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[1] The proposed Surface Water and Ocean Topography
(SWOT) mission would provide measurements of water
surface elevation (WSE) for characterization of storage
change and discharge. River channel bathymetry is a
significant source of uncertainty in estimating discharge
from WSE measurements, however. In this paper, we
demonstrate an ensemble-based data assimilation (DA)
methodology for estimating bathymetric depth and slope
from WSE measurements and the LISFLOOD-FP
hydrodynamic model. We performed two proof-of-concept
experiments using synthetically generated SWOT
measurements. The experiments demonstrated that
bathymetric depth and slope can be estimated to within
3.0 microradians or 50 cm, respectively, using SWOT WSE
measurements, within the context of our DA and modeling
framework. We found that channel bathymetry estimation
accuracy is relatively insensitive to SWOT measurement
error, because uncertainty in LISFLOOD-FP inputs (such as
channel roughness and upstream boundary conditions) is
likely to be of greater magnitude than measurement error.
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1. Introduction

[2] The spatial distribution and temporal dynamics of
surface water storage, as well as the discharge of streams
and rivers, are significant components of the global water
balance [Oki and Kanae, 2006]. Current spaceborne remote
sensing techniques demonstrate great potential for charac-
terization of surface water, including inundated area [Smith,
1997], the gravity field of water storage changes via
GRACE [e.g., Rodell and Famiglietti, 2001; Han et al.,
2005], and surface water elevations via altimetry [e.g.,
Frappart et al., 2006]. However, Alsdorf et al. [2007] noted
that none of the existing remote sensing methods alone is
adequate to provide needed constraints on the global water

cycle. Limitations include poor spatial resolution from the
GRACE mission or point-based measurements from altim-
etry. The Surface Water and Ocean Topography (SWOT)
mission is a swath mapping radar altimeter that would
provide new measurements of inland water surface eleva-
tion (WSE) for rivers, lakes, wetlands and reservoirs.
SWOT has been recommended by the National Research
Council (NRC) Decadal Survey [National Research
Council, 2007] to measure ocean topography as well as
WSE over land; the proposed launch date timeframe is
between 2013–2016.
[3] While calculation of water elevations and storage

changes will be straightforward from SWOT WSE measure-
ments, discharge estimation is more difficult because it
requires key first-order hydraulic parameters, such as chan-
nel bathymetry and Manning’s roughness coefficient, which
are not directly measurable from space. Data assimilation
(DA) represents an opportunity to overcome these limita-
tions. For example, Andreadis et al. [2007] have demon-
strated the assimilation of SWOT measurements into the
LISFLOOD-FP [Bates and De Roo, 2000] raster-based
hydrodynamic model in order to characterize discharge for
a reach of the Ohio River. While Andreadis et al. [2007]
updated the LISFLOOD-FP model states, the purpose of
this paper is to illustrate the estimation of (time-invariant)
bathymetric depth and slope, using synthetically-generated
SWOT measurements and a DA methodology. We also
examine the sensitivity of the bathymetric depth estimates
to SWOT measurement errors.

2. Methods

2.1. Study Area

[4] The dynamics of seasonally flooded wetlands in the
Amazon basin control a variety of ecologically-important
processes, including plant productivity [Wittman et al.,
2004] and nutrient dynamics [Melack and Forsberg,
2001]. Recent modeling [e.g., Coe et al., 2002; Alsdorf et
al., 2005; Wilson et al., 2007] and remote sensing [e.g.,
Hamilton et al., 2002; Alsdorf et al., 2007] studies, have
improved our understanding of Amazon hydraulic processes
such that our SWOT virtual mission hydrodynamic model is
sufficiently representative of reality. In this study, our
domain is a 240 km reach of the Amazon River modeled
by Wilson et al. [2007]; see Figure 1.

2.2. LISFLOOD-FP Hydrodynamics Model

[5] LISFLOOD-FP is a raster-based model designed to
characterize floodplain dynamics over complex topography
[Bates and De Roo, 2000]. Inputs include floodplain DEM,
bathymetric depths, channel widths, channel roughness, and
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upstream flow boundary conditions. In this study, we utilize
the LISFLOOD nominal inputs described by Wilson et al.
[2007]. We model uncertainty for input variables by 1)
making assumptions about the probability distribution func-
tion and 2) using Monte Carlo methods to generate an
ensemble of each input, as follows. Bathymetric slope
uncertainty is modeled with mean unity multiplicative log-
normal error (MLNE) with a coefficient of variation of 0.47,
resulting in a reasonable range of slopes in the ensemble,
from 1.5 to 6.0 cm km�1. The slope was used to calculate
the bathymetric depths to use to drive LISFLOOD. Uncer-
tainty in channel roughness was modeled with mean unity
MLNE with coefficient of variation of 0.06, resulting in a
range of channel roughness from 0.0214 to 0.0276,
corresponding with the uncertainty estimate of Wilson et
al. [2007]. Uncertainty in upstream flow boundary condi-
tions was modeled with mean unity MLNE with coefficient
of variation of 0.06, corresponding with the uncertainty in
estimating flow from a stage-rating curve [e.g., Dingman,
2000]. Uncertainty in the 270 m floodplain DEM is mod-
eled with mean zero additive normal error with standard
deviation of 2.0 meters, corresponding with the uncertainty
estimate of Wilson et al. [2007].

2.3. Synthetic SWOT Measurements

[6] As described by Alsdorf et al. [2007], the technology
for SWOT is a Ka Band Radar Interferometer (KaRIN) with
a swath width of 120 km. Random and systematic mea-
surement errors derive from several sources, including
thermal noise, spatio-temporal variability in path delay
due to atmospheric water vapor, and layover due to topog-
raphy and vegetation [Rodrı́guez and Moller, 2004; Alsdorf
et al., 2007]. WSE measurements and inundated area
classification can be obtained from the radar signal. One
goal of this paper is to examine the sensitivity of the DA
estimates of bathymetric depth to the magnitude of SWOT
measurement errors. We represent SWOT measurements
zobs as the true WSE plus measurement error v. We use a
LISFLOOD-FP simulation to obtain the true WSE, and
assume that v follows a normal distribution with mean mn
and standard deviation sn. We investigate sensitivity of the
DA methodology to random and systematic errors by

varying sn and mn, respectively, for an arbitrary range up
to 50 cm for the WSE measurements, which should encom-
pass the range of error characteristics for the real instrument.
Inundated area measurements errors are assumed to be
unbiased with a standard deviation of 2.5 %.

2.4. Data Assimilation

[7] The estimation of channel bathymetry amounts to the
estimation of model parameters without directly estimating
the model state variables. Here, we extend the linear
parameter estimator of Balakrishnan [2005] to the non-linear
case using Monte Carlo techniques, following Evensen
[1994]. The prior ensemble (see section 2.2) stochastically
characterizes the relationship between WSE, channel ba-
thymetry, and other model inputs. The posterior estimate of
bathymetry (either bathymetric depth or bathymetric slope,
see section 2.5) can be derived from statistics calculated
across the prior ensemble in analysis similar to the EnKF
update [Evensen, 1994]:

aþ
k ¼ a�

k þ CazðCzz þ LvÞ�1ðzobs þ wk � zpred;kÞ ð1Þ

where ak
� and ak

+ are the prior and posterior bathymetry
estimates, respectively, for each replicate k = 1,2,. . .nk,
where nk is the ensemble size; wk is a randomly-generated
mean zero normal variable with standard deviation of sv,
and is a necessary correction to Evensen [1994], as
explained by Burgers et al. [1998]. In this study, we use
an ensemble size nk of 20, following Andreadis et al.
[2007]. The vectors zobs and zpred,k are the observed and
predicted timeseries, respectively, of either WSE or
inundated area, with length nm. The matrices Caz and Czz

are the covariance matrix of the bathymetry estimates with
the predicted measurements, and the covariance matrix of
the predicted measurements, respectively; both are calcu-
lated directly from the ensemble. The matrix Lv is the
assumed error covariance of the WSE measurements,
calculated as the product of the scalar sv

2 and the nm-
dimensional identity matrix; thus, we assume that measure-
ment error variance is constant in space and time, which is
valid as a first-order approximation. Provided the posterior
estimate of bathymetry, a retrospective posterior estimate of

Figure 1. (bottom left) The study area DEM in (top) the Amazon River basin is shown. The white circles are the locations
at which channel depth is estimated. (bottom right) Channel depth is estimated using SWOT floodplain WSE measurements
in the measurement window, illustrated for the far downstream location.
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the WSE and discharge can easily be obtained via forward
model simulation.

2.5. Experimental Design

[8] Our objective is to illustrate the utility of SWOT
WSE measurements for characterizing channel bathymetry,
and to investigate the sensitivity of the bathymetry estimates
to SWOT measurement error. We perform two experiments:
one in which we estimate average bathymetric slope across
the entire domain, and one in which we estimate the
bathymetric depth at five locations along the river. In the
second experiment, we use a localized spatial subset of
the domain to update the bathymetric depth, as illustrated in
Figure 1. We chose a spatial subset size (‘‘measurement
window’’ as labeled in Figure 1) of twenty-five 270 m
LISFLOOD-FP pixels to be of the same order of magnitude
as the spatial correlation length [Isaaks and Srivastava,
1989] of the LISFLOOD-FP floodplain WSE model output.

For both experiments, The spatial and temporal sampling of
LISFLOOD-FP pixels by SWOT was performed by assum-
ing a 16-day Terra-like orbit and the swath coverage
described in section 2.2. We represent the ensemble esti-
mates as the mean across the ensemble for both the prior
and posterior estimates. We use the LISFLOOD-FP model
configuration described by Wilson et al. [2007]; the study
period is 1 June 1995–31 March 1997.

3. Results and Discussion

3.1. Estimating Bathymetric Depth and Slope

[9] The LISFLOOD-FP model was integrated for each
ensemble member; ensemble output is shown in Figure 2. In
the first experiment, bathymetric slope was estimated using
the ensemble of LISFLOOD-FPmodel runs and equation (1),
where the measurements were the inundated area timeseries.
The prior and posterior ensembles of bathymetric slope are

Figure 2. (a) Inundated area output from the LISFLOOD-FP model is shown for the 22-month study period for the
ensemble of model runs. (b) The relationship between the bathymetric slope and temporal mean inundated area is also
shown.

Figure 3. (a) The white and black bars show histograms of the prior and posterior bathymetric slope ensembles,
respectively; the true slope (square) and the prior (circle) and posterior (triangle) ensemble mean are also indicated. For
18 September 1995, (b) true WSE, (c) prior and (d) posterior ensemble mean WSE, and (e) prior and (f) posterior ensemble
standard deviation are shown.
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shown in Figure 3a. The true slope was 4.30 cm km�1,
and the prior and posterior slope estimates were 3.1 and
4.08 cm km�1, respectively. The slope was thus estimated to
within 0.30 cm km�1 (3.0 microradians) of the truth. The
prior and posterior ensemble standard deviations were 1.22
and 0.21 cm km�1, respectively. The uncertainty of the
posterior estimate approximates (to first order) the error in the
posterior estimate. In the second experiment, bathymetric
depth at the five nodes shown in Figure 1 was estimated using
the ensemble of LISFLOOD-FPmodel runs and equation (1),
where the measurements were WSE, as described in
section 2.5. The prior estimate was �4.0 meters, the
truth was �7.4 meters, and the posterior estimate was
�7.96 meters. The absolute error for the posterior was
0.56 meters, which is 84 % less than the prior absolute error.
[10] We repeated the LISFLOOD-FP model integrations

for the posterior ensemble of bathymetric depth obtained
during the second experiment. Figure 3b shows the true
WSE, and Figures 3c and 3d show the prior and posterior
WSE estimates on 18 September, 1995. From inspection,
the posterior WSE estimate was similar to the truth, while
the prior estimate overestimated WSE. The spatial mean
error for the prior and posterior estimates shown was
0.55 meters and �0.19 meters, respectively. The absolute
value of the posterior mean error was 65 % less than the
absolute value of the prior mean error. The posterior
bathymetric depth estimates utilizing SWOT measurements
thus effectively corrected the LISFLOOD-FP simulations
by correcting the bathymetry inputs. The ensemble standard

deviation of the WSE model output provides an estimate of
the uncertainty in the LISFLOOD-FP WSE prediction. The
prior and posterior WSE standard deviation is shown in
Figures 3e and 3f, respectively. The spatial mean standard
deviation for the prior and posterior results estimates was
3.97 m and 1.30 meters, respectively. The posterior uncer-
tainty was thus 67 % less than prior uncertainty.

3.2. Estimating Sensitivity to Measurement Error

[11] Figure 4a shows the sensitivity of the predicted error
sa (i.e., the uncertainty or the ensemble standard deviation
of the posterior estimate of bathymetric depth) and the
actual error ea (i.e., the true bathymetric depth subtracted
from the ensemble mean of the posterior estimate of
bathymetric depth) for the downstream boundary bathymet-
ric depth to measurement error standard deviation, sv,
assuming that mv is equal to zero. Both sa and ea are
insensitive to sv, and sa is much less than ea. Figure 4b
shows the sensitivity of sa and ea to measurement error
bias, mv, assuming that sv is 0.05 m. Larger values of mv are
associated with larger values of ea, and sa is insensitive to
mv. The lack of sensitivity of the error metrics to sv implies
that the model error is much larger than the measurement
error; thus, the DA analysis gives more weight to measure-
ment than to the model in equation (1). The fact that sa is
less than ea is likely due to the fact that the true model
inputs (including channel roughness and upstream boundary
conditions) are significantly different than those of the
ensemble mean. This results points to a potential limitation
of our method; when the model error is much greater than
the measurement error, it is possible for the DA analysis to
underestimate the posterior parameter uncertainty. The sen-
sitivity of ea to mv indicates that in the unlikely case of WSE
measurements with persistent spatiotemporal biases greater
than 10 cm, the posterior bathymetry accuracy is sensitive
to both model error and measurement error.

4. Conclusions

[12] In this paper, we have illustrated a new approach to
characterize river channel bathymetry using synthetic WSE
measurements within the context of a virtual SWOT mis-
sion. An ensemble DA methodology was utilized, in which
LISFLOOD-FP model runs were used to relate the bathym-
etry and the WSE observations. Our estimate predicts the
first two statistical moments of the bathymetric quantities;
i.e., an estimate of the uncertainty or predicted error is
obtained in addition to an estimate of the mean or expected
value of the bathymetric quantity, conditioned on the
observations. We performed two separate proof-of-concept
experiments. In the first experiment, we estimated bathy-
metric slope using inundated area measured over the entire
240 km reach. The slope was estimated to within 0.30 cm
km�1 (3.0 microradians) of the truth. In the second exper-
iment, we estimated bathymetric depth elevations at five
points on the main-stem Amazon River from synthetic WSE
measurements. The absolute error for the downstream outlet
bathymetric depth was 0.56 meters, which is 84 % less than
the prior absolute error. The experiments demonstrated that
bathymetry can be accurately estimated using SWOT WSE
measurements for the design parameters of the satellite, and
that model error will likely dominate over measurement

Figure 4. Estimated (diamonds) and actual (circles)
channel elevation estimation error are shown (a) as a
function of measurement error standard deviation sv for
fixed error mean mv and (b) as a function of mv for fixed sv.
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error, so that estimates of channel bathymetry will be
relatively insensitive to measurement error characteristics.
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