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Abstract. This paper describes a novel application of singular value decom- 

position (SVD) of subsets of the phase-space trajectory for calculation of the 

attractor dimension of a small data set. A certain number of local centres (M) 

are chosen randomly on the attractor and an adequate number of nearest neigh- 

bours (q = 50) are ordered around each centre. The local intrinsic dimension 

of a local centre is determined by the number of significant singular values and 

the attractor dimension (De) by the average of the local intrinsic dimensions of 

the local centres. The SVD method has been evaluated for model data and EEG. 

The results indicate that the SVD method is a reliable approach for estimation 

of attractor dimension at moderate signal to noise ratios. The paper emphasises 

the importance of SVD approach to EEG analysis. 

Keywords. Nonlinear dynamics; chaos; EEG; SVD; phase-space; attractor 

dimension. 

1. Introduction 

The field of nonlinear dynamics or chaos has undergone explosive growth in the last few 

years. Applications have been made in many diverse fields including physics, chemistry, 

fluid dynamics, meteorology, economics, medicine and sociology (Lin 1984; Thomson & 

Stewart 1987). One aspect of nonlinear dynamics involves time series analysis. Electroen- 

cephalogram (EEG) is a time series of the electrical activity of the brain. It is regarded as a 

paraphenomenon of integrated metabolic processes of the brain. It reflects the activities in 

the underlying brain structures and particularly that of the cerebral cortex below the scalp 

surface. EEG is one of the commonly used noninvasive tools for studying brain functions. 

The frequency domain representation of EEG has been in use for over half a century to 

discern the various patterns of brain activity in relation to behavioural states. In this, a 

signal block is taken and then Fourier-transformed to get the power spectral estimates 
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which has led to the familiar alpha, beta, delta and theta components. The alpha actvity 

represents EEG activity in the frequency range 8-13 Hz. It is seen during eye-closed re- 

laxed states. It is predominantly seen in the occipital region of the scalp. EEG activity in 

the frequency range 13-30 Hz is termed as beta rhythm and characterises aroused and vig- 

ilant state of behaviour. The theta (4-8 Hz) activities are observed during drowsiness and 

in pathological conditions. Similarly the delta activities (0.5-4 Hz) are seen during deep 

sleep. However, these never reflect the dynamicity of the underlying process of a frequency 

band into which maximum power is concentrated, On the contrary the newly developed 

method of phase-space representation can show the dynamics of a system as it evolves 

with time. With emergence of methods for handling time series generated by nonlinear 

dynamics, a different set of descriptive measures are now available. The progress in the 

theory of nonlinear dynamics in the past decade has made it possible to think of modelling 

the brain as a continuous, spontaneously changing, nonlinear dynamical system (Baser 

1983). Grassberger & Procaccia (1983a, 1983b) have further developed the tools to model 

experimental data as the output of nonlinear dynamical system. The study involving EEG 

falls in this category. These new concepts for the investigation of microscopic properties 

of brain activity offer a fresh way to provide new explanations (Pool 1989). For exam- 

ple let us consider the changing pattern of EEG as a person goes from wakefulness to 

drowsiness to deep sleep. The brain activity in waking state is desynchronised and with 

eye closure partial synchrony (alpha rhythm, 8-13 l-lz activity) is observed. It can be seen 

that as drowsiness starts and sleep gradually ensues, various transitional states appear as 

stage 1, stage 2, stage 3 and stage 4 in the sleep cycle (Rechtschaffen & Kales 1968). The 

brain activity evolves from random-like behaviour to more periodic activity with increas- 

ing depth of slow wave sleep. It is broken by intermittent bursts of desynchronised activity 

of varying durations called REM (rapid eye movement) during which dreams occur. A 

similar form of synchronised slow wave activity is seen in anaesthesia. A deep state of 

anaesthesia is marked by low amplitude and highly periodic slow wave activity. The spike 

and wave activity during seizure discharge is a high frequency periodic activity of the 

neurons and the specific waveforms are repeated for a short duration. There are reports 

of high alpha activity and increased coherence during various meditative states. The psy- 

chotic states have not yielded any definite EEG patterns. Even the maturational status of 

brain may be reflected in the infant EEG. Cognitive activites or intensive mental tasks have 

not produced any discerning patterns in EEG different from background activity. It is now 

believed that nonlinear dynamical methods of analysis may discern these states of neural 

activity. It may be safely assumed that the brain's dynamical behaviour is well reflected 

in EEG. Therefore, the nonlinear measures have found applications in the analysis and 

interpretation of EEG and the seemingly random nature of EEG is thought to be due to 

chaotic neuronal activities. Calculation of attractor dimension or correlation dimension has 

dominated recent literature and has been used to characterise the effects of anaesthesia, 

epileptic discharge and mental activity (Babloyantz & Destexhe 1986; Layne et ol 1986; 

Mayer-Kress & Layne 1987; Watt & Hameroff 1987; Nan & Jinghua 1988). 

The dimension of the attractor is a characteristic feature of the underlying neuronal 

process generating the EEG signals. The dimension value of the attractor is of significance 

in feature detection of various brain states, classification of patterns of neural activities, 

differentiation of various types of neural activities and identification of specific drug ef- 

fects on the brain. The attractor dimension directly reflects the degrees of freedom of 

the system under study. Therefore, nonlinear dynamics provides a model for signal gen- 

eration and temporal prediction which may help in determining the nature of neuronal 
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processes governing the state of brain activity. Data on altractor dimension are available 

in literature from subjects in nornml resting states, during seizures and in stages of sleep 

and states of anaesthesia. Correlation dimension analysis is also available from cases with 

attentional tasks in humans and experimental learning situations in rats. Human data on 

attractor dimension in resting states have been rather less consistent with a range from 3 to 

over 10. The dimensionality has been seen to drop during an epileptic epoch consistently. 

The difficulties in comparing disparate results arise because of the algorithms used and 

the definition of dimensionality employed. Certain agreed upon uniform conventions may 

emerge for handling experimental time series in future. However, using the parameter of 

attractor dimension, a specific predictive model can be built and experimental verification 

of the model is possible. This newly gained insight on the chaotic dynamics of the brain 

is a significant departure from the earlier stochastic visualisation. It appears that nonlinear 

dynamics is going to be the method of study of complex systems and their experimental 

time series. The application of nonlinear methods to EEG analysis has been discussed in 

detail in a previous paper (Pradhan & Narayana Dutt 1993). 

The overall interpretation of an EEG record is based on a qualitative impression about 

the changing patterns in EEG activity. The study utilises the singular value decomposition 

(SVD) of a subset of phase space trajectory to evaluate the attractor dimension. The SVD 

method has been applied to model data from Henon and Lorenz maps. As EEG records 

are invariably noisy, various levels of noise have been added to the model data to evaluate 

the suitability of the method for its application to experimental time series like EEG. 

The method has also been applied to real EEG data having'alpha, beta, theta, delta and 

indeterminate activities for different data lengths (512, 1024.2048, 4096, 8192, 16384 and 

20480 points) to evaluate the data requirement of the SVD method for its application to 

EEG analysis. 

2. Extracting attractor dimension 

The construction of a phase-space trajectory is a crucial step in nonlinear analysis of EEG 

time series where the unidimensional voltage data are transformed to its trajectory in a mul- 

tidimensional phase-space. Temporally experimental time series are single-dimensional 

data. At any given instant of time it has only one phase variable. Before the turn of the 

century, Poincare showed that much can be learnt about dynamical behaviour from the 

analysis of trajectories in a multidimensional phase-space in which a single point char- 

acterises the entire system at an instant of time. The experimentalist's dilemma has been 

that for a system with N degrees of freedom it seems necessary to measure N independent 

variables, an almost impossible chore for complex systems. The problem found a solution 

in the embedding theorem of Takens (Pradhan & Narayana Dutt 1993) that a multidimen- 

sional phase-space can be constructed from measurement of a single variable (like the 

electrical potential). For a time series V (ti), i = O, 1, 2, 3 . . . . .  N ,  the phase-space vector 

x(t) is constructed by assigning coordinates 

xl  (t) = V ( t )  

x2(t) : V ( t  + T )  

Xd(t)  = V ( t  + (d - 1)T), (1) 
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where T is a delay time and d is the embedding dimension. The lag or delay T may 

be determined by the first zero of the corresponding autocorrelation function (Liebert & 

Schuster 1989). On construction of multidimensional phase-space vectors from a time 

series, the dynamical parameter, attractor dimension (Do_) or correlation dimension may 

be calculated. 

Dimension is perhaps the most basic property of an attractor (Farmer et al 19831. To 

characterise an attractor, one has to determine its dimension. One classical estimation of 

attractor dimension is provided by the algorithm of Grassberger & Procaccia (1983a, 

1983b) (GPA) which measures for each embedding dimension d, the number of couples 

of (xi, xj) whose distance is less than a given radius r. More precisely, the algorithm 

computes the correlation integral C(r) given by 

1 N N 

C(r) = ~ Z E O(r - lxi - xjl), (2) 
i = l  j=l, j~i  

where 0 is the Heaviside function. 

Grassberger & Procaccia (1983a, 1983b) showed that the correlation integral C(r) obeys 

the following scaling law: 

Therefore, 

C(r) ~ r D2. (3) 

log C(r) 
D2 = lim - -  (4) 

r~0  log r 

Here, C(r) is a measure of the probability that two arbitrary points xi and xj of the phase 

will be separated by distance r. The main point is that C(r) behaves as a power of r for 

small r. Therefore plotting log C(r) versus log(r) allows us to calculate De from the slopes 

of the curves. If the slopes of the graphs for increasing embedding dimensions converge to a 

saturation value, this limit is called the correlation dimension D2. For a stochastic process, 

there is no convergence and the slope keeps on increasing with increase in embedding 

dimension. 

The correlation dimension is introduced in information theory and is a generalization of 

the Hausdorff(or fractal) dimension Do. Moreover, it estimates the information dimension 

Dl when Do > Dl > D2. GPA is one of the widely used method for determination of 

attractor dimension Grassberger & Procaccia (1983a, 1983b) where highend computing 

facilities are available. 

It can be seen that for data length of N, GPA needs a time of order N 2 and it is further 

enhanced if estimates are made for an entire range of embedding dimensions. An optimised 

method of estimating correlation dimension has been reported by Grassberger (1990). The 

GPA has also been modified by investigators for efficient computation of D2 (Dvorak 1990; 

Theiler 1986). The GPA implemented on a Workstation (HP 9000/735) takes nearly 45 

minutes for calculation of the correlation integrals for embedding dimensions 3 to 12 for 

only 1024 data points. It takes several hours for 40000 data points on the same machine. 

Moreover, GPA requires large data points, 80000 or more, for a reliable estimation of 

correlation dimension. GPA fares poorly in presence of noise where the plot of log C(r) 

vs log(r) may not converge. Further, the scaling region for determining the slope (hence 

D2) is more often arbitrarily fixed and thus giving rise to varying results by different 

investigators. Therefore, we have investigated the SVD method which is computationally 

efficient and there is no arbitrariness of  defining the scaling region. 
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3. Singular value approach for estimation of at t ractor  dimension 

The SVD method has been used for dimension estimation of chaotic attractors (Broomhead 

& King 1986; Passamante et a11989).  In this study, we describe a novel application of SVD 

for analysis of EEG signals. This approach is computationally efficient in comparison to 

standard GPA considering the massiveness of EEG data. The procedure of singular value 

approach is an extension of the idea of local intrinsic dimensionality introduced by Fulunga 

& Oslen (1971). The underlying idea is to make use of local linear approximation to the 

nonlinear evolution governing the dynamics. Given an embedding dimension d, a number 

of local centres M is selected randomly on the attractor. For each of these local centres xi, 

the q nearest neighbours are retained and organised in a d x q matrix as 

X : (X 1, X 2, X3 . . . . .  Xq). (5) 

The rank of X is determined using SVD. The significant singular values, or equivalently, 

the eigenvalues, are known to produce the dimensionality of the corresponding data space. 

The number of significant singular values then represents the local intrinsic dimension of 

the attractor at its local centre in phase-space. The singular value spectrum contains both 

the signal subspace and the noise subspace information. In the absence of noise, the limiting 

smallest value of singular values depends upon the number of nearest neighbours taken 

for construction of the matrix X around the local centre. Therefore, a certain minimum 

number of nearest neighbours are essential for obtaining significant singular values for 

estimation of the local intrinsic dimension of a local centre. Similarly adequate number of 

local centers are essential to cover the entire phase-space map for a reliable estimation of 

the attractor dimension (Pike 1987). 

The question of deciding which singular values are significant can also be a problem. 

The point where one places the threshold between signal and noise must be carefully 

chosen. The selection of the threshold is a matter of judgement which in some cases 

may be difficult. More objective methods for setting the threshold are being investigated. 

The difficult problem is the separation of the noise singular values from the signal singular 

values, particularly for low signal to noise ratios (SNR). The selection of the threshold will, 

in general, depend on the distribution or statistics of the noise singular values. However, at 

moderate SNR the number of significant singular values represent the dimension of signal 

subspace. The significant singular values may be obtained by using a threshold criterion 

of 30% of the maximum of the singular value spectrum. 

Once singular values have been estimated for various local centres on the attractor, the 

average of all local intrinsic dimensions is calculated as the attractor dimension. 

D2 = Pls l  + P2s2 + . . .  + Prsr,  (6) 

where sl = 1, s2 = 2 . . . .  , Sr = r and r is the maximum number of significant 

singular values for M local centres. Pi is the estimated probability of si occurring i.e., 

Pi = h i / M  with hi being the number of local regions that have dimension si, and M 

being the total number of local regions. There are certain advantages of the SVD approach. 

It is computationally less intensive and can be applied to both small and large data sets. 

However, the results are more accurate with 20000 or more data points. It is feasibly 

implemented on a Workstation and does not require expensive high computing platforms. 

A consistent criteria of determining the threshold for significant singular values may be 

applied instead of an arbitrary scaling region as in the case of GPA. -In the same system 

it takes only 40 seconds to calculate the attractor dimension of 40000 points with an 



26 N P r a d h a n  e t  a l  

embedding dimension of  30, local centres on the attractor M = 50 and number of  nearest 

neighbouring vectors at tile local centre q = 50. The method gives a reliable estimate of  

attractor dimension for noisy data. It has the potential of  being implemented on-line in 

EEG monitoring laboratories. 

4. Application of SVD approach to model data 

The well known Henon map and Lorenz map are classical examples of  chaotic systems. 

The SVD approach is presented for the Lorenz and Henon attractors. The Lorenz system 

is given by 

Yc = c y  -- c x ,  

9 = r x  - y - x z ,  

= b z  + x y ,  (7) 

where c = 10, b = 8/3,  r = 28. Gills routine was used for integration with a step size 

of  0.006. The initial conditions x(0)  = y(0) ---- z(0) = 1 were used for the Lorenz map. 

200000 data points were generated of which initial 2000 points were discarded to remove 

the initial transients. 

The Henon map is given by 

.xi+ 1 = I - cl.~c~ + b x  i I, (8) 

(b) 

(c) 

(e) 

Figure 1. Time plot of Lorenz map. White Gaussian noise has been added to 2048 

data points (a) infinite, (b)30dB, (c) 20dB, (d) 10dB and (e) 0dB SNR. 
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(O) 

(e) 

Figure 2. Phase-space plots of Lorenz map with additive noise (a) infinite, (b) 30dB, 

(c) 20dB, (d) 10dB and (e) 0dB SNR. 

where a = 1.4 and b = 0.3. Data were generated using the initial conditions xi  = x i - 1  = 0 

for the Henon map data consisting of 900000 points. The initial 2000 data points were 

discarded to avoid transients at the beginning of the data. 

We have used varying lengths o f  data segments (512, 1024, 2048, 4096, 8192, 16384 

and 20480). With an embedding dimension of  10, phase space vectors were created. The 

number of local centres M = 50 were randomly chosen on the attractor. We obtained 

50 nearest neighbouring points (q = 50) around each local centre. The matrix X was 

generated using the nearest neighbour points for a given local centre using (5). The SVD 

of X gave the singular values. Using the threshold criteria of 30% of the maximum singular 

value, the number of significant singular values were determined for a given local centre. 

The attractor dimension was determined as per (6). The estimations have been carried 

out with various levels of  additive noises (infinite, 0dB, 10dB, 20dB and 30dB) to the 

Henon and Lorenz maps. A Gaussian random sequence of zero mean and unit variance 

was generated and added to the model data for various levels of  SNR. 

SNR(dB) = 10log I signa-----I po___wer] 
I_ noise power _l " (9) 

The sample data segments and their phase space plots for Henon and Lorenz maps with 

additive noise are given in figures 1-4. The saturation of dimension estimate with increasing 

number of local centres for the Lorenz map has been given in figure 5. It shows that D2 

value may be reliably estimated by fixing M and q at 50. 

The results of SVD method for model data have been summarised in tables 1 and 2 

which depict the relationships of data lengths, noise levels and number of  local centres with 
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Figure 3. Time plot of Henon map. 

White Gaussian noise has been added 

to 2048 data points (a) infinite (b) 30dB 

(e) 20dB (d) 10dB and (e) 0dB. 

attractor dimensions. The values are the averages of dimensions calculated on consecutive 

data segments. 

5. Application of SVD approach to EEG data 

Oscillations in single neuron and neuronal ensembles underlie the generation of various 

pattern features in EEG. Since mathematicians have long known that the periodic forcing 

of nonlinear oscillators can give rise to complex phase-locking patterns, bifurcations and 

aperiodic dynamics (Hayashi et al 1982), one anticipates that such behaviour might be 

observable in forced neuronal oscillators. Studies on the periodic forcing of biological 

oscillators have, in fact, been interpreted in the context of chaotic dynamics (Hayashi 

et al 1982). It has been proposed that complex EEG patterns which occur normally arise 

from interactions between a large number of neural relaxation oscillators (Baser 1980). 

All these observations raise the possibility that some of the observed variability in neural 

electrical activity may be a reflection of intrinsically chaotic dynamics. Thus the concept 

of chaos introduces a perspective for the analysis of neural dynamics and this has been the 

motivation for the present study. EEG, being a complex pattern generated in the brain by a 
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Figure 4. Phase-space plots of Henon 

map with additive noise (a) infinite, 

(b) 30dB, (e) 20dB, (d) 10dB and 

(e) 0dB SNR. 

possible chaotic process seemingly very irregular and random-like in character, is in fact 

a good choice for application of chaotic dynamics. Estimation of attractor dimension is 

a fundamental measurement for characterising chaotic systems. Keeping this in view, we 

have applied the SVD method for estimating the attractor dimensions of  changing patterns 

in EEG. 

5.1 Recording and digitisation of  EEG 

The EEG signals from 8 volunteers were recorded with Nihon Kohden EEG amplifiers. 

The four channels of unipolar EEG, F3 (chl-1), F4 (chl-2), 01 (chl-3), 02(chl-4) referenced 

to A2 were obtained for durations varying from 10 to 15 minutes. The subjects were 

instructed to close their eyes for some time during the data acquisition period and allowed 

to sleep. The signals were digitised at 128 samples/second/channel. Data acquisition was 

accomplished with the use of 12-bit DT-2841 ADC coupled with DT-7020 array processor 

(Data Translation Inc, MA, USA) in a PC-AT computer. Data were then transferred over 

a network (off-line) to HP9000/735 Graphics Workstation for further analysis. The raw 

EEG signals were filtered through a bandpass (0.25-32 Hz) 4th order Butterworth filter 

twice cascaded. The data were scanned for a specific activity and 25600 consecutive points 
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Figure 5. Saturation curve of D2 with increasing number of local centres (M) for 

Lorenz map (N = 4096, q = 50). 

having a given pattern of EEG activity were extracted. The extracted EEG segments were 

then processed for quantification of attractor dimension. The time series plots of various 

EEG activities are shown in figure 6. 

5.2 Estimation of attractor dimension of  EEG data 

The dynamical behaviour of the brain is currently being viewed in the perspective of 

nonlinear dynamics. There are several reports of low dimensional chaotic activity in various 

states of human behaviour (Baser 1980). While dimension estimate provides a measure 

for classifying various brain activities, the Lyapunov exponent may be seen as a powerful 

estimate of dynamics of the system reflecting the long-time average exponential rat'es of 

divergence or convergence of nearby trajectories in state space. If a system has at least 

one positive Lyapunov exponent, then the system is chaotic. It stems from the premise 

(conjecture) that chaotic systems are highly sensitive to initial conditions. It implies that 

small changes in the state of a chaotic system grow exponentially arid dominate the system 

behaviour (Wolf et al 1985). Since the error bar is composed of many adjacent states in the 

solution space or phase space and adjacent states diverge quickly, it follows that error bars 
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(a) 

(c) 

(d) 

Figure 6. Time plot of (a) alpha, (b) beta, (c) theta, (d) delta and (e) indeterminate 

EEG activity of 8s duration. 

on the initial conditions of chaotic systems grow exponentially fast. Error bars on initial 

conditions are omnipresent, so it may be concluded that long-term prediction of chaotic 

systems are futile no matter how the system prediction is implemented. The dominant 

Lyapunov exponent (~. 1) has also been evaluated by application of the algorithm of Wolf 

et al (1985). The 2~1 values of different EEG activities are seen to be positive. The value 

of)~l is 0.143 4- 0.01 for "alpha activity. For beta activity the ~1 value is 1.801 4- 0.10 and 

for theta, delta and indeterminate activities the values are 0.162 4- 0.13, 0.135 4- 0.01, and 

1.102 4- 0.01 respectively. It implies that EEG is chaotic. 

The attractor dimension for varying lengths of data (512, 1024, 2048, 4096, 8192, 16384 

and 20480 points) obtained for alpha, beta, theta, delta and indeterminate activities is given 

in table 3. The phase-space plots of various EEG activities have been presented in figure 7. 

The number of nearest neighbours q = 50 has been used in computing the dimension 

for local centres M = 50, M = 100 and M = 200 as in the earlier case. The maximum 

embedding dimension is 30. From the results of Lorenz and Henon maps, it is evident 

that 4096 to 8192 data points are the optimum data length covered by M = 50 local 

centres. Here we have used 4096 data points as optimum length for estimation of attractor 

dimension. 

6. Results and discussion 

The analysis of EEG in the past several decades has been attempted by the phenomeno- 

logical approach, in which the EEG is seen to be a band-limited signal produced by some 

black-box with unknown or white Gaussian noise input. More recently a model-based 
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Figure 7. Phase-space plots of (a) al- 

pha, (b) beta, (c) theta, (d) delta and 

(e) indeterminate EEG activities. 

approach, incorporating concepts developed in the area of nonlinear dynamics and chaos 

theory, has been used. The application of  nonlinear dynamics to EEG analysis may provide 

information to understand the underlying neurodynamics of EEG generation and its evo- 

lution. Estimation of the attractor dimension is a primary step in this direction. The GPA 

has been in the forefront of the computational procedures for obtaining the dimension of 

the attractor. For reasons already mentioned, an alternate method suitable for EEG data 

is called for. We have described a method of application of singular value spectrum for 

estimating the dimension of the attractor. It was essential to apply the method for model 

data for determining data lengths suitable for analysis. 

We have presented the SVD method for estimation of the attractor dimension of model 

data from which we extract the information about the appropriate data length requirement 

for a given number of  local centres (M) and number of nearest neighbours (q). The three 

parameters M, q and N influence the dimension estimate. Therefore, for an optimal eval- 

uation of  the dimension, two of the parameters may have to be fixed while the third one is 

varied. It could be seen that the method is suitable for small data and a suitable estimate 

of dimension may be obtained with N = 4096-8192 while M and q are fixed at 50. 

Without additive noise, 512 data points of the Lorenz map yields an attractor dimension 

of 2.443 which is higher than the theoretically expected dimension (2.01). The expected 



An SVD method for estimation of EEG 33 

Table 1. Attractor dimension values for Lorenz map. 

SNR Data length 

30 dB 

20 dB 

10 dB 

0dB 

Attractor dimension 

( M = 5 0 )  ( M =  100) ( M = 2 0 0 )  

512 2.443 2.417 2.498 

1024 2.510 2.558 2.579 

2048 2.257 2.174 2.156 

4096 2.033 1.860 1.879 

8192 1.783 1.810 1.873 

16384 1.520 1.470 1.580 

20480 1.435 1.440 1.435 

512 2.442 2.506 2.494 

1024 2.514 2.560 2.602 

2048 2.272 2.126 2.141 

4096 2.029 1.900 1.896 

8192 1.774 1.830 1.870 

16384 1.518 1.520 1.525 

20480 1.433 1.460 1.455 

512 2.519 2.576 2.528 

1024 2.518 2.625 2.597 

2048 2.282 2.164 2.138 

4096 2.019 1.932 1.877 

8192 1.767 1.705 1.790 

16384 1.501 1.560 1.510 

20480 1.411 1.438 1.420 

512 2.875 2.744 2.777 

1024 2.772 2.881 2.918 

2048 2.510 2.294 2.299 

4096 2.179 2.066 2.064 

8192 1.842 1.965 1.858 

16384 1.486 1.580 1.558 

20480 1.374 1.430 1.439 

512 8.260 8.136 8.133 

1024 7.666 7.979 7.969 

2048 6.883 6.629 6.676 

4096 5.423 5.424 5.328 

8192 3.842 4.165 3.948 

16384 2.449 2.360 2.435 

20480 2.059 1.992 2.025 

value could be reached when the data points are about 4096. With increase in the number 

of points beyond 4096, the number of local centres (M = 50) are not adequate for covering 

the entire phase-space; therefore there is a drop in the value of the dimension. When 50 
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Table 2. 

SNR 

OO 

30 dB 

20 dB 

10 dB 

0 dB 

Attractor dimension values for Henon map. 

Data length Attractor dimension 

( M = 5 0 )  ( M = 1 0 0 )  ( M = 2 0 0 )  

512 6.214 6.222 6.232 

1024 4.318 4.314 4.336 

2048 2.805 2.818 2.839 

4096 1.787 1.768 1.776 

8192 1.254 1.242 1.268 

16384 1.077 1.075 1.093 

20480 1.056 1.050 1.040 

512 6.220 6.210 6.210 

1024 4.319 4.312 4.274 

2048 2.809 2.798 2.785 

4096 1.785 1.750 1.803 

8192 1.254 1.265 1.248 

16384 1.078 1.070 1.105 

20480 1.050 1.020 1.032 

512 6.291 6.279 6.260 

1024 4.373 4.373 4.359 

2048 2.836 2.788 2.857 

4096 1.795 1.760 1.796 

8192 1.255 1.270 1.243 

16384 1.075 1.090 1.080 

20480 1.048 1.060 1.060 

512 6.880 6.873 6.864 

1024 4.865 4.852 4.842 

2048 3.198 3.197 3.193 

4096 1.993 2.026 1.996 

8192 1.328 1.290 1.347 

16384 1.094 1.080 1.100 

20480 1.061 1.060 1.062 

512 9.321 9.340 9.348 

1024 8.000 8.024 8.024 

2048 6.409 6.436 6.479 

4096 4.790 4.764 4.838 

8192 3.274 3.335 3.285 

16384 2.075 1.970 1.940 

20480 1.779 1.720 1.715 

local centres are used on small data sets, there may be overlap among the attractor zones 

thereby producing a higher estimate of the dimension. With addition of 0dB noise the initial 

estimate of dimension is 8.2604 for 512 points and it is 5.423 for 4096 points. The phase- 
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Table 3. Attractor dimension values for different EEG activities. 

EEG Data length Attractor dimension 

( M = 5 0 )  ( M = 1 0 0 )  ( M = 2 0 0 )  

Delta 

Theta 

Alpha 

Beta 

Indeterminate 

512 4.642 4.641 4.637 

1024 4.605 4.610 4.623 

2048 4.606 4.555 4.575 

4096 4.416 4.430 4.420 

8192 4.490 4.210 4.275 

16384 3.973 3.993 3.998 

20480 3.897 3.923 3.922 

512 7.568 7.585 7.620 

1024 7.387 7.332 7.322 

2048 7.062 7.201 7.158 

4096 6.620 6.685 6.770 

8192 6.216 6.326 6.376 

16384 5.770 5.880 5.985 

20480 5.710 5.785 5.800 

512 10.570 10.587 10.747 

1024 10.066 10.184 10.050 

2048 8.382 8.589 8.664 

4096 7.320 7.398 7.370 

8192 6.391 6.401 6.411 

16384 5.880 5.923 5.921 

20480 4.921 5.103 5.213 

512 11.491 11.679 11.689 

1024 11.030 11.030 11.050 

2048 10.060 9.997 10.010 

4096 9.340 9.270 9.340 

8192 8.570 8.890 8.610 

16384 8.300 7.900 7.860 

20480 7.600 7.680 7.820 

512 8.616 8.664 8.638 

1024 8.970 8.960 8.990 

2048 8.540 8.570 8.582 

4096 8.050 7.970 7.920 

8192 7.290 7.290 7.387 

16384 6.920 6.920 6.970 

20480 6.820 6.440 6.660 

space plots (figures 2 and 4) maintain the characteristic forms of maps upto 10dB SNR. 

The saddle-shaped appearance of  Henon map is apparent at 10dB SNR. At 0dB SNR the 

structures of the maps are lost. Therefore a spurious estimate of dimension is encountered 



36 N Pradhan et al 

at 0dB noise as the noise invades the entire phase-space. Such fallacious estimates can 

be seen in table 1 where the dimension value is 2.059 at 20480 data points; this almost 

approximates the expected value. It is implied that as the number of data points increase, 

the number of local centres need to be increased. The estimations have been repeated for 

100 and 200 local centres on the attractor. It is apparent that a choice of 50 local centres 

suffice only for 4096 points. Our experiments indicate that SVD is able to approach the 

expected value with 30 dB noise. Even at 10 dB noise level, the dimension values for 4096 

points is 2.17 which is not much deviated from the expected value. Similar results are 

seen for the Henon map in table 2. Here data lengths of 8192 points yield values that are 

close to the expected values. The use of SVD in differentiating the signal space and noise 

space is known in signal processing. At moderate SNR (upto 10dB) the SVD approach 

differentiates the signal subspace and the noise sub-space by significant differences in 

their eigenvalues. Therefore the SVD approach may be suitable for signals like EEG. The 

information is utilised to evaluate the dimension of EEG data. 

Different patterns of EEG activities have been analysed with the application of SVD 

method. We have presented the analysis results for alpha, beta, theta, delta and indetermi- 

nate activities. Varying lengths of data segments (512, 1024, 2048, 4096, 8192, 16384 and 

20480) have been used to see whether our primary assumption of determining the record 

length from the model data is valid. It is seen that EEG results fall into a similar pattern 

of chaotic signals of Lorenz and Henon maps. It can be seen that the attractor dimension 

values are high for small data sets (512) and decrease with increase in the length of data 

similar to Lorenz and Henon maps. For delta, the values of the dimension range from 4.641 

to 3.897 for 512 to 20480 data points with 50 to 200 local centres. Using the data length 

criteria from Lorenz and Henon maps, the dimension value may be fixed at 4.416 for 4096 

points and 50 local centres. The attractor dimension thus determined by the SVD approach 

for delta activity is 4.416 which is similar to the range reported in the literature. Alpha 

activity has a value of 7.32 for 4096 data points. The attractor dimensions for beta, theta 

and indeterminate EEG activities have values of 9.93, 6.62 and 8.05 respectively. Different 

patterns may be discerned by their attractor dimension values. It may be seen (figure 6) that 

beta and indeterminate activities are more random-like whereas the delta, alpha and theta 

patterns of EEG tend to become periodic. This is more apparent from the phase-space plots 

(figure 7). Limit-cycle-like behaviour of delta and theta may be seen in the plot. The degree 

of complexity of the signal may be qualitatively inferred from its phase-space trajectory. 

There occurs a loss of complexity of EEG as one moves from a relaxed state of alpha to a 

state of deep sleep predominated by delta. Such loss of complexity of EEG may also be 

encountered in seizure discharges and degenerative conditions of the brain. Neurobiologi- 

cal significance of the low and high values of attractor dimension which reflects the degree 

of complexity needs to be determined by more empirical observations in different brain 

conditions. This paper only reflects the need for a suitable method that could be computa- 

tionally efficient for any real-time or on-line application in neurobiological investigations 

of the brain. We have only presented the data of the known patterns of EEG activity to 

show that the SVD method can be reliably applied to EEG. These estimates are within the 

acceptable ranges of the dimension values in keeping with the degree of complexity of the 

signals. The SVD method for obtaining attractor dimensions to different EEG activities 

presented in this study may have potential applications in the feature detection of EEG 

patterns. It may also help in understanding the underlying dynamics of neuronal processes 

in the generation of EEG. 
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7. Conclusions 

The present study suggests that attractor dimension may be an effective method of deter- 

mining the degree of complexity of the data and may offer a way for feature detection in 

EEG. SVD method is effective with small data sets at moderate SNR. Hence, it may be con- 

sidered as a preferred method of determining the attractor dimension of EEG time series. 

The complex, disorganised and random-like patterns in EEG such as beta and indeterminate 

activities have higher dimension values and thus they may reflect a greater degree of com- 

plexity in their processes. However, the neurobiological significance of high-dimensional 

and low-dimensional values in different brain states are to be determined. Further studies 

are needed to establish the correlations of  attractor dimension values to those of  physi- 

ological functions. The nature of  attractors of  neuronal systems may be of  great help in 

future for understanding the dynamical properties of  brain. In this study, we have seen that 

complex patterns and more random-like EEG activities have higher attractor dimensions. 

The alpha, delta and theta patterns that are quasi-periodic have lower dimension values 

than beta and indeterminate activities. The crucial role of length of data with respect to 

number of local centres in the calculation of attractor dimension has been emphasised. 

The chaotic model of EEG generation i.e. the notion that simple, nonlinear systems can 

produce complex, almost random looking outputs is very appealing. The fact that EEG 

appears unpredictable, yet is bounded to a limited frequency and amplitude range with 

a few basic rhythms and waveforms points to the chaotic aspect of the brain's electrical 

activity. A study of the analysis of EEG has been made here keeping in mind the nonlinear 

deterministic nature of EEG. 
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