimal way.

Figure 1. ALEX in flight.
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Figure 2. (a)MIP. (b) Inside view of MIP.(c) HC12 Compact board.(d) Connection diagram of MIP.

As independent measurements, the accelerometers provide roll and pitch attitude reference
using gravity. The magnetometer called V2X (vector 2X) is a two-axis magnetometer that
measures the magnetic field in a single plane created by its two sensors, which are perpen-
dicular to each other on the board. That is, it measures the earth’s magnetic field along the
bodyX–Y plane. If the earth’s magnetic field is known at the particular place in the geodetic
plane, the same can be related to the measured magnetic field along the body axis through
Euler angles that can be estimated. Therefore, fusing together the accelerometers’ and mag-
netometer’s measurements provides sufficient information to estimate all the three attitudes.
An extended Kalman Filter is used to fuse measurements of the accelerometers and the mag-
netometer and estimate the attitudes. In this scheme the accelerometers and magnetometer
provide an attitude reference and the filter provides corrections to the attitude trajectory cal-
culated from integration of the rate gyros output. To compensate for the inaccuracies present
in the low-cost sensors, they have been modelled according to the calibration tables and used
in the filter.

The Kalman Filter-based fusion algorithm for the estimation of attitudes from low-cost
MIP is first realized and studied in a Matlab/Simulink environment and then the algorithm is
implemented on the hardware by programming micro-controller (Motorola, HC12 compact)
enclosed inside the MIP box and tested by subjecting the MIP to pure angular motion.
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3. Miniaturized inertial platform (MIP)

MIP is a miniaturized multi sensor inertial platform, designed with the main intention of
reducing the weight of the ALEX and also to prove the low-cost sensor technology for
autonomous systems like ALEX.

3.1 Architecture

Figure 2 shows the MIP and its architecture. The hardware of the MIP consists of two
motherboards stacked one above the other. The bottom board, called the sensor board, con-
sists of all the sensors, and the top board, called the micro-controller board, consists of a
micro-controller HC12 compact, which is used to acquire and process the sensors output
data.

3.2 Sensors

The sensor board of the MIP consists of three orthogonally mounted rate gyros, three orthogo-
nally mounted linear accelerometers, a temperature transducer and a two-axis magnetometer
with two sensors along the bodyX–Y axis. A temperature transducer is provided in the MIP
to account for the temperature variation effect on the other sensors. All these sensors are
low-cost, and of small size (of MEMS class) brought from aerospace consumer bulk market.
A GPS receiver connected to the MIP via one of the serial communication interfaces (SCI)
provides the position information.

3.3 Micro-controller

The data-processing unit of MIP is the HC12 compact with 16 MHz clock speed. It is a uni-
versal micro-controller module on the basis of a motorola MC68HC812A4 micro-controller
unit (MCU). Figure 2 shows the HC12 compact.

The MC68HC812A4 MCU (Valvano 2000) is a 16-bit device composed of standard
on-chip peripheral modules like a 16-bit CPU12, a Lite integration module (LIM), two
asynchronous SCIs (SCI0 and SCI1), an SPI, a timer, an 8-bit ADC, a 1-kilobyte RAM, a 4-
kilobyte EEPROM and a memory expansion logic with chip selects, key wakeup ports and a
PLL.

In addition to the above on-chip features of the MCU, the HC12 compact has the following
peripheral units:

• 512 KB flash memory and 256 KB RAM
• 12-bit, 11 channels ADC
• 12-bit, 2 channels DAC
• CAN controller
• RS232 interface driver
• Beeper
• Indicator LED

The outputs of the rate gyros, accelerometers and temperature transducer are analog and are
connected to the ADC of the micro-controller board whereas the output of the magnetometer
is digital and is connected directly to the micro-controller as shown in the connection diagram
of figure 2.
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4. Sensor modelling

Since sensors of low-cost category suffer from inaccuracy and are influenced greatly by the
temperature variation, such inaccuracies and dependency on temperature variations have been
studied, modelled and compensated in order to reach an adequate quality of the measurements.
Based on the calibration data, the sensors misalignment, temperature drift and CG offsets are
modelled as given below. Thus, these models in reality represent the true sensor model and
are included as a SIMULINK block for generating the sensor output and the inverse model
is used in the filter for estimating the attitudes.

4.1 Misalignment error
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4.2 Temperature drift
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whereT is the temperature in◦C measured from temperature transducer.

4.3 CG offset
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5. Kalman Filter and multi sensor data fusion

As mentioned earlier, attitudes are computed from the output of the three rate sensors using a
strapdown algorithm and, due to integration, measurement errors accumulate, if no correction
occurs. Kalman Filter provides this correction in a very optimal way and is the ideal tool
for fusing the multiple sensors output data in arriving at the accurate estimation of states
(attitudes).
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Simultaneous estimation of the states and unknown parameters like sensor bias is possible
by augmenting the state vector with the unknown parameters and applying filtering algorithm
to the augmented nonlinear model. This extended Kalman Filter (EKF) is a recursive algorithm
that estimates system statesX (attitudes and sensor bias) and state error covarianceP by
using the measured system outputZm (accelerometers and magnetometers) and the known
input Um (rates) in the specified nonlinear system and output models with assumed process
and measurement noise statisticsQ andR respectively.

In EKF, the nonlinear system is represented by the nonlinear state equation as,

Ẋ(t) = f [X(t), Um(t)] + GAw(t); X(0) = X0, (4)

and the measurement equation as,

Zm(t) = h [X(t), Um(t)] + v(t). (5)

Equations (4) and (5) are first linearized about the prior best estimates of the states at each
instant of time by finite difference method as,

A(k) =
[

δf

δX

]
X(k),Um(k)

; B(k) =
[

δf

δUm

]
X(k),Um(k)

; H(k) =
[

δh

δX

]
X(k),Um(k)

. (6)

The linearized system is then discretised in time by computing the system state transition
matrix8(k+1,k) from A(k) as (Collinson 1998),

8(k+1,k) = eA(k)1t ∼= [
I + A(k)1t

]
, (7)

where1t is the sampling time.
The EKF consists of the time update (prediction step) and measurement update (correction

step). In time update, the time propagation of states and the state error covariance matrix are
obtained by the following equations,

X̃(k+1) = X̂(k) +
∫

f [X(t), Um(t)] dt, (8)

P̃(k+1) = 8(k+1,k)P̂(k)8
T
(k+1,k) + GA(k)QGT

A(k). (9)

In the correction step, the measurement update of states and the state error covariance matrix
are obtained by using measurements as and when they are available as given below,

X̂(k+1) = X̃(k+1) + K(k+1)

[
Zm(k+1) − h{X̃(k+1)}

]
, (10)

P̂(k+1) = [
I − K(k+1)H(k+1)

]
P̃(k+1), (11)

whereK(k+1) is the Kalman gain at instantk + 1 which is given by,

K(k+1) = P̃(k+1)H
T
(k+1)

[
H(k+1)P̃(k+1)H

T
(k+1) + R

]−1
. (12)

The state integration, (8), is done by fourth order Runge–Kutta method.
In measurement update, the measurements are fused and the states are updated.
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5.1 Kalman Filter tuning and performance check

In order to get the optimal estimate of the states, the Kalman Filter is tuned manually withQ

relatively lower thanR (Schultz & Melsa 1967). Once the filter is tuned, its performance is
checked by verifying innovation sequence for zero mean and whiteness (Anderson & Moore
1979; Candy 1987). As per these conditions, the 95% of the residual should lie within the
±2R

1/2
e(k)

bounds, where

Re(k)
= H(k)P̃(k)H

T
(k) + R, (13)

and the autocorrelation of the residual should lie within the±1·96/N1/2 whereN is the
number of samples.

Along with this the estimated states with the standard deviation given by±P̂
1/2
(k) and the

filter model output with the output measurements are plotted and checked to ensure the
performance of the filter.

6. Matlab/Simulink implementation

The Kalman Filter-based fusion algorithm scheme for the derivation of attitudes from the
MIP is first realized and studied in Matlab/Simulink environment. The SIMULINK blocks
are shown in figure 3. Kalman Filter algorithm is introduced into the SIMULINK block
asS-function. For improved accuracy and to avoid singularities when dealing with cosine
rotation matrix, a quaternion formulation is used in the filter model for attitude propagation.

6.1 Kalman Filter performance with 12-state model

The 12-state mathematical model consisting of 4 quaternion states and 8 augmented states
with 6 observations is proposed initially for attitude estimation as given below.

State model:

q̇0 = 1

2
[−q1pb − q2qb − q3rb] ,

q̇1 = 1

2
[q0pb + q2rb − q3qb] ,

q̇2 = 1

2
[q0qb − q1rb + q3pb] ,

q̇3 = 1

2
[q0rb + q1qb − q2pb] ,

Ḃp = 0·0,

Ḃq = 0·0,

Ḃr = 0·0,

ḂAx = 0·0,

ḂAy = 0·0,

ḂAz = 0·0,

ḂHx = 0·0,

ḂHy = 0·0,
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Figure 3. (a)Main Simulink Blocks with Kalman Filter as MatlabS-function.(b) Simulink blocks
for true data generation.(c) Simulink blocks for sensor model.
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p2

q2

r2


 =


p1

q1

r1


 −




4·1420× 10−5T 3
m −0·0039T2

m +0·0876Tm −0·3803

0·0018T2
m −0·0236Tm −0·5370

1·7881× 10−4T 3
m −0·0150T 2

m +0·3564Tm −2·2526


 ,

(accounting for temperature variation, (2)),
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(accounting for temperature variation, (2))
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Even though the sensor models are derived accurately from the calibration data, additional
states are provided in the filter model to account for error in sensor model, if any, as sensor
bias. In the measurement model, the first observation is the quaternion constraint equation
(Collinson 1998). It plays a very important role in containing the quaternion states always in
the range of−1 to +1, thus easing the scaling problems in the computation, and has been
assigned highest priority by assigning low measurement covariance.

Figures 4a to 4c show the filter performance with the attitudes changing at a rate of 0·1 rad/s
and filter update time of 0·1 s.
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6.2 Effect of fast maneuvering and slower rate of filter update

Though the plots shown in figures 4a to 4c confirm the reasonably good performance of
the filter algorithm, when it is implemented on the micro-controller the filter performance is
found to deteriorate. This is mainly because of the slower computational speed of the micro-
controller (16 MHz clock speed). With the 12-state model each filter update cycle on the
micro-controller takes nearly 2 seconds.

Further studies with the Matlab/Simulink setup show that, because the system model is
nonlinear, the filter performance deteriorates when the filter update rate is slow. Figures 5a and
5b show the filter performance when the update time is increased from 0·1 s to 0·5 s. Therefore,
this factor is critically considered while implementing and testing the filter algorithm on the
micro-controller and efforts are made to reduce the filter update time.

6.3 Kalman Filter performance with 4-state model

To facilitate the faster filter update, the filter model size is reduced from 12-state to 4-state
retaining only the quaternion states. This is done with the assumption that the sensor model
is accurate enough and needs no sensor bias estimation.

Before implementing the filter with the 4-state model on the micro-controller, it is thor-
oughly validated in Matlab/Simulink. Figure 6a shows the Kalman Filter performance with
the 4-state model when there is no sensor bias. Figure 6b presents the comparison of atti-
tude estimates from the 12-state and 4-state models and shows almost similar performance.
Figure 7a shows the Kalman Filter performance with the 4-state model when sensor bias
is present. This figure shows that the residual and its autocorrelation cross their respective
bounds, indicating that there is still some information in the measurements, which has not
been extracted by the filter. However, the comparison of attitude estimates from 12-state and
4-state models, shown in figure 7b, is reasonably good.

These comparisons have been made to show the validity of the 4-state model, which though
not as good as the 12-state model (only in the presence of bias in the sensor output), yet
estimates attitudes reasonably well. Based on these results it was finally decided to implement
the 4-state model on the micro-controller and model the sensors as accurately as possible,
thus reducing the unaccounted biasses in their outputs.

7. Micro-controller implementation

7.1 Data acquisition

7.1a ADC outputs: The outputs of rate gyros, accelerometers and temperature sensor are
analog and are acquired through a 12-bit ADC. An assembly code has been developed to
acquire the ADC output data.

7.1b Magnetometer outputs:Magnetometer V2X, which is operational in the raw mode,
gives digital output and hence is connected directly to the HC12 compact. Each time the
magnetometer provides the reading after certain events take place at particular intervals of
time. An interrupt routine is used to execute each event as and when it occurs, instead of
waiting for the complete cycle to be over.

7.2 Kalman Filter

To overcome numerical divergence problem, the Kalman Filter algorithm is implemented in
UD factorization form (Bierman 1977; Brown & Huang 1997). The UD factorization based
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Figure 7(a). Autocorrelation of residual with bounds (whiteness test).
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Figure 7(b). Comparison of attitude estimates from 4-state as well as 12-state models with true
attitudes (with bias in sensors output).
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Kalman Filter is coded in embedded C programming. The Kalman Filter code before imple-
menting on the micro-controller has been compiled using PC compiler Borland C+ +, exe-
cuted and tested to reproduce the results obtained from Matlab/Simulink setup. This exercise
has been carried out to ensure that there is no error in filter code conversion from MATLAB
to C. An interrupt routine is written also in C to acquire the magnetometer reading. The rate
gyro outputs, accelerometer outputs and temperature transducer outputs are acquired via ADC
by including the relevant assembly code. All the files are compiled and linked to a machine
code using Image Craft C (ICC12) compiler (Image Craft 2001). The compiled machine lan-
guage code is then downloaded onto the micro-controller using TwinPEEKs monitor program
(HC12 Compact 1999) residing in the internal EEPROM of the HC12 Compact.

The ADC outputs thus acquired are of 12-bit resolution and converted into engineering
units. Similarly the magnetometer readings are converted into microtesla. The rate gyro and
temperature transducer outputs are then passed onto the Kalman Filter algorithm as inputs to
the filter model, and accelerometer and magnetometer outputs as observations. The estimated
quaternion states are then converted to Euler angles and displayed on the terminal by passing
through the SCI (serial communication interface) port.

7.3 Testing, validation and observations

With the filter algorithm, the MIP is tested and filter performance is evaluated by simple
experiments. While the algorithm is running, the MIP box is rotated and held at different
orientations and the estimated attitudes displayed on the terminal are observed. From this
simple experiment the following are observed.

• The estimates of roll and pitch attitude match the orientation of the MIP to an accuracy
of approximately±3◦.

• The heading angle, which is estimated mainly from the magnetometer output, though
working shows large variation due to the effect of local magnetic field (hard iron effect).
When the box is held at a distance from the ferromagnetic elements (local magnetic
field), the estimates of heading angle are comparatively better.

• Both roll attitude and heading are tested for full 360◦ rotation. Though roll attitude
estimation is reasonably accurate at all orientations, the heading estimation at 0◦ and
180◦ shows a jump of approximately±10◦

• The pitch attitude is found to work well between±90◦.

7.4 Real data analysis

The sensor outputs from MIP are collected over the serial communication interface into a file
and used as sensor data for the Kalman Filter-based fusion algorithm in Matlab/Simulink set
up (as shown in figure 8) for testing the filter performance with 4-state model in comparison
with 12-state model. The estimates of attitudes from both the 12-state and 4-state models are
comparable, particularly roll and pitch attitude as shown in figure 9. The heading, as expected
is influenced by hard iron effect, which is compensated by estimating them as bias in 12-state
model, but not in 4-state model and hence the difference.

8. Concluding remarks

In this work, the attitudes are derived from small, low-cost inertial and magnetometer sensors.
An extended Kalman Filter-based estimation scheme is used to fuse the redundant information
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Figure 8. Simulink blocks for real data analysis.

coming from three orthogonaly mounted accelerometers and a two-axis magnetometer. The
accelerometers, together with the magnetometer, provide attitudes reference and the filter
provides corrections to the attitude trajectory generated from the integration of the rate gyro
outputs. The accuracy of the attitude estimation is improved by including the sensor models
in the estimation algorithm.

The estimation of attitudes from low-cost MIP is first realized on a Matlab/Simulink plat-
form and proves the capability of the Kalman Filter and multi sensor data fusion algorithm.
Since the system model is nonlinear, the performance of the filter algorithm is found to suffer
under certain conditions and the same has been highlighted.

Finally the Kalman Filter-based fusion algorithm is implemented on the hardware (MIP),
by programming the micro-controller using ICC12 compiler. Owing to the computational

 

−2.5

−1.25

0

1.25

2.5

−1
−0.5

0

0.5

1

0 20 40 60 80 100 120 140
−2

−1

0

1

2

T
h
e
ta

(r
a
d
)

P
h
i
(r
a
d
)

P
h
i
(r
a
d
)

Figure 9. Comparison of attitude estimates from 12-state model (thick line) and 4-state (thin line)
models from real data.
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speed limitations of the micro-controller, no augmented states (sensor bias states) are included
in the model. The decision to implement this minimum set of state (only 4 quaternion states)
model is arrived at, based on the assumption that the sensor model used in the filter model is
almost accurate and their outputs are bias-free. This 4-state model is thoroughly validated in
Matlab/Simulink set up before implementing on the micro-controller. The algorithm is tested
and evaluated by subjecting the MIP to pure angular motion, at different orientations. From
this simple experiment, the accuracy of the estimated roll and pitch attitudes is found to be
well within the stipulated accuracy level of±5◦ for the ALEX. However the estimation of
heading angle, which is mainly derived from magnetometer output, seems to be influenced
by variations in local magnetic field.

This work is carried out under the NAL-DLR exchange program.

List of symbols

(general)

A system state matrix;
Ax, Ay, Az linear acceleration along body axis;
B system input matrix;
f nonlinear state function;
GA transition matrix for the process noise;
h nonlinear output function;
H system output matrix;
k as a subscript, it means atkth instant;
K Kalman gain;
N number of samples;
p, q, r angular rates about body axis;
ṗ, q̇, ṙ time derivative of respective angular rates;
P̃ time updated state error covariance matrix;
P̂ measurement updated state error covariance matrix;
Q process noise covariance;
R measurement noise covariance;
Re covariance of innovation sequence;
Um input measurement vector;
v measurement noise vector;
w process noise vector;
X state vector;
X̃ time updated state vector;
X̂ measurement updated state vector;
Zm output measurement vector;
8 state transition matrix.

(in mathematical model)

Axb
, Ayb

, Azb
gravitational acceleration along body fixed frame;

Axg
, Ayg

, Azg
gravitational acceleration along geodetic frame, [0 0− 9·81] m/s2;
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Axm
, Aym

, Azm
accelerometer sensors output;

BAx
, BAy

, BAz
bias in accelerometer sensors output;

BHx
, BHy

bias in magnetometer sensors output;
Bp, Bq, Br bias in rate gyro sensors output;
Hxb

, Hyb
earth’s magnetic vector along body fixed frame.

Hxg
, Hyg

, Hzg
earth’s magnetic vector along geodetic frame, [18 0 45]µtesla at

Braunschweig, Germany.
Hxm

, Hym
magnetometer sensors output;

pb, qb, rb angular rates about the body fixed frame;
pm, qm, rm rate gyro sensors output;
q0, q1, q2, q3 quaternion states;
Tm temperature sensor output;
XAx

, YAy
, ZAz

distance ofAx, Ay, Az sensors from CG, [−1·0 2·0 2·0] cm.

Abbreviations

ALEX autonomous parafoil landing experiment
DLR German Aerospace Research Centre
EKF extended Kalman Filter
GNC guidance, navigation and control
GPS global positioning system
ICC12 ImageCrafts C Compiler for Motorola HC12 Compact
IMU inertial measurement unit
INS inertial navigation system
MEMS micro electro mechanical systems
MIP miniaturized inertial platform
UAV unmanned aerial vehicle
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