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Abstract

The estimation of causal effects in nonrandomized studies should comprise two distinct phases: 

design, with no outcome data available; and analysis of the outcome data according to a specified 

protocol. Here, we review and compare point and interval estimates of common statistical 

procedures for estimating causal effects (i.e. matching, subclassification, weighting, and model-

based adjustment) with a scalar continuous covariate and a scalar continuous outcome. We show, 

using an extensive simulation, that some highly advocated methods have poor operating 

characteristics. In many conditions, matching for the point estimate combined with within-group 

matching for sampling variance estimation, with or without covariance adjustment, appears to be 

the most efficient valid method of those evaluated. These results provide new conclusions and 

advice regarding the merits of currently used procedures.
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1 Introduction

The causal effect of a binary treatment W on outcome Y for unit i (i = 1, …, N) is the 

comparison of two “potential” outcomes, Yi(1) and Yi(0), corresponding to the two possible 

levels of W: Wi = 1 indicates the receipt of the active level of the treatment, and Wi = 0 

indicates the receipt of the control level. The adjective “potential” is used because only one 

value of Y can be realized and observed: the potential outcome corresponding to the action 

actually taken at that time for that unit. The other potential outcome cannot be observed 

because its corresponding action was not taken.1,2 We assume SUTVA (the stable unit 
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treatment value assumption3,4), so that this notation is functionally well defined. The 

observable outcome for unit i can be written as

(1)

This perspective is commonly referred to as the “Rubin Causal Model”5 for work done in 

the 1970s (e.g. refer the literature1–3,6,7), which generalized Neyman’s8 use of potential 

outcomes in randomized experiments with randomization-based inference to other situations 

and other forms of inference.

We cannot directly observe the causal effect for unit i, so instead we observe multiple units, 

some exposed to the active level of the treatment and others exposed to the control level. For 

drawing causal inferences, there are other variables that are unaffected by Wi =1 versus Wi 

=0: covariates, Xi = (Xi1, …, XiL). A crucial piece of information that is needed for causal 

inference is the reason each unit received the treatment it actually received or the assignment 

mechanism (AM)

(2)

where ϕ is a vector parameter governing this distribution; throughout we assume the 

standard mathematical statistical situation with independent modeling across units, implied 

by the notation in equation (2).

Ideally, given the covariates Xi, the AM does not depend on the potential outcomes, so that it 

is unconfounded4

(3)

where e(Xi) is the propensity score for unit i,9 whose dependence on ϕ is notationally 

suppressed in e(Xi). We assume equation (3), thereby ensuring that comparing the observed 

outcomes for treated units and control units at Xi = x yields a valid estimate of the treatment 

effect at x. Here, we focus on the situation where both Yi and Xi are scalar and continuous, 

so the propensity score is a scalar function of Xi, generally a many-to-one function.

Causal inference should be composed of two main phases: the design phase and the analysis 

phase. The design phase includes contemplating, collecting, organizing, and analyzing data 

without seeing any outcome data.1 In randomized experiments, the design phase includes 

defining the randomization scheme, for example considering blocking on covariates that 

may influence Y, as well as specifying a protocol for the analysis of outcome data. In 

observational studies without randomization, methods such as subclassification10 and 

matching on covariates or functions of them9,11–13 have been proposed to help approximate 

hypothetical randomized experiments, and thus these activities are part of the design phase 

for observational studies. The design phase in observational studies has received more 
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attention recently than earlier (e.g. see literature9,12) but not dramatically so until 

recently.2,14,15

The statistical literature proposes many procedures for estimating treatment effects in 

unconfounded studies. However, published comparisons between these procedures have 

been limited to a small number of them at a time, limited simulation settings, or reliance on 

meta-analysis with mixed conclusions. More specifically, Rubin12 and Rubin16 compared 

matching, simple linear regression adjustment, and their combination and showed that in 

terms of bias reduction, the combination generally works best. On the other hand, Shah et 

al.17 used meta-analysis to conclude that propensity score analysis generally lead to similar 

results as simple linear regression. Lunceford and Davidian18 compared subclassification 

and inverse probability weighting (IPW), as well as their combination with regression 

adjustments, and concluded that weighting methods offer approximately unbiased inference 

for practical sample sizes, and that combining them with regression adjustments resulted in 

greater precision. In addition, they noticed that, in some cases, subclassification with 

regression adjustment resulted in more precision than a combination of weighting with 

regression adjustments. However, because subclassification with regression adjustment does 

not enjoy the “doubly robust” (DR) property,19 Lunceford and Davidian18 concluded that 

weighting with regression adjustment is preferable. Austin20 compared subclassification, 

matching, IPW, and regression adjustment on the propensity score and concluded that 

matching and weighting had larger reductions in bias than subclassification with regression 

adjustment. Waernbaum21 conducted a simulation and concluded that when the propensity 

score model and the outcome model are both misspecified, weighting with regression 

adjustment has larger bias and mean square error (MSE) than matching alone. Recently, 

Austin22 examined different matching procedures to estimate the average effect of the 

treatment on the treated (ATT) and concluded that nearest neighbor caliper matching without 

replacement is the most optimal method for forming pairs of treated and untreated units. 

These inconsistent conclusions do not generate cogent advice.

This paper attempts, first, to identify promising methods with a scalar covariate that should 

be investigated in future studies with multiple covariates, and second, to identify methods 

that should not be considered further. Although, methods that perform poorly with a single 

covariate will generally perform poorly with multiple covariates, the best performing method 

with a scalar covariate can have worse performance with multiple covariates than methods 

that are marginally worse with a scalar covariate. Thus, it is important to identify a group of 

methods that perform well with a single covariate, rather than select a single best performing 

method.

The simulation-based comparisons use Neyman’s framework of frequentist operating 

characteristics. An α-level interval estimate is “valid” if, under repeated sampling from the 

population (finite or super), the interval covers the estimand in at least α percent of the 

samples. Among valid procedures, one is more powerful (efficient) than another if it 

produces shorter intervals.23 In addition to validity and efficiency of procedures, we 

compare the biases and MSEs of point estimators. Of all methods considered, and across 

most of the distributional conditions examined, when the distributions of the covariate in the 

control and treatment groups have reasonable overlap, matching with replacement for point 
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estimation, with or without covariance adjustment, combined with within-group matching 

for sampling variance estimation,3 generally appear to be superior. Moreover, commonly 

used and accepted procedures such as model-based adjustments, subclassification, and 

matching with standard sampling variance estimation result in very poor operating 

characteristics when the treatment effect is nonnull. When the groups are far apart, all 

methods rely on unassailable assumptions and so all are ineffective in practice.

2 Common procedures for estimating treatment effects

We begin by reviewing previously suggested procedures that attempt to estimate the average 

difference between Yi(1) and Yi(0), also known as the super-population average treatment 

effect (ATE), Δ, which is the estimand of most commonly used procedures.

2.1 Linear regression

A common approach for adjusting for covariate imbalances in two treatment groups uses 

linear regression

(4)

where the coefficient of W, γW, is regarded as the super-population treatment effect (to list 

only a few in the literature24–26); this is also known as “covariance adjustment” and 

originates with Fisher27 (Section 49.1). Rubin16 showed that for scalar X and Y, using 

equation (4) can be badly biased for Δ if the distributions of X in the treatment and control 

groups differ and the two response surfaces for Y given X are monotone but not linear (also 

see Cochran and Rubin28). Estimator (4) is approximately unbiased essentially only when 

the two response surfaces of Y given X are nearly linear and parallel, which is unknowable 

in practice, especially at the design stage. Moreover, usually the associated interval estimates 

are invalid due to their being badly miscentered. Because this method has been known for 

decades to be generally inapposite, it will not be investigated further here.

2.2 Polynomial regression, spline, and penalized spline

A procedure that attempts to address the likely misspecification of the linear model in 

equation (4) is regression adjustment with a nonlinear function of Xi,29,30 with β0 +XiβX in 

equation (4) replaced with a nonlinear function

(5)

When X is scalar, h could be a Pth order polynomial function h(X|β) = β0 + β1X + ⋯ + 

βPXP. When P is small, the regression can be too inflexible to capture important features of 

the true h(X|β), and when P is large, the model fitting can fail due to high 

multicollinearity.31 A possible compromise is the regression spline,32 where the polynomial 

terms are replaced by polynomial pieces, commonly forced to join smoothly at a sequence of 

“knots.” A popular choice is the piecewise cubic spline that is constrained to be continuous 

and twice differentiable. Three options need to be specified for the spline: the basis of the 
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polynomials, the number of knots, and the location of knots. Due to its numerical stability, a 

commonly used basis is the “B-Spline.”33 Stone34 found that more than five knots are 

seldom required in practice to approximate one response surface.

A simple procedure for defining the location of the knots is to set them at the quantiles of 

X.35 However, the number of knots and their locations can have major influences on 

results36 (Section 9.3). One standard way to address the knot-placement problem is to use 

smoothing splines, penalized splines, or “thin-plate splines.”37,38 With these alternatives, a 

relatively large number of knots are used, but excessively nonmonotone fitted models are 

avoided by applying “wiggiliness” penalties.

The implicit assumption for the procedures described in this subsection is that the treatment 

effect is the same at every value of X (parallel response surfaces), which can lead to badly 

biased estimation of Δ when there are different distributions of X in the treatment and 

control groups, as documented since the early 1970s in Cochran and Rubin30 and Rubin.16

2.3 Design-based matching or subclassification

Matching methods attempt to reduce the bias arising from the different X distributions by 

“balancing” the distributions of X in the treatment and control groups. Unlike the methods 

discussed in Sections 2.1 and 2.2, these are distinctly design-phase methods because they do 

not involve outcome data. Rubin11 displayed the effectiveness of mean matching and 

“nearest neighbor” pair matching methods for bias reduction with scalar continuous X and 

Y, when estimating the ATT. An extension to pair matching is k:1 nearest neighbor 

matching,15 where k control units are matched to each treatment unit; this extension discards 

fewer control units than pair matching, and thus can result in increased statistical efficiency, 

but this increase can be minimal, and there is also a chance of increased bias due to poor 

matches.39,40

After the matching is performed, the treatment effect can be estimated from each matched 

pair (or group) and averaged over the entire matched sample.11,12,41 The standard error of 

the estimate of the ATE, , is commonly obtained using the randomization-based sampling 

variance estimate (e.g. Austin42), but Abadie and Imbens3 showed that this is typically an 

underestimate, because it ignores the variability induced by the random sampling from the 

super-population as well as the variability in the matching procedure. Abadie and Imbens3 

developed a sampling variance estimate that is consistent under certain conditions and 

matches units with similar X within each treatment group to estimate the variability of the 

unit level effects. This variance estimator has been implemented in statistical software43,44 

and has been extended to other matching-based point estimands.45

Subclassification methods partition all n ≤ N sampled units into subclasses with “similar” 

values of Xi. Cochran10 showed that using only six subclasses can typically result in more 

than 90% reduction of the initial bias in scalar continuous X. The population ATE is 

obtained by estimating the average effect in each subclass and averaging across 

subclasses.28,41
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A more sophisticated form of subclassification is “full matching,”46 which constructs 

subclasses so that each subclass has exactly one observation from either the treatment group 

or the control group, and at least one from the other group. Let Sk be the set of units that are 

in subclass k ∈ {1,…, K}; Hansen47 assumed that the unit-level super-population 

expectations and variances are

(6)

Based on model (6), Δ can be estimated by , where |Sk| is the cardinality of 

subclass k, and  is the estimate of βWk. Letting  be the estimated sampling variance of 

, the sampling variance of  can be estimated by .

2.4 Weighting

The covariates X can also be used to generate weights that are based on the inverse 

propensity score.18,48 Under unconfoundedness

(7)

So, an unbiased estimate of Δ is

In practice, e(Xi) is generally unknown and it is estimated from the data. Replacing e(Xi) by 

its estimated value,  divided by  can be more efficient than using e(xi).49,50 A 

potential drawback of weighting occurs when some e(Xi) (or ) are close to 0 or 1, so 

that a few observations dominate the estimated treatment effect resulting in large sampling 

variance. Moreover, when the estimated probabilities are misspecified, this method can 

suffer from large bias as well as from large true and estimated sampling variances21,41,51; 

Lunceford and Davidian18 referred to equation (7) based on  as IPW1 and proposed 

additional weighting estimators IPW2 and IPW3 for such cases. They also derived the 

standard errors for all of these estimators.
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2.5 Combined methods

Most methods in Section 2.3 do not perform any adjustments beyond grouping units that are 

similar in terms of the covariate. Rubin16 observed that, for continuous scalar X and Y, 

combining linear regression (as in Section 2.1) and matching (as in Section 2.3) achieved, 

under most conditions studied, larger reductions in bias than either method alone. 

Furthermore, it was shown analytically that this combination asymptotically adjusts for 

possible bias in the commonly used ATE estimators.52 Four procedures that are generated 

from the combination of either with covariance (C) adjustments or without (no adjustment-

N) for point estimation, and either of these with standard (s) or the within-treatment-group 

matching (m) for sampling variance estimator, will be examined here. We label each of the 

four matching procedures as M-C-s, M-N-s, M-C-m, and M-N-m where the first letter 

represents across treatment group matching for point estimation, the second letter represents 

whether or not covariance adjustment was applied to create that point estimate, and the third 

letter represents whether or not within-group matching was performed for sampling variance 

estimation.

Regression can also be combined with subclassification to create a three-step procedure. 

First, partition units into K subclasses based on scalar X as in Section 2.3. Second, in each 

subclass, regress Y on a constant, X, and W as in Section 2.1. Define the estimated treatment 

effect in subclass k, γk, to be the estimated coefficient for W, , and estimate its sampling 

variance, Vk. For example, when the estimand of interest is the population ATE, the 

treatment effect in the kth subclass, γk, is implicitly defined by

(8)

The estimated sampling variance of  can be obtained by the standard asymptotic 

approximation. The third step in the procedure combines across subclasses the estimated 

treatment effects and their estimated sampling variances, to estimate Δ, and its sampling 

variance, V

The intuition behind this procedure is that, within a subclass, the distributions of the 

covariates in the treatment and control groups are similar, and the regression estimate is not 

used to extrapolate out of the subclass.41,53 This procedure is referred to as regression 

adjusted subclassification (RAS).

Although RAS is a useful method in practice, due to its simplicity and familiarity, the 

method has at least two limitations: (1) each subclass is modeled independently, which does 

not take into account that observations in adjacent subclasses are related, and using this fact 

could improve the final estimator; (2) it assumes a constant treatment effect in each subclass, 

which can lead to biased estimates when the response surfaces are not parallel within 

subclasses.53
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Robins et al.19 suggested combining weighting with regression adjustments to obtain DR 

estimators. The DR estimator is a modification of the IPW estimator planned to reduce the 

sensitivity to model misspecification and improve precision. The potential attractive feature 

of a DR estimator is that it is consistent and asymptotically normal when either the 

propensity score model or the regression model is correctly specified. In addition, these 

estimators achieve the lower bound for the sampling variance of semiparametric 

estimators.18,19 Specifically, the DR estimate for Δ is

(9)

where mw(X, βw) = E(Y(W)|W = w, X) = βw0 + βw1X is the regression of the response on X 

in treatment group W, depending on β = {βw0, βw1}, and  is an estimate for β based on 

subjects in group W = w. The standard error of  is equal to , where

(10)

As with weighting estimators, e(Xi) is generally unknown and is replaced by an estimate of 

it, .

3 Simulation design

Table 1 summarizes the 14 procedures described in Section 2; their exact implementation is 

provided in the online supplementary material. In addition to the factor defined by the 14 

procedures, the factors that are evaluated in this simulation comprise two types. The first 

type describes the scalar covariate (Xi) distributions and sample sizes, both of which are 

either known to the investigator, or can be easily estimated without examining any outcome 

data. The second type of factors involves the response surfaces, which are neither known to 

the investigator, nor be empirically estimated at the design stage.

3.1 Factors known or estimable in the design phase

The values of the covariate for the n treated and r × n control units are generated from two 

different, possibly skewed, normal distributions54
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(11)

We parameterized the distance between the treated group and the control group means in 

terms of the standardized bias,  as in the literature.11,12,16,28,55 Equation (11) 

implicitly defines the unconfounded AM, P(Wi = 1|Xi, ϕ), as a function of simulation 

conditions (r, n, SB, ν1, η1, η0).

Table 2 describes the three levels of each of four of the factors SB, , η0, and η1. The 

factors r and n also vary in each of the 34 settings, yielding a 34 × 2 × 3 factorial design. In 

addition, a nested computational structure was used in order to reduce variability across 

configuration comparisons, as in Rubin12 and Cangul et al.56 Although SB is commonly 

used to summarize the overlap between two distributions, it is insensitive to differences in 

variances or skewnesses between distributions. One measure that quantifies these differences 

is the Jensen–Shannon divergence (JSD)57

(12)

where H0 and H1 are the distributions of X in the control and active treatment, respectively, 

QKL is the Kullback–Leibler divergence,58 and . It is helpful to compare JSD values 

to SB values using two normal distributions with equal variance but different means. When 

SB = {0.25,0.5,1}, the JSDs are {0.008,0.03,0.11}, respectively. SB = 1 is considered large 

in practical applications.28 Thus, throughout this simulation, we restrict the analysis to 

configurations for which the JSD is less than 0.3. This value was chosen because it is about 

three times larger than the value expected for SB = 1, and on average at least 75% of the 

units are within the range of the other treatment’s distribution.

3.2 Factors empirically inestimable at the design stage

In each simulation replication, we randomly generate the continuous outcome data from

(13)

where G1 and G0 are distributions unknown to the investigator, and B1 and B0 are 

parameters also unknown to the investigator. Specifically, G1 and G0 are Normal distribution 

with conditional mean g0(X) in the control group and conditional mean βg1(X) + α in the 

treatment group, where β determines the correlation between Xi and Yi(1), and α is an 

additive effect. The values of the variances of the normal distributions, , are given in 

Table 2. Three gW functions are used for monotone response surfaces: {exp(X), exp (−X), 

X}. These response surfaces were also used in Rubin11,16 that examined the percent 
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reduction in bias for matching methods and matching methods combined with regression. 

These surfaces represent linear and moderately nonlinear surfaces, and depending on the 

overlap between the distributions of X in the active treatment and control groups, are either 

favorable or unfavorable for matching methods. For nonmonotone response surfaces, the 

three continuous, twice differentiable gW functions are displayed in the online 

supplementary material; the primary differences between these functions are the slope at the 

point of inflection and that point’s location. For nonmonotone response surfaces, we set β = 

1 and α = 0 for all configurations in order to limit simulation conditions.

Null treatment effects are generated by setting g1(X) = g0(X); nonnull treatment effects are 

generated by allowing the response surfaces in the treatment group and the control group to 

differ. More specifically, for monotone response surfaces, we use the same previously 

described functions, but the potential outcomes, Yi (0), Yi (1) are generated using differing 

functions g0, g1, and in cases where g0 = g1, by setting α ≠ 0 or β ≠ 1. These sets of 

configurations allow us to examine the performance of the different methods in settings with 

null effects, constant treatment effects, and heterogeneous treatment effects. For 

nonmonotone response surfaces, similar modifications are used, and different surfaces are 

simulated by different configurations of the shapes and points of inflection. There are 36 

monotone response surface configurations and 35 nonmonotone response surface 

configurations. For monotone response surfaces, the median squared correlations (R2) 

between Y and X over all configurations were 0.44 (range (0.03, 0.85)) and 0.42 (range 

(0.01, 0.96)), in the control and treated groups, respectively. For nonmonotone response 

surfaces, the median R2s are 0.3 (range (0.00, 0.9)) in both the control and treatment groups. 

For each configuration of the factors, Nrep = 100 replications were produced.

All of the simulations were executed using R 2.15.0 software.59 The full matching algorithm 

was implemented using the optmatch package,60 and the different matching algorithms were 

implemented using the Matching package.44

4 Results

We compare the five classes of methods summarized in the rows of Table 1 for estimating Δ. 

Even with scalar X, weighting methods require estimation of the propensity score, which is 

done here using the algorithm described by Imai and Ratkovic.61 For each procedure, at each 

factor’s configuration, and at each of the 100 replications, we calculate the estimated 

treatment effect, the estimated sampling variance, the corresponding 95% interval width, and 

determine whether the interval covered or did not cover Δ. Then, we calculate for each 

procedure and each configuration, the mean coverage rate, the bias, the mean estimated 

sampling variance, and the mean interval length.

4.1 Results for 95% interval coverages

Table 3 displays the proportion of configurations in which the 14 different methods have 

intervals with over 90% coverage, as well as the median and interquartile range of the 

coverages when response surfaces are monotone. Overall, M-C-m and M-N-m have the 

highest coverages followed by IPW1. The rest of the methods have fewer than 70% of the 

configurations with over 90% coverage.
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When the treatment effect is null, all methods, except for IPW3, M-C-s, and M-N-s, have 

median coverage similar to their nominal level. However, when the treatment effect is not 

null, only IPW1, IPW2, DR, full matching, M-N-m, and M-C-m have coverage close to or 

above 95%. Among these methods, the 25th percentile of coverage is the lowest for IPW2 

and the largest for M-N-m and M-C-m. M-N-m and M-C-m also have the interval coverages 

that are most concentrated around 95%. Similar results with slightly different numbers occur 

for nonmonotone response surfaces, where IPW1 has the largest coverage with 25th 

coverage percentile of 1, which implies substantial overcoverage (see online supplementary 

material).

Because IPW1, IPW2, DR, full matching, M-N-m, and M-C-m have median coverages close 

to the nominal level across all configurations, we compared only them in subsequent 

evaluations. Figure 1 summarizes the median and the 25th percentile of the coverages as 

functions of the JSD for monotone response surfaces. The median coverages of M-N-m and 

M-C-m are above 95% for every value of the JSD. IPW1, IPW2, and DR have median 

coverages that are higher than 95% for lower JSD values, which decrease for larger JSD 

values. Full matching generally results in median coverages that are close to nominal. The 

median is a robust measure of central tendency that may require a large number of 

configurations to be lower than the nominal level to observe a significant difference, whereas 

the 25th percentile is a more sensitive measure for the lower part of the distribution. The 

25th percentile plot shows that all methods have decreased coverage as the JSD increases, 

with M-N-m and M-C-m, having 25th percentiles that are close to 95%, even for large 

values of the JSD. IPW1, IPW2, and DR have the largest slope as JSD increases, with a 

significant drop for large JSD values. This drop occurs because some observations have 

weights that are very close to 0 or 1, resulting in biased point estimates and interval 

estimates that are too short. These phenomena are investigated further in the next subsection. 

Similar coverage trends are observed for nonmonotone response surfaces (see online 

supplementary material).

4.2 Results for biases, RMSEs, and intervals widths

Table 4 compares the median coverages, absolute biases, interval widths, and RMSEs for the 

generally statistically valid procedures identified in Section 4.1, for monotone response 

surfaces under the null and when the response surfaces are parallel. When JSD increases, as 

shown previously, IPW1, IPW2, and DR exhibit decreases in median coverages, increased 

coverages variability, and significant decreases in the percentage of configurations with 

above 90% coverage. M-N-m and M-C-m exhibit stable median coverages, stable coverage 

variability, and a moderate decrease in the percentage of configurations with above 90% 

coverage as JSD increases. Full matching exhibits stable median and IQR for coverages 

across JSD values, as well as stable percentages of configurations with above 90% coverage. 

When the distribution of X in the treatment and control groups differs substantially, none of 

the methods are statistically valid. To avoid these situations, it is important to examine the 

overlap of the distributions of X in the control and treated groups.

For all methods, the median and IQR for absolute bias, interval width, and RMSE increase 

with increasing JSD. Compared to M-N-m, full matching has generally similar biases, but 
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larger interval widths and RMSEs. IPW1 and IPW2 have larger and more variable absolute 

biases in comparison to M-N-m, M-C-m, and full matching for all JSD values. Among all of 

the methods, M-N-m and M-C-m have the shortest interval width for small JSD, with M-C-

m having a slight advantage. For larger JSD values, DR has the shortest interval and RMSE. 

These values are deceiving because DR also has the lowest coverages, with many of the 

configurations resulting in substantially less than nominal coverage.

Table 5 compares the median coverages, absolute biases, interval widths, and RMSEs for 

monotone response surfaces when the response surfaces are not parallel. Compared to the 

other methods, M-N-m and M-C-m are generally valid and they have point estimates with 

the smallest biases. As with the parallel surfaces case, IPW1 and IPW2 have the largest 

median absolute biases and largest IQR, followed by DR. These results also appear for 

nonmonotone response surfaces, which support the conclusions of Kang and Schafer54 and 

Waernbaum.24

For small JSD values, full matching has the shortest median interval width, followed by DR, 

IPW2, M-N-m, M-C-m, and IPW1. For large JSD values, DR has the shortest median width 

followed by IPW2, IPW1, full matching, M-N-m, and M-C-m. These values are deceiving 

because full matching, DR, IPW1, and IPW2 have the lowest coverages, with many of the 

configurations resulting in substantially less than nominal coverage. Thus, all four methods 

have more concentrated intervals around biased estimates. Comparing full matching to M-N-

m or M-C-m reveals that the median biases are similar for all three methods, and the gain in 

efficiency when using full matching results in a procedure that has less than nominal 

coverages. Similar trends are observed for the median RMSEs, where full matching and DR 

have the smallest RMSEs, but also lower than nominal coverages. Compared to IPW1 and 

IPW2, M-N-m and M-C-m have generally lower RMSE, as well as better coverage.

For both parallel and nonparallel response surfaces, the ratio of median absolute bias to 

median interval width is generally larger than 0.5 for IPW1, IPW2, and DR for 0.2 < JSD < 

0.3. These JSD values also yield significant decreases in coverages for these methods, which 

is because the biases in point estimates cannot be buried in their variances. M-N-m, M-C-m, 

and full matching have ratio of median absolute bias to median interval width that is always 

smaller than 0.3 for 0.2 < JSD < 0.3, and in many cases significantly less than 0.3.

5 Discussion

This manuscript compares previously suggested procedures for estimating causal effects 

when there is a key covariate that is unbalanced between treatment groups. The simulations 

demonstrate that all regression adjustments relying on monotone and nonmonotone 

functions of X with a constant treatment effect generally result in statistically invalid 

methods. Similar results are observed for RAS, which assumes a constant treatment effect 

within each subclass. Weighting methods generally have larger and more variable absolute 

biases, compared to M-N-m, M-C-m, and full matching, resulting in below nominal 

coverage when the distributions of X in the control and treatment groups differ markedly. In 

addition, when the distributions of X are relatively similar, IPW1 and IPW2 have larger and 

more variable RMSEs, and DRs have more variable RMSEs than any of the valid 
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subclassification and matching methods. These results are exacerbated when the response 

surfaces are not parallel and are similar to these observed by Waernbaum.21

In comparison to M-N-m and M-C-m, full matching has the lowest and most variable 

coverages when the response surfaces are not parallel, mainly because the intervals are too 

short. One possible reason for the short intervals is that full matching does not account for 

possible variability in the matching procedure and treats the matching as known, which is 

apparent when considering matching as a method of single imputation without uncertainty. 

M-N-m has coverages that are closest to nominal among all of the methods that were 

examined. Combining matching for sampling variance estimate with covariance adjustment 

for point estimate (M-C-m) results in slightly lower bias and smaller RMSE, but it may also 

result in slightly lower coverage than M-N-m when the distributions of the covariate in 

treatment control groups are further apart. M-C-s and M-N-s result in coverages that are 

lower than nominal, reinforcing the conclusions of Abadie and Imbens.1 For small JSD, the 

statistical validity of the confidence intervals obtained using M-N-m and M-C-m does not 

arise from significantly wider intervals, but primarily from smaller biases. For large JSD, M-

N-m and M-C-m still enjoy the smallest bias among all of the methods, but they also have 

larger interval widths, reflecting the larger uncertainty about the values of the missing 

potential outcomes due to less overlap.

The results presented here have been obtained for a single covariate, but we believe that 

methods that do not perform well with a single covariate will perform even worse with 

multiple covariates due to the added complexity of the response surfaces and estimation of 

the propensity score. Gutman and Rubin65 examine the characteristics of a new method for 

estimating treatment effects when the outcome is binary, based on imputation of the 

potential outcomes, which appears to be valid and relatively efficient. The sampling variance 

estimate of M-N-m has some similarities to this imputation method, because M-N-m uses 

units with the same Wi values and similar Xi values to obtain the variability of the unit-level 

effects. Thus, it seems that imputing the potential outcomes using some modeling can result 

in a generally valid and more efficient procedure.

When it is impossible to obtain good overlap of the covariate distributions between the 

treatment group and the control group, no method can provide generally valid statistical 

inferences. In such cases, the investigator should consider discarding observations that do 

not overlap, so that a valid inference on a restricted population can be obtained. The new 

estimand differs from the original estimand, but the latter is generally impossible to estimate 

well without making empirically unassailable assumptions.

In conclusion, this manuscript shows that M-N-m and M-C-m are generally valid standard 

procedures with scalar X. These procedures are also efficient in comparison to common 

methods used for causal effect estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Median and 25th percentile of 95% interval estimates coverage for the average treatment 

effect across simulated configurations by JSD for top performing procedures in terms of 

coverage (monotone response surface with scalar X). (a) Median Coverage and (b) 25th 

Percentile Coverage.
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Table 1

List of the methods used in simulation analysis for scalar X.

Method Class Method Reference Section References

Weighting IPW1 Section 2.4 Lunceford and Davidian18

IPW2 Section 2.4 Lunceford and Davidian18

IPW3 Section 2.4 Lunceford and Davidian18

Subclassification Full matching Section 2.3 Rosenbaum46

Matching Within-treatment-group matching for sampling variance estimation (M-
N-m)

Section 2.3 Abadie and Imbens3

Standard sampling variance estimation (M-N-s) Section 2.3 Austin42

Regression Polynomial regression Section 2.2

Spline 6 knots Section 2.2 McCandless et al.29

Spline 15 knots Section 2.2 McCandless et al.29

TPS Section 2.2 Myers and Louis30

Combined RAS Section 2.5 Rubin16

Covariance adjusted matching with standard sampling variance estimate 
(M-C-s)

Section 2.5 Abadie and Imbens52

Covariance adjusted matching with matching within treatment group for 
sampling variance estimate (M-C-m)

Section 2.5 Abadie and Imbens3,52

DR Section 2.5 Robins et al.19
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Table 2

Factors and corresponding levels used in the simulation analysis.

Factor Levels Description

r {1, 2} Ratio of sample sizes

n {300, 600, 1200} Treatment group population size

η0 {−3.5, 0, 3.5} Skewness of the covariate in the treatment group

η1 {−3.5, 0, 3.5} Skewness of the covariate in the control group

SB Standardized bias for the covariate

Ratio of variances

β {0.5, 1, 2} Correlation between Xi and Y i(W)

α {0, 0.5, 1} Additive constant effect

 or {0.005, 0.01, 0.02}

Deviation of outcome from mean response surface for monotone and nonmonotone 
response surfaces, respectively.

g0(x) and g1(x) Described in Section 3.2 Response surfaces
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