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Abstract. This paper presents a system which estimates blood glucose level (BGL) by non-invasive method

using Photoplethysmography (PPG). Previous studies have shown better estimation of blood glucose level using

an optical sensor. An optical sensor based data acquisition system is built and the PPG signal of the subjects is

recorded. The main contribution of this paper is exploring various features of a PPG signal using Single Pulse

Analysis technique for effective estimation of BGL values. A PPG data of 611 individuals is recorded over

duration of 3 minutes each. BGL value estimation is performed using two types of feature sets, (i) Time and

frequency domain features and (ii) Single Pulse Analysis (SPA). Neural network is trained using above men-

tioned proposed feature sets and BGL value estimation is performed. First we validate our methodology using

the same features used by Monte Moreno in his earlier work. The experimentation is performed on our own

dataset. We obtained comparable results of BGL value estimation as compared with Monte Moreno, with

maximum R2 = 0.81. Further, BGL estimation using (i) Time and frequency domain features and (ii) Single

Pulse Analysis (SPA) is performed and the resulting coefficient of determination (i.e., R2) obtained for reference

vs. prediction are 0.84 and 0.91, respectively. Clarke Error Grid analysis for BGL estimation is clinically

accepted, so we performed similar analysis. Using Time and frequency domain feature set, the distributions of

data samples is obtained as 80.6% in class A and 17.4% in class B. 1% samples in zone C and Zone D. For

Single Pulse Analysis technique (SPA) the distribution of data samples are 83% in class A and 17% in class B.

The proposed features in SPA have shown significant improvement in R2 and Clarke Error grid analysis. SPA

technique with the proposed feature set is a good choice for the implementation of system for measurement of

non-invasive glucometer.

Keywords. Blood glucose measurement; non-invasive; blood glucose level (BGL); neural network;

photoplethysmograph (PPG); single pulse analysis (SPA).

1. Introduction

Diabetes is the breakdown of body’s ability to regulate

amount of glucose (sugar) in the blood. It is a chronic

disorder that currently has no cure. High glucose levels or

hyperglycemia can lead to serious complications. Patients

suffering from Type I and Type II diabetes need constant

monitoring of their blood glucose levels so that proper

insulin dosage can be given to them. Currently all glu-

cometers available in market are of invasive type which are

cumbersome and painful. Hence there is a need for coming

up with non-invasive techniques for evaluating the blood

glucose levels which will ease the patient from discomfort

due to frequent piercing. Due to its enormous potential to

support the monitoring of patient’s health at home and in

the hospital the interest in computer based advanced health

care system has significantly increased in the last few

decades and to aid to this Monte Moreno proposed an

alternative method of noninvasive measurement of blood

pressure and blood glucose levels based on photoplethys-

mography [1, 2].

The research work on non-invasive automatic glucose

estimation began in 1974 by March [3]. Since then many

researchers have explored non-invasive techniques for blood*For correspondence
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glucose measurement. So et al [4] presented various non-

invasive glucose monitoring techniques. Non-invasive glu-

cose determinations can be classified into optical and non-

optical techniques. The optical properties of glucose are

rather specific and these methods have shown better results

and a better correlation with blood glucose content. Optical

based techniques include spectroscopy (thermal, fluores-

cence, Raman, Mid Infra-red and near Infra-red), optical

rotation property and photoplethysmography [5, 6]. The

limitation of thermal spectroscopy is that variations in tissue

temperature could alter cutaneous vascular and refractive

index responses and due to this fact, the method has an

important limitation. The detection of fluorescence when

exciting a glucose solution by an ultraviolet laser light at

308 nm depends on the glucose concentration in the solu-

tion. In humans, the fluorescence phenomenon depends not

only on glucose concentration, but on skin pigmentations

and epidermal thickness and so far its liability has been

demonstrated only in vitro experiments. Raman spectroscopy

technique is impractical to be used in the clinical practice for

development of portable and handy glucose monitoring

device. Mid infrared (MIR) light penetration in the skin is of

only few micrometers which is a significant limiting factor.

Also the MIR spectrum is significantly dependent on the

water content, making this method very sensitive to the

degree of hydration. Thus spectroscopy based techniques are

of interest to estimate and validate the correlation between

the blood glucose and parameters obtained by optical prin-

ciples. With respect to spectroscopy, Near Infra-red (NIR)

overcomes all above limitations so special emphasis is given

to non-invasive blood glucose measurement (NIBGM) based

on IR spectroscopy [6].

Thus, use of an NIR based optical sensor in determina-

tion of blood glucose content to provide a low cost, non-

invasive solution is our primary focus. Photoplethysmog-

raphy (PPG) is a simple, optical based non-invasive tech-

nique used in the development of advanced health care

[7, 8]. The PPG signal is recorded with a sensor similar to

pulse oximeter which works only in near infrared spectrum.

A sensor is built with a pair of photo transmitter and photo

receiver operating at near infrared region (920 nm). A PPG

signal is obtained by illuminating the skin and measuring

changes in the light absorption at this wavelength. The

absorptions depend on the heart beat because the blood

vessels in the finger expand and contract with each heart-

beat. The reflected signal is reproduced as pulse wave near

the detector. Various parameters like blood pressure (BP),

respiratory rate, stroke volume, pulse transit time (PTT),

heart rate variability (HRV), arterial stiffness, and blood

glucose levels can be analyzed using PPG technique

[1, 8–11]. Ramashyamam et al [12] performed non-inva-

sive blood glucose estimation using NIR spectroscopy

using transmission photoplethysmography (PPG). The NIR

spectroscopy has been performed based on NIR LED and

photo detector constituting an optode pair, the analog front

end system has been implemented to get the PPG signal at

the near infra-red wavelengths of 1070 nm, 950 nm,

935 nm. The PPG signal that has been obtained is pro-

cessed and double regression analysis has been carried out

with the artificial neural network using FPGA for estimat-

ing the glucose levels. Monte-Moreno [1] presented a

system for a simultaneous non-invasive estimate of the

blood glucose level (BGL) using a Photoplethysmograph

(PPG) and machine learning techniques. The signal is

sensed using a photoplethysmography technique, an activ-

ity detection module selects a window of 1 min duration

(4500 samples) containing a clean signal. The module

eliminates the artifacts and prevents loss of signal caused

by movement of finger. The signal processing module

extracts the main features and forms the feature vector. The

output of this module is a fixed length vector. Finally, a

machine learning module infers the function that relates the

output of signal processing module to BGL. The system is

trained and tested with cross validation in a population of

410 individuals. Various machine algorithms such as Linear

Regression, Neural network, Support vector machines and

Random forest are implemented on novel data and coeffi-

cient of determination is computed. Random forest

regression technique shows less variability on the cross

validation amongst the other three measures with an

R2 = 0.88 and overall system performance with R2 = 0.9.

The feature vector computed in [1] is at window and

frame level. The difficulty that lies here is that if the frame

length is changed, the pulse features also changes. The start

and end point detection of the pulse waveform in the frames

may change according to the frame duration which would

also affect the computed statistical feature vectors. Here,

we propose an algorithm which detects each pulse in a

frame with a fixed start and end point. Here we consider the

periodicity of pulse and local minima for separating the

pulses within a given window. This technique is called as

SPA (single pulse analysis). Thus pulse variations are more

effectively observed in this technique and the features

corresponding to these variations are computed. The feature

vectors act as an input to neural network and BGL values

are estimated using nonlinear regression. The BGL esti-

mation is improved by a significant factor for nonlinear

regression implemented using neural network. This signi-

fies that the SPA contributes effectively in BGL estimation.

In this paper, we present comparative results of the tech-

nique implemented in [1], along with our proposed algorithm

on a dataset of 611 individuals. Initially, we present the

comparative results obtained with the features referred from

[1], along with some additional features used to train the

neural network. Features like age, weight, saturation oxygen

level, and body mass index have been eliminated from the

referred feature vector as we feel that these features would

add as person-specific dependent parameters for estimation.

To reduce the dependency of these features in the BGL

estimation we eliminated them from feature vector. It is

observed that addition of few new features in time domain

improves the correlation factor. We considered this as the
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basis to investigate single pulse features in time domain. The

final comparative results are presented by implementing

single pulse analysis technique with neural network. Using

neural network, nonlinear regression shows improvement in

the BGL estimation performance. A part of this work was

funded by Board of College and University Development

(BCUD) Savitribai Phule Pune University. The data collec-

tion, preliminary experimentation work of finalizing feature

sets and optimizing neural network topology is carried out

under this work [13]. With the help of the framework

developed in this study, further experimentations on

increased dataset, additional feature sets and fine- tuned

neural network topology are carried out and the results are

presented in this work.

2. Proposed work

The proposed work is divided into four parts: (1) System

Architecture, (2) Database, (3) Methodology, and (4) BGL

estimation experimentation, as explained in the following

sub-sections.

2.1 System architecture

The proposed system architecture is as shown in figure 1.

The system consists of a Pulsed Data Acquisition module

which records the PPG signal of the subject. Simultane-

ously the BGL value measurement of the subject is made

using self-monitoring blood glucometer Accu-Check�
machine [14], as an actual BGL reference value. The

database consisted of 611 individuals whose PPG signals

are recorded for 3 minute duration along with their BGL

values. A pre-processing module eliminates the various

artifacts from the recorded signal and a clean 1 minute

signal is extracted. Further, various features relating to

alterations in PPG signals are computed. These feature

vectors along with target BGL values act as an input to the

neural network which is trained with nonlinear regression.

The trained network is used for testing purpose and the

performance of BGL value estimation is analyzed using R2

and Clarke Error Grid.

The Pulsed data acquisition system consists of PPG

sensor, analog signal conditioning circuit and processor to

interface digitized pulse signal for recording and storing the

data as shown in figure 2.

2.2 Database

The PPG data of 611individuals is recorded over a 3 minute

duration each. For diabetic subjects the data is specifically

recorded at Jahangir Medical and Research Centre, India

and at Freedom from Diabetes Organization India., whereas

for normal subjects date were recorded at Vishwakarma

Institute of Information Technology, India. Initially, the

PPG input measurement is done by the data acquisition

system which is built and tested in house. The actual data

acquisition system is built as per our design specifications

by Biokit, India. This company is in the development of

biomedical equipments required for carrying out experi-

mentation in biomedical engineering field. Finally, using

this system the PPG signal of the individuals are recorded

along with their BGL values on the Accu-Check� machine

simultaneously. The range of BGL values varied from 70 to

450 mg/dl. Table 1 shows the database details.

2.3 Methodology

2.3a Acquisition of PPG signal: The recorded PPG signal is

a digitized signal of 3 minute duration with a sampling rate

of 100 samples per second giving a total of 18000 samples.

A clean data of 1 min duration is extracted from 3 min

recorded signal resulting in 6000 samples. This is done to

eliminate the artifacts and get a clean signal. The gain of

the system is set to 25.

Figure 1. Block schematic of the proposed system architecture.

Figure 2. Pulsed data acquisition system.

Table 1. Database details.

Male Female Age group in years

Diabetic (233) 134 99 4 to 70

Normal (378) 210 168 18 to 70

Total 611
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ADC reference ¼ 5

1024
Volts ð1Þ

Voltage Conversion ¼ Reading� ADC Reference=Gain

ð2Þ
Figure 3 shows the 1 minute extracted signal. The signal

is represented in physical unit as shown in figure 4.

2.3b Pre-processing of the input signal: The PPG signal

quality depends on the subject’s skin tone at measurement,

blood oxygen saturation, blood flow rate and temperature of

the skin. The signal strength will be affected by power line

interference, motion artifacts, muscle artifacts, high fre-

quency artifacts and low amplitude. Thus, it is necessary to

apply pre-processing techniques to remove the noise

introduced in the signal which may affect feature extraction

and overall BGL measurement. Thus, the acquired signal is

now given as an input to the pre-processing module. This

input signal is represented as

Input signal = xðnÞ ¼ fx1; x2; x3; . . . xnj0\n\Swindowg
ð3Þ

The filters used for pre-processing are moving average

filter and Savitzky Golay filter. The base line wandering is

removed by using moving average filter. MA filter is used

to remove base line wandering. The output of filter is

represented by Eq. (4).

YsðiÞ ¼ 1

2N þ 1
½yðiþ NÞ þ yðiþ N � 1Þ þ � � � � � �

þ yði� nÞ�
ð4Þ

Figure 5 shows the input signal and red line shows its

base line variation. Figure 6 shows the zoomed input signal

and figure 7 shows the baseline removed signal. The noise

and other artifacts are removed using Savitzky-Golay filter.

Savitzky-Golay is also called as digital smoothening

polynomial filters or least squares smoothing filters [15]. It

preserves the shape of the pulse and high frequency com-

ponents of data while smoothing it. It gives us a clean and

smooth PPG signal as shown in figure 8.

2.3c Feature extraction: In this section, we summarize the

features computed from the PPG signal. A functional

relationship exists between the PPG signal and blood

Figure 3. One minute input signal.

Figure 4. Input signal in physical unit.
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glucose levels [1]. Thus, the physiological alterations are

measured from the shape of the PPG waveform. These

physiological properties are used as a basis to select the

features. The output of this module is a Feature vector (FV)

that consists of all features relating to statistical variations

in the PPG of the subject. These features reflect the changes

in subject’s hemodynamic conditions [1].

The feature vector consists of global features, which is

computed at window level and local features which are

computed at frame level as, (a) Global features computed

from Swindow and (b) Local features computed from Lframe.

The length of window Swindow is 6000 samples and length

of the frame Lframe is 500 samples. For each frame, the time

length of 5 s is selected so as to get atleast four to five

pulses in a frame [1]. Figure 9 represents the signal window

and frames.

Following section explains the feature extraction details

of PPG signal:

I) Auto Regressive (AR) Model of PPG waveform: AR

coefficients model the spectral envelope of PPG signal.

These coefficients capture the change in the shape of the

Figure 5. Input signal with base line wandering.

Figure 6. Input signal (zoomed).

Figure 7. Input signal with removed baseline wandering.
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pulse occurring due to change in blood flow, flowing

through the different arteries, veins and capillaries [16]. AR

coefficients also model the shape of basic pulse. It is

required that the shape of the AR power spectrum of a

given pulse follow correctly the periodogram of PPG

signal.

Power Spectrum ¼ Sðf Þ ¼ Dt
N

XN�1

n¼0

xne
�j2pfn

�����
�����
2

ð5Þ

We have selected 5th order AR model. AR coefficients

are computed using Yule Walker equations [16], for the

given periodogram which were derived from sample

covariances as mentioned in Eq. (6) for l[0

XN
k¼1

akcxx l� k½ � ¼ �cxx l½ � ð6Þ

Five AR ppg coefficients are extracted from Eq. (6) and

are represented as C1, C2, C3, C4, and C5 to form the feature

vector FVARPPG s follows

FVARPPG ¼ ARPPGC1;ARPPGC2;ARPPGC2;ARPPGC3;

ARPPGC4;ARPPGC5

( )

II) Kaiser Teager Energy (KTE): KTE of the PPG signal

is a well-known method used for finding energy profiles of

signals with periodic signal components [17, 18]. The

property of KTE indicates whether the signal is a clean

signal or a noisy signal. For a periodic waveform if the

mean value of KTE is high then it is a clean signal and if

low it indicates the presence of noise, transients or artifacts

in the signal. The energy profiles are computed at window

level and also at the frame level. At frame levels the energy

is computed using Eq. (7). The KTE operator for real val-

ued signal is given by

KTEðtÞ ¼ xðtÞ2 � xðt þ 1Þxðt � 1Þ ð7Þ
The Teager energy at window level is computed using

Eq. (8)

Figure 8. Input signal smoothed using Savitzky-Golay smoothing Filter.

Figure 9. Signal represented in Window and Frames.
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KTEðtÞ ¼ SwindowðtÞ2 � Swindowðt þ 1ÞSwindowðt � 1Þ ð8Þ
From this sequence of KTE (t), we estimated the AR

model coefficients of order 5 using matlab function aryule

and thus KTEAR vector is generated. At frame level the

Teager energy for nth frame is further computed using

Eq. (9)

KTEnðtÞ ¼ S2frameðt; nÞ � S2frameðt þ 1; nÞS2frameðt � 1; nÞ
ð9Þ

For each frame the statistical parameters like mean KTE,

variance KTE, interquartile range KTE and skewness KTE

are calculated. The statistical averages of these parameters

for n frames are computed as follows:

KTEframe ¼ KTEl;KTEr;KTEiqr;KTEskew
� �

Thus, Feature vector FV of KTE consists of the

following

FVKTE ¼ KTEAR;KTE
l
n ;KTE

r
n ;KTE

iqr
n ;KTEskew

n

� �
III) Heart rate statistics (HR): There exists a functional

relationship between altered glucose levels due to diabetes

and heart rate variability (HRV) [18]. Hence we used HR

variability as a feature, which is computed at window and

frame level. This feature is calculated by finding peaks

from the signal window. The statistical parameters of heart

rate such as, mean, variance, interquartile range and

skewness are also computed from the entire window. Thus,

the feature vector FVHR is represented as follows:

FVHR ¼ Hrln ;Hr
r
n ;Hr

iqr
n ;Hrskewn

� �
IV) Spectral Entropy Statistics: The spectral entropy is a

scalar obtained by computing the entropy function from

normalized power spectrum [19, 20]. This feature measures

the damping of pulses, the spectral shape harmonic com-

ponents and presence of noise. Power spectrum of the nth

frame is computed by taking short time Fourier transform

and normalizing by the squared magnitude of each bin by

total power of the frame and is represented by Eqs. (10) and

(11).

Xn ¼ FFTðSframeðs; nÞ; LFFT ð10Þ

Pn
x ½k� ¼

Xn½k�j j2PLFFT
j¼1

Xn½j�2�� �� k ¼ 1. . .LFFT ð11Þ

Finally, the spectral entropy is computed using power

spectral density as represented by Eq. (12).

Hs
n ¼

XLFFT
k¼1

Pn
x ½k� logðPn

x ½k�Þ ð12Þ

Similarly, to the KTEframe measures, statistical parame-

ters such as mean, variance, interquartile range and

skewness of spectral entropy are computed for each of the n

frames. The feature vector FVHs represents the average

spectral entropy parameters as follows:

FVHs ¼ Hsln ;Hs
r
n ;Hs

iqr
n ;Hsskewn

� �
V) Energy profile of the PPG signal: Past research work

by Leonard et al [21] have shown that rate of respiration

affects blood pressure and in diabetics they are closely

related. To notify these changes, the log energy of the PPG

signal is calculated at frame level in order to estimate

respiratory rate.

LogEn ¼ ð
XLframe
s¼1

S2frameðs; nÞÞ ð13Þ

Using LogEn we compute the AR coefficients of order 5

using matlab function aryule. Log En is a model of the

fluctuations of energy of the PPG relative to the respiratory

rate. Also the average statistical parameters like variance

and interquartile range () are also computed. Hence

FVLogE feature vector is obtained as follows:

FVLogE ¼ LogEAR
n C1; LogE

AR
n C2; LogE

AR
n C3;

LogEAR
n C4; LogE

AR
n C5LogE

r
n ; LogE

iqr
n

� �

Although the morphology of the PPG signal looks sim-

ilar to the arterial pressure pulse, but the wave contour does

not remain the same. The relationship between the PPG

signal and the pressure pulse has been quantified by Mil-

lasseau et al [22]. Hence we hypothesized that the time

domain features should contribute significant information

in BGL estimation (which take into account the alteration

in pulse wave shape over the time). The features computed

based on the pulse alteration nature are shown in figure 10

and the details about the computation is explained in the

following section.

VI) Pulse transit Time (PTT): It is the time difference

between the onsets of two consecutive pulses. PTT is

computed as:

PTT ¼ TP2 � TP1 ð14Þ
Where TP1 is the starting point of the pulse andTP2 is the

ending point of the pulse. PTT is calculated at frame level

and the average statistical parameters of PTT for n frames

are also computed and represented by FVPTT feature

vector as:

FVPTT ¼ PTTl
n ;PTT

r
n ;PTT

iqr
n ;PTTskew

n

� �
VII) Peak to peak Interval (PPint): It is the time dif-

ference between the two peaks of the consecutive pulses.

The R-R interval in the ECG signal correlates closely with

the interval as both represent a completed heart cycle. The

Peak to Peak interval has been used to detect the condition

of heart in PPG signals [23–26]. The peak to peak interval

is calculated at frame level and average statistical
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parameters for n frames are computed and the feature

vector is represented as

FVPPint ¼ PPintln ;PPint
r
n ;PPint

iqr
n ;PPintskewn

� �
In 2008, Lu et al [27] compared the HRV in PPG signals

with the HRV using R-R intervals in ECG signals. Their

results demonstrated that HRV in PPG and ECG signals are

highly correlated. They strongly suggested that PPG signals

could be used as an alternative measurement of HRV. As

mentioned in [18], there exists a functional relationship

between heart rate variability and glucose hence the above

features PTT and PPint are computed as a measure of heart

rate variability in PPG signal.

VIII) Pulse Amplitude: It is the peak amplitude of the pulse

also known as systolic amplitude. The systolic amplitude is an

indicator of the pulsatile changes in blood volume caused by

arterial blood flow around the measurement site [28, 29].

Systolic amplitude has been related to stroke volume [30].

Thus, the pulse amplitude is calculated at frame level and

average statistical parameters over n frames are also computed

and FVPamp feature vector is represented as:

FVPamp ¼ Pampln ;Pamp
iqr
n ;Pampskewn

� �
Thus, the proposed feature vector consists of time and

frequency domain features and is represented as 35

dimensional feature vector (excluding 5 features from

above mentioned 40 features. Detail description is given in

the section 2.4c(II)) as:

FV ¼ fFVARPPG; FVKTE; FVHr; FVHs;

FVLogE;FVPTT ;FVPint;FVPampg
So far the features are computed at frame or at window

level. If the frame length is changed the feature vector

computed also changes. If the start and end point detection

of the frame changes, this effectively changes the nature of

signal in the specified frame length. Thus, due to this

limitation there is a need to analyze feature of each single

pulse acquired in the signal. If the variation in each single

pulse is considered, then the effect of variation of the pulses

within a window can be captured in more depth. Hence a

new feature vector FVnew is proposed which is computed

for each single pulse.

2.3d Single Pulse Analysis (FVnew): We considered peri-

odicity of a pulse and local minima for separating the

pulses within a given window. After separating each pulse

we computed the time and frequency domain features. The

separated pulses of a given window are plotted in figure 11.

It is observed that the pulses show time variant nature and

this information are captured by computing following fea-

tures. Figure 12 shows the sample representation of a single

pulse extracted from the given window. The features such

as energy of pulse, pulse transit time, peak amplitude1, end

amplitude, peak amplitude 2, peak on set time, peak end set

time and pulse interval are extracted for each of the pulse

and averaged over n pulses for a given window. The energy

of each pulse is calculated by taking FFT of each pulse in

the dataset. The Pulse transit time (PTT) is the total time

period of the pulse. From figure 11 it is observed that each

pulse has different pulse duration. Here, Peakamp 1 rep-

resents the total peak amplitude, End Amplitude corre-

sponds to amplitude of the pulse arising after zero crossing

of pulse i.e., negative peak amplitude and Peakamp 2 rep-

resents the difference between Peakamp 1 and End

Figure 10. Pulse features.

Figure 11. Pulse separation observed of a given window.
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amplitude. Pulse onset time (Pst) is the time difference

from start to peak of pulse duration. Pulse end set time (Pet)

is the time difference from peak of pulse to end of pulse

duration. Pulse interval (Pint) is the time period of the pulse

starting from zero point upto the next zero crossing point.

Thus, we computed seven distinct features for each of the

pulse in a given window and a feature vector is given by:

PFV ¼ fEnergy;Peakamp1;Peakamp2;Endamp
PTT ;Pint;Pst;Petg

Further, we computed their statistical parameters such as

mean, variance, interquartile range and skewness for each

of the seven features for a given window. This forms a 28

dimensional feature vector FVnew (7 features * 4 statistical

parameters):

FVnew ¼ fPFVl
n ;PFV

r
n ;PFV

skew
n ;PFViqr

n g
Overall, we extracted two different types of feature sets,

(1) time and frequency domain at frame level and (2) single

pulse analysis. Time and Frequency domain feature vector

(FV) consists of 35 dimension and single pulse analysis

results into 28 dimension feature vector. Further experi-

ments are carried out using these two types of feature sets.

2.4 BGL estimation

In this study we implement neural network based BGL

estimation for two feature sets, i) Time and Frequency

domain at frame level and ii) Single Pulse Analysis. We

also perform baseline experiments on our dataset. Follow-

ing sections describes in detail about datasets, neural net-

work topology and detail results.

2.4a Training and testing dataset: Pulse plethysmograph

signal (PPG) is recorded using Pulse Data acquisition

system as shown in figure 2. Section 2.1 describes in detail

about the data acquisition system. We recorded three

minute of PPG signal from each of the 611 individuals

along with their BGL values. Each data signal was

observed thoroughly for its continuity over the entire three

minute duration along with the amount of power line

interference, and baseline drift. Signal samples highly

corrupted with noise, extreme baseline drift and any dis-

continuity are eliminated from training data set. To reduce

the computational complexity, we extracted a one minute

window signal from three minute duration PPG signal. For

the reliable performance of neural network we require large

number of data samples for training purpose. Apart from

this, the distribution of the samples from normal range to

extreme diabetic condition should be evenly distributed to

generate reliable neural network models. For this purpose,

we extracted multiple instances of one minute window out

of three minute recorded PPG signal of 611 individuals

with suitable time overlap. We extracted 3 to 4 one minute

window from each individual PPG data. With this process

we obtained around 1900 window segments of 1 min

duration. By randomly observing the window segments we

selected 1500 window segments which are noise, power

line interference free and useful for experimentation.

Out of 1500 window segments we distributed these sig-

nals into 3 sets of 500 segments each namely Train1, Train2

and Test datasets. Train1 and Train2 datasets are used

exclusively for training purpose and test dataset for testing.

500 distinct segments in each of the training dataset, Train1

and Train2 are selected with approximately equal distri-

bution of BGL values (range 70 to 450 mg/dl) from total of

1500 window segments. Remaining 500 segments are used

as test dataset. Even though the BGL value distribution of

segments in the test data is not uniform but it covers all the

range of BGL values from 70 to 450 mg/dl. The distribu-

tion of BGL values in each dataset is represented by the

histogram shown in figure 13.

2.4b Neural network configuration details: We used three

hidden layer neural network topology. Preliminary experi-

mentation on 29 dimension feature vector (baseline) is

carried out with varying neurons in each layer to estimate

the best neural network topology. We started with 2 hidden

layers and (12, 8) neurons in layer1 and 2, respectively.

Further, we increased one more layer with 10, 8, 4 neurons

in layer 1, 2, 3, respectively. Further experimentation with

varying neurons is carried out and we found that 20, 15, 10

neuron configuration performs best with maximum R2

value of 0.73.The results are shown in the section 2.4c. We

finalize 3 hidden layers with (20, 15, 10) neuron configu-

ration for baseline and time and frequency domain feature

vector and (30, 20, 10) for Single Pulse Analysis feature

vector.

2.4.c Results: We performed experiments with three dif-

ferent feature sets, (i) baseline system (29 feature), (ii) time

and frequency domain features (with 35 dimensions) and

Figure 12. Single Pulse Features.
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(iii) Single Pulse Analysis (28 features). We used coeffi-

cient of determination (i.e., R2) and Clarke Error Grid

Analysis [31], as a performance measure. We also com-

puted Spearman coefficient of correlation and Pearson

coefficient of correlation. Clarke Error Grid Analysis is

clinically accepted for validation of BGL estimation. The

grid is divided into 5 regions [31]. Clarke grid scatter plot is

plotted using Matlab Function [32]. Region A represents

prediction with 20% of the actual BGL value. Region B

represents prediction more than 20% away from actual

BGL but do not give false predictions. Region C represents

false positives of either cases of hypoglycemia or hyper-

glycemia. Region D represents predictions that fail to detect

cases of hypoglycemia or hyperglycemia. Region E repre-

sents prediction errors which could wrongly classify cases

of hypo or hyperglycemia. Following section gives the

details about the results of baseline system, time and fre-

quency domain features and Single Pulse. We trained

neural network separately with (i) Train set 1, (ii) Train set

2 and (iii) Train set 3 (Train set 1 and Train set 2 combined)

dataset.

We performed the testing in the following manner:

i. Training network :Train set 1, Testing : Train set 2

and Test dataset

ii. Training network: Train set 2, Testing: Train set 1

and Test dataset.

iii. Training network : Train set 3, Testing : Test dataset

I) Baseline system: We considered twenty nine dimen-

sional features vector for our baseline system. The feature

vector is similar to [1], where author used 33 dimensional

feature set. We excluded age, weight, body mass index, and

oxygen saturation features and considered 29 dimensional

features. One of the reasons to exclude these features is to

eliminate the person-specific dependency. Table 2 repre-

sents baseline results on our test data set and results

obtained by Monte-Moreno [1].

The results obtained on our dataset using our baseline

feature vector (29 dimensional) are comparable with results

obtained by Monte-Moreno [1]. Considering R2 value, both

the training dataset show comparable results on test data.

Train2 dataset shows slightly more R2 value which indicates

more balanced training data for a given test conditions. We

use these results as a reference for our further experimentation

and the results validate our methodology, neural network

configuration settings and feature extraction process.

II) Time and Frequency Domain Features: Here, we

considered thirty five dimensional feature vector. These

features are computed based on autoregressive coefficients,

Kaiser Teager energy, heart rate, spectral entropy, log

energy, etc. The details about these feature extraction is

explained in section 2.3c. We call this feature vector FV

and are given by

Figure 13. Histogram of BGL distribution of training dataset.

Table 2. Baseline results and results obtained by [1].

Reference

[1]

Baseline

System

Train set 1

and testing

on Test

dataset

Baseline

System

Train set 2

and testing

on Test

dataset

Baseline

System

Train set

3and testing

on Test

dataset

Features 33 29 29 29

Testing

Data

Set

410 500 500 500

R2 0.54 0.73 0.81 0.71
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FV ¼ fFVARPPG; FVKTE; FVHr; FVHs;

FVLogE; FVPTT ; FVP int; FVPampg
In addition to base line features (excluding KTE mean,

KTE variance, KTE interquartile range, Heart rate vari-

ance, Heart rate interquartile range), we added time domain

features like pulse transit time PTT, peak to peak interval

PPint, and Pulse amplitude.

Table 3 represents performance of Time and Frequency

domain features for BGL estimation using R2 and Clarke

Error Grid Analysis. Figure 14 represents Clarke Error

Grid plot for the train set 3. From table 3, considering 3

different training networks, the performance of network

Train set 3 shows highest R2 values. Also the R2 values

across three different training networks are consistent i.e.,

variations observed in R2 value is small (0.73 to 0.84).

Comparing with the baseline results given in table 2, R2

value is significantly improved from 0.71 to 0.84 for train

set 3 network. It is also observed that the correlation

coefficient also shows consistency across the training net-

work and high correlation (max 0.92).

As shown in figure 14, region A represents 80.6% pre-

diction within 20% of actual BGL value. Region B repre-

sents 17.4%, region C, D and E are negligible.

III) Single Pulse Analysis: Here, we considered twenty

eight dimensional feature vector. The features are com-

puted based on Pulse features like energy, pulse transit

time, pulse interval, pulse amplitude, etc. The details about

the feature extraction are explained in section 2.3d. We call

this feature vector as FVnew and is given by

FVnew ¼ fPFVl
n ;PFV

r
n ;PFV

skew
n ;PFViqr

n g
Table 4 represents performance of Single Pulse for BGL

estimation using R2 and Clarke Error Grid Analysis. Fig-

ure 15 represents Clarke Error Grid plot for the Train set 3.

Table 4 shows highest R2 value and correlation coefficient

across all 3 training networks and test data (R2 = 0.91)
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Figure 14. Clarke Error Grid Analysis of Time and Frequency

domain features, training on Train set 3 and testing on test data.
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(Spearman coefficient = 0.94 and Pearson coeffi-

cient = 0.95). Also the R2 value, Spearman coefficient and

Pearson coefficient across all 3 training networks and all

test data sets show more consistency as compared to results

obtained by time and frequency domain (table 3). Com-

bined Training dataset i.e., Train set 3 shows more balanced

distribution s of BGL samples ranging from 70 to 450 mg/

dl and reflected in highest R2 value and highest prediction

accuracy. Class A and Class B BGL determination are

clinically accepted and hence almost 100% prediction

accuracy is achieved by this technique.

3. Discussion and conclusions

In this work, we considered two sets of feature vector; (1)

Time and frequency domain and (2) Single Pulse Analysis.

Initially, we performed experiments with feature vector

proposed by Monte-Moreno [1]. We obtained marginal

improvement in the results. We used this as baseline results

and to validate our methodology. Using Time and Fre-

quency domain features (35 dimensional feature set) we

observed significant improvement in R2 (0.84) value as

compared to our baseline results (i.e., R2 = 0.71) for train

set 3. This feature vector includes time domain features

which were not included in the baseline system. This shows

that including the time domain features helps in estimating

BGL value better. Further, experimentation based on Single

Pulse Analysis which takes into account time varying nat-

ure the pulses showed further improvement in BGL value

estimation (i.e., R2 = 0.91) as compared to Time and Fre-

quency domain (i.e., R2 = 0.84) for train set 3.

To summarize the work, 3 different datasets are used for

training of neural networks. Train set 1 and Train set 2 each

consists of 33% of entire data and 33% data is used

exclusively for test set. Both the feature sets i.e., Time and

frequency domain and Single Pulse analysis show compa-

rable performance across 3 different training data sets. ThisT
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Figure 15. Clarke Error Grid Analysis of Single Pulse Analysis

features training on Train set 3 and testing on test data.
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shows that 33% data of training set which consists of bal-

anced BGL values (i.e., from 70 to 450 mg/dl), can esti-

mate BGL values with high prediction accuracy. This

indicates that the features that were used for training the

networks, contribute significantly in prediction of BGL

value. The performance of train set 3 which is almost 67%

of entire data (balanced) shows the highest R2 value with

both the feature sets (R2 = 0.84 for Time and frequency

domain, R2 = 0.91 for Single Pulse Analysis) and correla-

tion coefficient (0.92 Time and frequency domain and 0.95

for Single Pulse Analysis). Among the Time and Frequency

domain features and Single Pulse Analysis, results obtained

using Single Pulse analysis technique shows highest

R2 = 0.91 and prediction accuracy. Single Pulse analysis

technique effectively captures time varying nature of the

pulses present in the acquired PPG signal. We captured

these variations by separating the pulses and extracted

single pulse features. From table 4 it is observed that this

technique shows significant contribution in BGL value

estimation.

Currently, we used only time domain features extracted

for Single Pulse analysis method but further, frequency

domain features could be explored to investigate its sig-

nificance in BGL value estimation. The system imple-

mented in this study excluded subject-dependent features

and hence can be directly adopted to implement a low cost

modular non-invasive glucometer for commercial use.
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