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Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically,

commonly referred to as breast percent density (PD%), is one of the most significant risk factors for

developing breast cancer. Approaches to quantify breast density commonly focus on either semiauto-

mated methods or visual assessment, both of which are highly subjective. Furthermore, most studies

published to date investigating computer-aided assessment of breast PD% have been performed using

digitized screen-film mammograms, while digital mammography is increasingly replacing screen-

film mammography in breast cancer screening protocols. Digital mammography imaging generates

two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e.,

“FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice.

Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed

digital mammography images would be beneficial in terms of direct clinical application and retro-

spective analysis.

Methods: This work proposes a new algorithm for fully automated quantification of breast PD%

based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM)

classification, optimized for the imaging characteristics of both raw and processed digital mammog-

raphy images as well as for individual patient and image characteristics. Our algorithm first delineates

the breast region within the mammogram via an automated thresholding scheme to identify back-

ground air followed by a straight line Hough transform to extract the pectoral muscle region. The

algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from

image properties of the specific mammogram to subdivide the breast into regions of similar gray-

level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue

are likely fibroglandular, which are then aggregated into a final dense tissue segmentation that is used

to compute breast PD%. Our method is validated on a group of 81 women for whom bilateral, medi-

olateral oblique, raw and processed screening digital mammograms were available, and agreement

is assessed with both continuous and categorical density estimates made by a trained breast-imaging

radiologist.

Results: Strong association between algorithm-estimated and radiologist-provided breast PD% was

detected for both raw (r = 0.82, p < 0.001) and processed (r = 0.85, p < 0.001) digital mammograms

on a per-breast basis. Stronger agreement was found when overall breast density was assessed on a

per-woman basis for both raw (r = 0.85, p < 0.001) and processed (0.89, p < 0.001) mammograms.

Strong agreement between categorical density estimates was also seen (weighted Cohen’s κ ≥ 0.79).

Repeated measures analysis of variance demonstrated no statistically significant differences between

the PD% estimates (p > 0.1) due to either presentation of the image (raw vs processed) or method of

PD% assessment (radiologist vs algorithm).

Conclusions: The proposed fully automated algorithm was successful in estimating breast percent

density from both raw and processed digital mammographic images. Accurate assessment of a

woman’s breast density is critical in order for the estimate to be incorporated into risk assessment

models. These results show promise for the clinical application of the algorithm in quantifying breast

density in a repeatable manner, both at time of imaging as well as in retrospective studies. © 2012

American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4736530]
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I. INTRODUCTION

Breast cancer, which is estimated to affect one in eight women

over the course of their lives, is the most commonly diagnosed

cancer in women and is the second leading cause of cancer

death in women in the United States after lung cancer.1 Work

by Gail et al. has shown that several factors are associated

with an increased risk for developing breast cancer, such as

current age, age at menarche, age at first live birth, and num-

ber of first-degree relatives with breast cancer.2 Knowledge of

individual risk is critical for the creation of tailored screening

recommendations3–5 and to determine if preventative strate-

gies might be initiated.6

Beginning with the pioneering work of Wolfe,7, 8 mul-

tiple studies have established that the relative amount of

fibroglandular tissue in the breast as estimated mammograph-

ically, often referred to as breast percent density (PD%),

is an image-derived metric that has been shown to be an

independent risk factor for breast cancer, in fact the most

significant after age.9 Currently, the most commonly used

methods to assess breast density rely either on subjective,

visual assessment by radiologists in distinct categories10

or through interactive, semiautomated image thresholding.11

Categorical assessment, such as with the American College of

Radiology (ACR) 4-class breast-imaging reporting and data

systems (BIRADS) system10 (Fig. 1), has been reported

to have good agreement between readers,12 with reported

Cohen’s weighted kappa13 coefficients ranging between

κ = 0.61 and κ = 0.84.11, 14 Categorical methods for the as-

sessment of density are known to have relatively lower lev-

els of agreement15 when assessing moderately dense breasts

versus completely fatty or dense breasts. Interactive image-

thresholding methods, which require user interaction, are

known to be both time consuming and susceptible to reader-

variability,16 limiting translation of such tools into routine

clinical workflow.

The majority of automated algorithms presented in the

literature to date for the assessment of breast density have

been developed for digitized screen-film mammograms

(SFM).17–22 However, digital mammography (DM) is in-

creasingly replacing film mammography in breast cancer

screening.23 Digital mammography images could have a

number of different image characteristics compared to SFM

images that may need to be considered when adapting

techniques developed on SFM to DM. For example, digital

mammography is known to have a higher dynamic range

than screen-film mammography.24 This in turn results in

FIG. 1. Sample digital mammograms of BIRADS categories I–IV digital

mammograms in order of increasing percent density. (I) <25%; (II) 26%–

50%; (III) 51%–75%; (IV) >75%.

higher contrast and a richer gray-level intensity profile

of the breast tissue that does not necessarily fulfill the

unimodal or bimodal profile assumptions often made for

digitized film mammography.11, 21 Another consideration is

that the inherent granularity of the film used in screen-film

mammography is absent in digital mammography, leading

to different noise properties between the two image types.25

Developing a method tailored to the image characteristics of

digital mammograms is thus critical for improved assessment

of breast density in clinical practice.

Very limited work has investigated automated assess-

ment of breast density in full-field digital mammography.26–31

Most of these works have shown that the physics of image

acquisition in digital mammography, different than that

screen-film mammography, is useful in the estimation of

breast density. For example, Lu et al. show that breast density

can be estimated by a regression model of image-acquisition

parameters.27 Oliver et al. describe a statistical, principle

component analysis-based segmentation scheme based on lo-

cal texture properties.28 Heine et al. have recently proposed a

calibration method coupled with first-order histogram statis-

tics, namely, mean and standard deviation, as an automated

surrogate for breast density assessment from digital mammo-

grams for the purposes of estimating cancer risk directly.29

However, most of these works only provide limited validation

and some, such as the work by Heine et al. described above,

explicitly requires the use of raw mammograms.

In addition to the two-dimensional area measures de-

scribed above, it has been recently proposed that volumet-

ric breast density estimation may allow for improved as-

sessment of the fibroglandular tissue content of the breast,32

which may in turn to lead to improved breast cancer risk

assessment.33 Recent work has investigated automated meth-

ods to assess dense tissue volume.30, 31, 34–36 Both area-based

and volume-based density estimates have been shown to be

indicative of the risk for breast cancer. However, studies to

date have yet to conclusively show that volumetric density

measures can surpass area-based measures in breast cancer

risk assessment.37, 38 Therefore, it remains beneficial to con-

tinue investigations of area-based density measures, given that

area breast percent density is currently the most validated

imaging metric in breast cancer risk assessment.

A limitation common to digital mammography breast den-

sity estimation algorithms presented to date is the focus of

density analysis on a single type of digital mammographic

image, while, in general, two types of images are generated

during the digital mammography imaging process. Digital

mammography image acquisition initially generates an im-

age which is proportional to the x-ray attenuation through the

breast, known as the raw image (i.e., FOR PROCESSING;

often with a 14-bit gray-level depth). Then, vendor specific

postprocessing algorithms are applied to increase lesion con-

spicuity before radiological presentation, creating what is

known as the processed image (i.e., FOR PRESENTATION;

often with a 12-bit gray-level depth). While it is reason-

able to assume that breast density estimation should be

obtained directly from the raw images since they retain the

original relationship with the physical properties of the breast
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tissue,39 most medical centers use only the postprocessed

images for clinical purposes, which are thus, in turn, the

only ones archived out of consideration of cost and storage

constraints. Therefore, application of methods requiring raw

mammograms, such as the method by Heine et al.40 described

above, could be difficult in cases where large retrospective

epidemiologic or multicenter studies would be desired. There-

fore, development of an algorithm that can effectively esti-

mate breast PD% in both raw and postprocessed digital mam-

mogram would be beneficial both in terms of direct clinical

application and retrospective research-related studies.

Previous work has shown that certain physics parameters

of DM image acquisition, such as x-ray tube current and expo-

sure, correlate to PD% measured from raw mammograms.27

Image gray-level characteristics such as first-order histogram

statistics and texture descriptors have also been shown to be

useful in identifying dense tissue in digitized mammograms.21

In addition, patient-specific characteristics such as age and

breast thickness are also known to be associated with mea-

sured PD% from digitized film mammograms.18 Therefore, in

this work, we introduce an innovative methodology optimized

for the quantification of breast percent density that is tailored

to the characteristics of the specific image and specific patient,

and that is equally applicable to both raw and postprocessed

mammographic images, thus increasing clinical utility. There-

fore, we propose a new algorithm for fully automated quan-

tification of breast PD% based on adaptive multiclass fuzzy c-

means (FCM) clustering and support vector machine (SVM)

classification that is optimized for the imaging characteristics

of both raw and processed digital mammography as well as

on individual patient and image characteristics. Our algorithm

involves a series of steps; (i) breast region and pectoral mus-

cle segmentation; (ii) z-score normalization of the gray-level

intensity values within the segment (iii) adaptive histogram-

based determination of the optimal number clusters for FCM

segmentation; and (iv) dense tissue cluster merging based

on features predictive of PD% through a SVM aggregation

classifier. A flowchart outlining these steps is provided in

Fig. 2. We validate our algorithm by comparing to radiologist-

provided estimates of PD% (considered here as our gold

standard) and ACR-BIRADS categorical density on a set

of 81 cases with bilateral mediolateral oblique (MLO) nor-

mal digital screening mammograms, in both raw and ven-

dor postprocessed format (a total of 324 images), which

cover the full spectrum of breast densities seen in clinical

practice.

FIG. 2. Flowchart of the proposed algorithm.

II. METHODS AND MATERIALS

II.A. Study population and DM image acquisition

This study was in compliance with the Health Insurance

Portability and Accountability Act (HIPAA) and received

institutional review board (IRB) approval. Anonymized full-

field DM images acquired as part of a separate IRB-approved

multimodality breast cancer screening trial previously com-

pleted in our department (July 2007–March 2008) were retro-

spectively analyzed. Women who participated in the trial were

asymptomatic volunteers who presented for annual screening

mammography and had given written informed consent

before their participation. Bilateral, MLO view DM imaging

was performed using a full-field digital mammography unit

(Senographe DS; GE Healthcare, Chalfont St Giles, UK).

The raw digital mammograms were acquired at a 100 µm

isotropic resolution using a 14-bit gray-level depth. The raw

mammograms were processed using PremiumViewTM (GE

Healthcare), a vendor-specific, embedded adaptive histogram

equalization algorithm41, 42 which produces 12-bit gray-level

postprocessed images. Of the 83 women originally enrolled

in the trial, two were excluded from this analysis: one due

to a diagnosis of breast cancer, the other due to insufficient

image quality. The remaining 81 women were, therefore,

available for retrospective breast density analysis.

II.B. Radiologist estimation of percent breast density

Area-based breast PD% was estimated by a trained breast-

imaging radiologist for these 81 women on a per-breast ba-

sis using a validated, interactive, image-thresholding tool for

breast PD% estimation (Cumulus, Ver. 4.0, Univ. Toronto)

(Ref. 43) in both the raw and processed images, for a total

of 324 digital mammograms. As a result of the different visu-

alization of the breast tissue between raw and postprocessed

images, tailored approaches were adopted for the estimation

breast PD%.39 Briefly, for the postprocessed DM images, the

digital mammograms were first windowed by the radiologist

for optimal display. Following this, the background air region

was excluded via a manually determined intensity threshold,

therefore, allowing the breast boundary to be designated. The

pectoral muscle region was subsequently excluded via manual

delineation of the pectoral muscle edge. The remaining por-

tion of the image was designated as the breast tissue, and the

total area of this region is computed by the software. Follow-

ing identification of the breast, a second, user-defined gray-

level intensity threshold is selected in order to define the gray-

level cut-off between fibroglandular and adipose tissue, and

those pixels within the delineated breast region above this

gray-level threshold are designated as fibroglandular tissue.

PD% is then computed as the percentage of the breast area

occupied by fibroglandular tissue. A similar process is used

to estimate PD% from raw images, except that since the raw

images are not optimized for clinical visualization and inter-

pretation, the digital mammographic image were rewindowed

by the radiologist before each of the segmentation and thresh-

olding steps described above. Two readings per image were

performed by the radiologist, each six months apart, and the
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TABLE I. Distribution of assigned BIRADs density categories for raw and

processed DM images.

Assigned BIRADs category

DM image type I II III IV

Raw 75 57 26 4

Processed 69 73 16 4

average of the two reading was considered as our gold-

standard in order to minimize the effects of intrareader vari-

ability. The intrareader correlation and 95% confidence inter-

val (CI) between the two radiologist PD% readings was found

to be r = 0.95 (p < 0.001; CI: 0.93–0.97) for the raw DM im-

ages and r = 0.93 (p < 0.001; CI: 0.90–0.95) for the processed

DM images. Table I provides the distribution of BIRADs den-

sity categories assigned to the 324 DM images in this dataset.

II.C. Automated breast density estimation

Prior to automated breast density estimation, the DM

images are standardized in a three-step process. First, his-

togram equalization is applied as a standard preprocessing

step to improve the relative tissue contrast in the raw digital

mammograms.41, 44 The histogram equalization method used

in this work involves log-normalization of the original raw

DM intensity values which are then converted to calibrated

optical density values based on a validated characteristic

curve (Yaffe et al., University of Toronto).35 Figure 3 shows

an illustration comparing the effect of this histogram equal-

ization algorithm on the intensity distribution of a raw digi-

tal mammogram as compared to vendor-processing. Second,

in order to both smooth image noise as well as reduce com-

putational time, all digital mammograms are down-sampled

by a factor of 4 from an original image pixel-resolution 2294

× 1914 to a 574 × 479 resolution using bicubic interpolation.

Finally, to take advantage of the symmetric anatomy between

left and right breasts, all images considered in this work are

aligned so that the chest wall is on the left image edge; effec-

tively all right MLO view mammograms are reflected about

the Y axis of image.

II.C.1. Breast tissue area segmentation

MLO-view mammograms can be geometrically subdi-

vided into three distinct regions: the chest wall, including the

pectoral muscle; the breast tissue, comprised primarily of adi-

pose and fibroglandular tissues; and the background air re-

gion. In order to quantify breast density, accurate segmenta-

tion of the breast from the other regions within the image is

necessary. Thus, breast area segmentation is performed to first

identify the tissue-air interface and then to identify the bound-

ary between breast tissue and the pectoral muscle.

Although previous studies discuss applying a direct thresh-

old to identify the air region in a mammogram,20, 22 few ex-

plicitly discuss how the value of that threshold is determined.

Background air will often have a nearly uniform gray-level

intensity of approximately zero in digital mammography, in-

dicative of the fact that the air region is the most radio-lucent

portion of the image. However, appropriate determination of

this threshold becomes important for those few images where

this assumption does not necessarily hold, as is illustrated in

Fig. 4, which could occur for various reasons such as mis-

calibration of the mammography unit or due to vendor image

postprocessing algorithms.

Therefore, in this work, the body-air interface boundary is

determined by a threshold based on the gray-level intensity

histogram, independent of any prior assumptions. The gray-

level value of the edge, E, of the first major component, or

region, of the gray-level histogram, H, can be computed as

E = min(t) : t = {H (i) ≥ max(H (I )) · PE : i ∈ I }, (1)

where i is the set of gray-level intensity values found in image

I, and PE is an adjustable proportionality used to define the

edge of the significant components of the histogram. This in

turn allows the computation of an appropriate air-threshold,

th, by calculating

th = min(g) : g = {H (i) ≤ max(H (I )) · PT H : i > E},

(2)

where PTH is an adjustable proportionality used to define

which gray-level regions of the histogram comprise a nominal

fraction of the image. Both PE and PTH can be either learned

or explicitly defined; in this work, we found that PE = 20%

and PTH = 1% performed reasonably well to allow for accu-

rate identification of the breast-air boundary, an illustration of

which is provided in Fig. 4.

Once the air-tissue interface is identified, we determine

the boundary between the pectoral muscle and breast tis-

sue areas using a previously validated algorithm based on

a straight line Hough transform.20 Briefly, a canny edge

operator45 is applied to create an edge map, which is then

collected in a two-dimensional, (ρ,θ )-line-parameterization

histogram of Hough space. The pectoral-boundary line can

then be approximated by a straight line between θ = 40◦ and

θ = 80◦ whose angle and location in image-space is defined

by the (ρ,θ ) location of the global maxima of the Hough-

space histogram.

II.C.2. Adaptive fuzzy c-means clustering

Once the breast tissue region within a given digital mam-

mogram is identified, we perform an unsupervised, k-class

FCM clustering of the breast region gray-level intensities,

where the number of clusters, k, is adaptively determined

on a per-image basis, in order to partition the breast tissue

into sub-regions of relatively homogenous gray-level inten-

sity clusters.26 The output of FCM clustering is known to be

dependent on the a priori definition of the number of clusters.

Therefore, given that the overall distribution of the pixel in-

tensity values in a digital mammogram may be thought of as

an admixture of several different Gaussian distributions, we

adaptively compute k for each image based on the properties

of the histogram of the pixel intensity values within the breast

region. To accomplish this, the gray-level intensity histogram

Medical Physics, Vol. 39, No. 8, August 2012
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FIG. 3. Comparison of gray-level intensity distributions of the breast region in “For Processing” (i.e., “Raw,” images a and b), histogram equalized raw (i.e.,

images c and d) and “For Presentation” (i.e., “Processed”; images e and f) digital mammograms of a BIRADS III category woman.

of the breast tissue is first normalized to have a zero-mean

and unit standard deviation (i.e., z-score normalization). Z-

score normalization in this manner allows for rescaling of the

histogram percentiles and FCM intensity-centroids computed

from the different DM images to a common range without al-

tering first-order histogram statistics (i.e., skewness, kurtosis)

as they are useful in distinguishing very fatty and very dense

breasts.

The normalized histogram is then smoothed using a dis-

crete Gaussian kernel using the formalization by Harris46 such

Medical Physics, Vol. 39, No. 8, August 2012
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FIG. 4. Illustration of adaptive air threshold detection on a digital mammogram with nonzero air pixels. (Left) Histogram showing the location of the first major

rise in gray-level values, E, (long-dashed line) and the computed air threshold, th, (short-dashed). (Right) Identified breast-air interface contour (white line).

that the kernel shape is invariant with respect to the kernel

width, in order to minimize variation in histogram intensity

values (Fig. 5). The parameters (kernel width and alpha) can

be defined explicitly or learned via an optimization step, and

the effect of these settings on algorithm performance is ex-

plored in this work. After smoothing, the number of local

peaks present in the histogram is assigned as k and can be

defined as the number of zero-crossings in the first derivative

with negative second derivatives such that

k = |{H ′(gn) = 0 : gn ∈ MB ; H ′′(gn) < 0}|, (3)

where H(gn) is the smoothed histogram of the normalized

gray-level intensity values, gn, within the segmented breast

region, MB. It is worth noting that for the purposes of this

analysis, k is restricted to be at least two in order to ensure the

presence of at least one dense and one adipose cluster. Fur-

thermore, while the upper limit of k can theoretically be un-

bounded, in this work an upper bound of k = 13 is imposed in

order to ensure computational efficiency as well as minimize

the chance of over-fitting.

Once the appropriate number of clusters is computed for

a given image, k-class FCM clustering47 is performed on

the z-score normalized gray-level values in the breast region.

The FCM algorithm applied in this work uses a standardized

initialization of intensity cluster centroids distributed evenly

from a normalized intensity of −4σ to 4σ , where σ is the

standard deviation on the intensity value distribution in the

breast. These cluster centers are then iteratively adjusted to

minimize a weighted sum of squares error function,48 ulti-

mately yielding cluster centroids and a cluster-membership

matrix for every intensity value in the breast region. After

cluster centroid optimization, every pixel is assigned to the

cluster for which that pixel’s intensity value has the highest

membership score. In this manner, clusters ultimately repre-

sent regions of the image of similar gray-level intensity and

thus regions of similar x-ray attenuation properties. An exam-

ple histogram for a k = 6 case and the resultant FCM cluster-

ing is shown in Figs. 6(b) and 6(c), respectively.

II.C.3. Cluster classification and percent
density calculation

Breast PD% is defined as the ratio of dense tissue area

to the total breast area as seen in mammography. Standard

FIG. 5. Effect of gray-level histogram smoothing. (Left) Original mammogram with breast area outlined in white, (Center) Z-score normalized gray-level

intensity histogram constructed at a 0.01 bin-width, (Right) Histogram postsmoothing with a Gaussian kernel of width = 50, alpha = 5.
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FIG. 6. Segmentation algorithm for a k = 6 mammogram. (a) Original mammogram; (b) normalized, smoothed breast-pixel intensity histogram with FCM

cluster centroids (vertical lines); (c) pixel cluster-membership represented by shading; (d) final dense tissue segmentation combining clusters 5–6.

practice is to define a gray-level threshold in order to divide

the breast area into two distinct regions: one that is predom-

inantly composed dense tissue and one that is composed of

fat. To transform the multicluster output of the FCM algo-

rithm into this standard two-class paradigm for the assess-

ment of breat PD%, a SVM classifier is implemented to deter-

mine which of the FCM clusters are predominantly dense for

a given mammographic image, which in turn are aggregated

into a single dense-tissue segmentation output. In this work,

a linear SVM classifier is implemented in order to minimize

parameter space and reduce the likelihood of overfitting.

Given known associations found between various patient

and image characteristics with breast PD%,18, 21, 27, 49 the

SVM considers established image features to guide cluster

aggregation for the specific mammogram being analyzed.

More specifically, the SVM incorporates image acquisition

parameters and patient characteristics, such as x-ray dose, pa-

tient age, and breast thickness, shown to correlate to PD%,27

which are global features for all detected clusters. In addi-

tion, the SVM considers both whole breast and per-cluster

gray-level histogram statistics (e.g., skewness and kurtosis),

gray-level texture (e.g., energy and entropy), and morphologi-

cal shape descriptors (e.g., compactness and perimeter length)

previously validated in the literature,50–53 as these descrip-

tors have been used to classify images into distinct BIRADs

categories.21 Lastly, a set of features is computed to com-

pare changes to the values of the individual features described

above when a new cluster is sequentially added to the merged

density segmentation. In this way, a total of 86 features are

initially considered.

Cluster-based training labels for the SVM classifier are es-

tablished by defining by a dichotomous, dense vs nondense,

labeling of all the clusters detected by the FCM clustering

algorithm such that for each image, the N-highest-intensity

clusters are assigned a dense label, where N is selected in or-

der to minimize the error between the resulting PD% for a

given cluster-merging and the radiologist-provided estimate

for each image. Effectively, this converts the output clustered

image of the unsupervised FCM algorithm into a pixelwise

ground truth segmentation of breast density for use in training

the SVM-classifier based on the radiologist-provided PD%

estimate for a given digital mammogram. To accomplish this,

for each mammogram in the dataset, we begin by defining C

as an image containing the cluster index of pixel i generated

by the prior k-cluster FCM step, where the cluster indices are

assigned to the M pixels within the breast area such that their

rank is in increasing order of their centroid intensities. In this

way, the corresponding breast density estimate, PD, for a par-

ticular grouping of the upper η cluster indices is

PD(η) =
1

M

M
∑

i=1

δ(Ci ≥ η), (4)

where δ is an indicator function on the condition X such that

δ(X) =

{

1; X is true

0; X is false
. (5)

Using Eqs. (4) and (5), we can then determine an optimal η*

that minimizes the error between D(η) and the radiologist-

provided estimate of breast density for a given image, PDR,

by computing

η∗ = argmin

∣

∣

∣

∣

∣

PDR −
1

M

M
∑

i=1

δ(Ci ≥ η)

∣

∣

∣

∣

∣

: η ∈ {1, . . . , k}.

(6)

A final, pixelwise labeled breast density image, L, can then be

created by computing

Li = δ(Ci ≥ η∗), (7)

where Li is the label (i.e., dense vs nondense) for the ith pixel

in the breast region, which results in all pixels in a given clus-

ter having an identical label. In order to ensure that there is

always at least one cluster assigned as a dense tissue region

and one as a nondense region, an additional restriction is im-

posed requiring η* to be at least 2.

The SVM classifier is then trained on these density-labeled

images in a leave-one-woman-out cross-validation fashion.

In each cross-validation fold, the classifier is trained on the
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density-labeled FCM-clustered mammograms (n = 160 im-

ages) of the 80 women selected for the training set, and then

applied to the two (i.e., left and right) out-of-sample FCM-

clustered mammograms of the woman selected as the test-

ing sample. In order to reduce the dimensionality of the in-

put feature variables, a stepwise feature-selection stage is

nested within each leave-one-woman-out loop of the cross-

validation. For this study, feature selection is performed

by systematically adding and removing54 features from the

SVM-model classifier based on the statistical significance of

the correlations of the features to total breast PD% in the train-

ing set. In this manner, it can be expected that the computed

features will drive cluster classification in such a way that in-

dividual clusters are more likely to be classified as dense if the

feature vector considered by the SVM classifier for a particu-

lar image is indicative of a relatively dense breast. The SVM

is then trained using only those features selected in the given

loop and applied to the test set.

After classification of the test set FCM-clustered images,

the clusters assigned a dense label are sequentially merged in

order of decreasing mean intensity into single segmentation of

the dense tissue region until a cluster classified as nondense is

found. The final merged segmentation is then selected as the

dense tissue segmentation, with the remainder of the breast

area designated as fatty tissue. An example of the cluster ag-

gregation result can be seen in Fig. 6(d). From this final den-

sity segmentation, we calculate the standard mammographic

percent density metric, PD%, by computing

PD% =
|MD|

|MB |
· 100%, (8)

where MD and MB are the dense tissue segmentation and

breast tissue segmentation, respectively.

II.D. Statistical analysis of algorithm performance

To determine the degree of association between algorithm-

derived and radiologist-provided estimates of mammographic

breast PD%, linear regression analysis was performed and the

Pearson product-moment correlation coefficient,55 r, and 95%

CI of r, was computed between the two PD% estimates on

a per-breast basis. The association between per-woman esti-

mates of PD%, generated by averaging each woman’s esti-

mates of left and right PD%, was also assessed. The feature

selection rate of the cross-validation stage was also computed

and the features consistently selected across over 90% folds

of the cross-validation are reported in order to assess which

of the considered features in this work are most robust in as-

sessing breast percent density.

To evaluate the consistency of the algorithm in assessing

breast PD% from either raw or processed mammograms, a re-

peated measures two-way analysis of variance (ANOVA) on

estimated PD% using reader (algorithm vs radiologist) and

presentation (raw vs processed) as factors was performed, as

ANOVA would allow for the identification of any systemic bi-

ases between algorithm and radiologist estimates in either the

raw or processed image presentation. A comparison evaluat-

ing the distribution of absolute differences between algorithm

and radiologist estimates of PD% between raw and processed

images was also performed using an F-test for equal vari-

ances in order to determine if there is a statistically significant

difference in the estimation of PD% between the two image

presentations.

Performance of the algorithm in terms of correct catego-

rization of a particular woman’s density was also assessed.

Categorical agreement between the radiologist and algorith-

mic estimates of per-breast and per-woman density category

was determined by computing Cohen’s κ statistic56 and 95%

CI using a quadratic weighting schema13, 14, 57 on the con-

version of the radiologist-provided and algorithm-estimated

PD% to corresponding ACR BIRADS categories, using the

standard thresholds of 25%, 50%, and 75% to separate the

four classes.10, 14

Finally, to assess the robustness of the algorithm perfor-

mance based on parameter set used in the determination of

k, we also vary the three parameters used to construct the his-

togram over a range of values: the bin-width of the histogram,

b, the width of the discrete Gaussian smoothing kernel, w, and

the alpha of the discrete Gaussian smoothing kernel, α. This

is done to assess both the impact of the specific parameter

and the impact of the selection of k on the FCM and SVM

density assessment scheme. Pearson’s r is used to assess the

agreement between the algorithm and radiologist estimates of

PD% across the range of evaluated parameters.

III. RESULTS

III.A. Algorithm performance

Algorithm-estimated PD% was strongly associated with

radiologic per-breast PD% estimates in both raw (r = 0.82,

CI: 0.76–0.86; p < 0.001) and processed (r = 0.85, CI:

0.80–0.89; p < 0.001) mammograms when analyzed using

an empirically chosen baseline set of parameter settings (raw:

b = 0.01, w = 30, and α = 5; processed: b = 0.01, w = 50,

and α = 5), as seen in Fig. 7. Nested feature selection found

that a subset of 18 features, listed in Table II, were consis-

tently selected across at least 90% of cross-validation folds

for both the raw and processed datasets. When combining

left and right breast PD% estimates into a per-woman aver-

age composite PD% score, agreement increased, with Pear-

son correlations of r = 0.85 (CI: 0.78–0.90) and r = 0.89 (CI:

0.84–0.93) for raw and processed mammograms, respectively

(p < 0.001).

Repeated measures two-way ANOVA demonstrated that

there were no statistically significant differences between the

estimates (p > 0.1) due to either presentation of the im-

age (raw vs processed) or method of PD% assessment (ra-

diologist vs algorithm), even when interactions are consid-

ered (Table III), both on a per-breast and a per-woman basis.

Figure 8 provides both the per-breast and per-woman distri-

butions of the PD% estimates for the different combinations

of presentation and assessment method. Similarly, no statisti-

cally significant systematic difference was found in the vari-

ance of absolute errors of the algorithm-estimated breast PD%

between raw and processed images (F-test: p > 0.1).
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FIG. 7. Scatter plots of per-breast (top row) and per-woman (bottom row) algorithm-estimated (x axis) and radiologist-provided (y axis) PD% for raw (left

column) and processed (right column) DM image sets. Regression (solid) and unity (dashed) lines are provided for reference.

Strong categorical agreement is also observed between

algorithm-assessed and radiologist-provided density after

conversion of the continuous PD% score to the equiva-

lent ACR BIRADS breast density categories (weighted Co-

hen’s κ ≥ 0.79; p < 0.0001) in raw and processed im-

ages for both per-breast and per-woman analysis (Table IV).

Figure 9 illustrates this finding by providing boxplots

of algorithm-assessed PD% scores as a function of the

radiologist-provided ACR BIRADS estimates.

III.B. Robustness analysis

When assessing the robustness of the algorithm perfor-

mance as a function of the histogram-construction parameters

(i.e., bin width, b, Gaussian kernel width, w, and kernel vari-

ance, α) used to determine the number of clusters, k, for the

adaptive FCM clustering, it was found that good performance

(r > 0.7) was obtained for the majority of parameter settings

considered in this analysis (Fig. 10). Of the three parameters

varied, performance of the algorithm appeared to be most de-

pendent on the bin-width, b. Specifically, when a small his-

togram bin-width was used, b = 0.005, the performance of the

algorithm on both raw and processed mammograms was very

good (r > 0.8) across almost all bin-width settings. Further-

more, performance was effectively constant for the processed

mammograms when using a small bin-width, independent of

the smoothing kernel parameter. A large bin-width setting, b

= 0.02, appeared to be associated with rapidly decreasing per-

formance as heavier Gaussian smoothing was applied in both

raw and processed images. Finally, it appeared that variance

of the Gaussian kernel, α, had minimal effect on overall algo-

rithm performance, relative to the other two parameters.
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TABLE II. Features with a 90%+ selection rate in the (a) raw and (b) processed mammogram datasets.

Global features Cluster-merging features Intercluster difference features

(a) Raw

Patient age Z-score means Z-score means

Breast area Number of unconnected areas Cluster area normalized by convex hull areas

Breast thickness Euler number Compactness

Breast perimeter length Equivalent circular diameter Perimeter length

Gray-level variance Cluster perimeter length

X-ray tube voltage Cluster area normalized by convex hull area

X-ray exposure Homogeneity

(b) Processed

Breast thickness Z-score variance Z-score means

X-ray exposure Number of unconnected areas Number of unconnected areas

X-ray tube voltage Y-axis extent Y-axis extent

Mean intensity of original breast image Homogeneity Major axis length of ellipsoid of inertia

Fifth percentile of the Z-score histogram Cluster perimeter length Equivalent circular diameter

Z-score range Cluster area normalized by convex hull area

Breast area normalized by convex hull area

IV. DISCUSSION

In this study, we introduce a new algorithm for fully auto-

mated quantification of breast PD% based on adaptive FCM

clustering and SVM classification, optimized for character-

istics of digital mammography and of the individual woman.

The proposed fully automated algorithm is successful in accu-

rately estimating breast PD% from digital mammographic im-

ages. Strong association with radiologist-provided estimates

of PD% is obtained for both quantitative and categorical PD%

estimates, independent of whether raw or processed digital

mammograms were used for analysis. The strength of asso-

ciation between found between algorithm and radiologist es-

timates of breast density in this work (r = 0.82–0.89) also

outperform those reported in prior studies of automated den-

sity assessment in digital mammography (r = 0.82–0.83).26, 27

Overall agreement between algorithm and radiologist esti-

mates of breast density also increased when averaged per-

woman density estimates were considered, most likely due to

the reduction of interbreast variations in density assessment

for a given woman.

TABLE III. Repeated Measures ANOVA Tables for per-breast (Top) and per-

woman (Bottom) estimation of breast PD%. No systematic difference due to

presentation type (raw vs processed) or method of estimation (radiologist vs

algorithm) was found, even if interaction was considered (p > 0.1).

Per-breast analysis: Source SSE D.F. MSE F p

Presentation 0.1 1 0.11 0.0 0.984

Methodology 73.8 1 73.8 0.27 0.603

Presentation*methodology 60.5 1 60.5 0.22 0.638

Per-woman analysis: Source SSE D.F. MSE F p

Presentation 0.1 1 0.06 0.0 0.988

Methodology 36.9 1 36.9 0.14 0.708

Presentation*methodology 30.3 1 30.3 0.12 0.734

The ability of the algorithm presented in this work to have

good performance on both raw and processed digital mam-

mograms is beneficial for several reasons. By being able to

assess breast density from either raw or processed mammo-

grams, the same algorithm could be incorporated into the clin-

ical workflow at one of several optional points, such as at the

point of image acquisition, thus operating on raw data, or at

the clinician’s workstation analyzing processed images. Fur-

thermore, given the fact that most clinical centers typically

use and archive only the postprocessed images due to cost

and storage limitations, the same algorithm could be applied

retrospectively to any number of datasets.

A major challenge in the validation of breast density es-

timation algorithms is establishing “ground truth” from pro-

jection images such as mammograms.32 Given that the un-

derlying, fibroglandular tissue properties of the breast which

give rise to breast density are difficult to assess without in-

dividualized analysis of histologic breast tissue samples from

mastectomy specimens58 or core biopsies,59 it is difficult to

establish gold-standard PD% estimates. It has been shown

that PD% estimates made by expert readers with interac-

tive semiautomated software are indicative of cancer risk and

thus may serve as surrogate measures of the true fibroglan-

dular tissue content. Therefore, despite the subjective nature

of user-assisted methods, expert readings provided by expe-

rienced breast-imaging radiologists remain a useful for gen-

erating breast percent density estimates for use in validating

fully automated algorithms.

In order to understand the clinical utility of the proposed

algorithm, it becomes important to place the reported per-

formance of the algorithm in the context of interreader vari-

ability, with the assumption that a well performing algorithm

would likely demonstrate a level of variability comparable to

interobserver variability, when compared to radiologist gold-

standard estimates of breast density. Several groups have re-

ported on interreader agreement rates in studies evaluating
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FIG. 8. Distributions of per-breast (left) and per-woman (right) assessed PD% as a function of image presentation and assessment-method. Two-way ANOVA

indicated no significant groupwise differences (p > 0.1).

FIG. 9. Per-breast (top) and per-woman (bottom) box-plots of algorithm-estimated PD% in raw (left) and processed (right) DM images vs radiologist-provided

categorical ACR BIRADS density scores. BIRADS categories were assigned using the standard thresholds on continuous PD%: (I) < 25%; (II) 25%–50%; (III)

51%–75%; (IV) >75%.
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TABLE IV. Categorical agreement assessed using quadratic-weighted Co-

hen’s κ between radiologist and algorithm computed BIRAD density. Strong

agreement (κ ≥0.79; p < 0.001) is seen between the two categorical estimates

when assessed either per woman or per breast for both raw and processed im-

ages. The κ values and 95% confidence intervals are reported.

Analysis Raw Processed

Per-breast 0.80 (CI: 0.76–0.83) 0.80 (CI: 0.77–0.84)

Per-woman 0.79 (CI: 0.74–0.83) 0.84 (CI: 0.77–0.89)

the repeatability of categorical ACR-BIRADS and continu-

ous PD%. For example, when looking to assess interobserver

variability of four radiologists in categorizing breast density

from screen-film mammograms, Ooms et al. found that in-

terreader agreement based on Cohen’s weighted-kappa var-

ied between 0.65 and 0.84, with an average overall kappa

of 0.77.14 The weighted kappa values found in this work for

agreement between algorithmic and radiologist-provided cat-

egorical estimates of breast density in both raw and processed

digital mammograms (κ = 0.79–0.84, Table IV) indicate very

high levels of agreement12 and are within the upper portion of

this range, suggesting good relative performance of the algo-

rithm. In terms of quantitative PD% estimation, Conant et al.

reported interclinician correlations of continuous PD% esti-

mates ranging from r = 0.90 to r = 0.95 in processed digital

mammograms.42 Agreement between the algorithm and radi-

ologic estimates of PD% (r = 0.82–0.89) on the dataset used

in this study approaches this reported interclinical range, thus

also suggesting relatively good performance of the algorithm

FIG. 10. Cross-validation performance as a function of histogram-construction parameters (i.e., bin width, b, Gaussian kernel width, w, and kernel variance, α)

for raw (top) and processed (bottom) digital mammograms.
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in assessing breast PD%. It should be noted, however, that as

different authors and studies have access to different datasets,

comparisons to the literature can only be considered as a ref-

erence for putting the different results in context, but not as a

direct comparison between different methods.

One interesting finding was the consistently improved per-

formance of the algorithm in assessing PD% on vendor pro-

cessed images versus raw digital mammograms, both on per-

breast and per-woman analysis. While further investigation is

warranted to fully elaborate on this possible difference, on

hypothesis is that this difference may be due to the presence

of a relatively sharp, well-defined air-tissue boundary as well

as increased contrast in the fibroglandular regions of the pro-

cessed image, compared to the raw mammographic images,

which may in turn be beneficial to the performance of breast

density estimation algorithms.

Given that image intensity histogram construction and

smoothing could be one of the largest sources of variability in

the performance of the proposed algorithm, we investigated

robustness of algorithm performance as function of bin-width

and smoothing kernel parameters (i.e., width and alpha). Per-

formance was found to be relatively consistent across a range

of parameters, only degrading when larger bin-widths or more

aggressive smoothing (i.e., larger Gaussian kernels) was used.

The raw mammograms did show increased sensitivity to the

parameter selection over the processed images, most likely, as

discussed above, due to the effects of vendor processing en-

hancing the contrast between fibroglandular and adipose tis-

sue regions in the postprocessed images. It was also found

that when a small histogram bin-width was used, specifically

b = 0.005, the performance of the algorithm was effectively

constant, independent of the parameter values used to define

the smoothing kernel, particularly when analyzing the pro-

cessed dataset. This may suggest that an optimal parameteri-

zation would primarily be focused on a small bin-width, with

kernel smoothing used to remove noise in the histogram only,

which will be fully investigated in future work.

There are some limitations to the presented study. First, a

second dataset with radiologist-provided estimates of breast

PD% was not available for independent validation, so re-

peatability of performance could not be assessed outside of

the leave-one-out cross-validation scheme. Second, only dig-

ital mammograms from a single manufacturer were analyzed

in this study, limiting the assessment of the generalizabil-

ity of the algorithm across different vendors. It may be ex-

pected that methods developed for raw digital mammograms

may be most suitable for assessing breast density, as these

images are less influenced by vendor-specific postprocess-

ing algorithms.16 Future studies will focus on evaluating the

generalizability of our algorithm as well as determining what

vendor-specific retraining may be required. Furthermore, only

a single rater’s assessment of breast percent density was

available, limiting comparisons of interreader agreement to

those previously reported in the literature. Future work should

also seek to incorporate peripheral enhancement into the his-

togram equalization preprocessing method applied to the raw

digital mammography images. Finally, the methodology pre-

sented in this work focused entirely on image intensity infor-

mation; future work could also account for additional proper-

ties, such as the spatial clustering of dense tissue.

While evaluating the performance of our algorithm in

terms of reader agreement and interreader variability is use-

ful for understanding the potential efficacy of the algorithm,

this provides limited information about the ability of the al-

gorithm to assess breast cancer risk in a consistent manner.

To account for this, further studies are underway at our insti-

tution to evaluate the predictive role of the estimated breast

PD% measures, as provided by our algorithm, in assessing

breast cancer risk. The long-term goal of this research is to

translate our fully automated PD% estimation algorithm into

a robust breast cancer risk assessment tool for use in clinical

practice.

V. CONCLUSION

We have proposed and demonstrated the efficacy of a fully

automated algorithm for breast percent density estimation in

digital mammography. We are able to obtain strong correla-

tion between the output of the computerized algorithm and

radiologist-provided estimates of breast density. The ability of

the algorithm to analyze both raw and processed digital mam-

mograms with an equal level of accuracy increases its versatil-

ity, both in terms of direct clinical application and retrospec-

tive research-related studies. Overall, these findings indicate

that the proposed algorithm can provide clinically relevant in-

formation from digital mammography for the assessment of

breast density. The fully automated method could thus be used

to accelerate the clinical translation of density-based cancer

risk stratification in clinical practice, paving the way for new

personalized screening and prevention strategies.
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