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Estimation of Causal Effects with Multiple
Treatments: A Review and New Ideas
Michael J. Lopez and Roee Gutman

Abstract. The propensity score is a common tool for estimating the causal
effect of a binary treatment in observational data. In this setting, matching,
subclassification, imputation or inverse probability weighting on the propen-
sity score can reduce the initial covariate bias between the treatment and
control groups. With more than two treatment options, however, estimation
of causal effects requires additional assumptions and techniques, the imple-
mentations of which have varied across disciplines. This paper reviews cur-
rent methods, and it identifies and contrasts the treatment effects that each
one estimates. Additionally, we propose possible matching techniques for use
with multiple, nominal categorical treatments, and use simulations to show
how such algorithms can yield improved covariate similarity between those
in the matched sets, relative the pre-matched cohort. To sum, this manuscript
provides a synopsis of how to notate and use causal methods for categorical
treatments.

Key words and phrases: Causal inference, propensity score, multiple treat-
ments, matching, observational data.

1. INTRODUCTION

The primary goal of many scientific applications is to
identify the causal effect of exposure T ∈ {t1, . . . , tZ}
on outcome Y . Randomized experiments are the gold
standard for estimating a causal relationship, however,
they are sometimes infeasible due to logistical, ethi-
cal or financial considerations. Further, randomized ex-
periments may not be as generalizable as observational
studies due to the restricted population used in the ex-
periments.

When assignment to treatment is not randomized,
those that receive one level of the treatment may dif-
fer from those that receive another with respect to co-
variates, X, that may also influence the outcome. For
example, in a study estimating the causal effects of
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neighborhood choice on employment, persons who live
in deprived neighborhoods differ from those who live
in privileged ones on a variety of characteristics, such
as socioeconomic status and education levels (Hedman
and Van Ham, 2012). As such, it may be difficult to
distinguish between neighborhood effects and the dif-
ferences between subjects which existed before they
chose their neighborhoods. In such settings, establish-
ing causes and effects requires more sophisticated sta-
tistical tools and additional assumptions.

Methods such as matching (Dehejia and Wahba,
2002), weighting (Robins, Hernan and Brumback,
2000), subclassification (Rosenbaum and Rubin, 1984),
and imputations (Gutman and Rubin, 2015) have been
proposed to adjust for the differences in X across the
exposure groups. These approaches attempt to obtain
covariate balance across treatment groups, where bal-
ance refers to equality in the distributions of X. By
ensuring that the distribution of units receiving differ-
ent treatments are similar on average, these methods
attempt to reproduce a randomized trial, thus reduc-
ing the effects of treatment assignment bias on causal
estimates.

When X is a scalar, it is relatively straight-forward to
perform matching (Rubin, 1976). However, it is more

432

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/17-STS612
http://www.imstat.org
mailto:mlopez1@skidmore.edu
mailto:roee_gutman@brown.edu


MATCHING WITH MULTIPLE TREATMENTS 433

complex to match, subclassify or weight when X is
composed of many covariates. With a binary treatment,
matching, subclassification, weighting and imputation
using the propensity score have been proposed for es-
timating causal effects from observational studies with
binary treatment (Rosenbaum and Rubin, 1983, Stuart,
2010, Gutman and Rubin, 2015). Propensity score is
defined as the probability of receiving the treatment
conditional on a set of observed covariates. It has been
shown in theory (Rubin and Thomas, 1996) and prac-
tice (D’Agostino, 1998, Caliendo and Kopeinig, 2008)
that under certain assumptions, matching on propen-
sity scores results in unbiased unit-level estimates of
the treatment’s causal effect (Rosenbaum and Rubin,
1983).

Generalizations and applications of propensity score
methods for multiple treatments, however, remain scat-
tered in the literature, in large part because the ad-
vanced techniques are unfamiliar and inaccessible. Our
first goal is to provide a unifying terminology that will
enable researchers to coalesce and compare existing
methods. Our second goal is to describe current meth-
ods for estimating causal effects with multiple treat-
ments, with a specific focus on approaches for nomi-
nal categorical exposures (e.g., a comparison of pain-
killers Motrin, Advil and Tylenol). We contrast these
methods’ assumptions and define the causal effects
they each attempt to estimate. In doing so, potential
pitfalls in the commonly used practice of applying bi-
nary propensity score tools to multiple treatments are
identified.

Third, we explain the elevated importance of defin-
ing a common support region when studying multiple
treatments, where differences in the implementation of
certain approaches can vary the causal estimands as
well as change the study population to which infer-
ence is generalizable. Our final goal is to provide a
technique for generating matched sets when there are
more than two treatments that addresses some of the
pitfalls of the current methods, as well as to compare
the performance of the new and previously proposed
algorithms in balancing covariates’ distributions using
extensive simulation analysis.

The remainder of Section 1 introduces the nota-
tion and identifies existing causal methods for multi-
ple treatments. Section 2 proposes a new algorithm for
matching with multiple treatments. Section 3 uses sim-
ulations to contrast the new and previously proposed
approaches for generating well-matched subgroups of
subjects. Section 4 discusses and concludes with a set
of practical recommendations.

1.1 Notation for Binary Treatment

Our notation is based on the potential outcomes
framework, originally proposed by Neyman for ran-
domized based inference, and extended by Rubin to ob-
servational studies and Bayesian analysis, also known
as the Rubin Causal Model (RCM) (Splawa-Neyman,
Dabrowska and Speed, 1990 [1923], Rubin, 1975,
Holland, 1986). Let Yi , Xi , and Ti be the observed
outcome, set of covariates and binary treatment assign-
ment, respectively, for each subject i = 1, . . . ,N , with
N ≤ N , where N is the population size which is possi-
bly infinite. With Ti ∈ T , let T be the treatment space.
For a binary treatment, T = {t1, t2}, and let nt1 and nt2

be the number of subjects receiving treatments t1 and
t2, respectively.

The RCM relies on the Stable Unit Treatment Value
Assumption (SUTVA) to define the potential outcomes
Yi(t1) and Yi(t2), which would have been observed
had unit i simultaneously received t1 and t2, respec-
tively (Rubin, 1980). SUTVA specifies no interference
between subjects and no hidden treatment versions,
entailing that the set of potential outcomes for each
subject does not vary with the treatment assignment of
others. Because each individual receives only one treat-
ment at a specific point in time, only Yi(t1) or Yi(t2) is
observed for each subject, which is known as the fun-
damental problem of causal inference (Holland, 1986).

Two commonly used estimands for describing super-
population effects are the population average treatment
effect, PATEt1,t2 , and the population average treatment
effect among those receiving t1, PATT t1,t2 :

PATEt1,t2 = E
[
Yi(t1) − Yi(t2)

]
,(1)

PATT t1,t2 = E
[
Yi(t1) − Yi(t2)|Ti = t1

]
.(2)

Letting I (Ti = t1) be the indicator function for an in-
dividual receiving treatment t1, PATEt1,t2 and PATT t1,t2

are generally approximated by the sample average
treatment effects:

SATEt1,t2 = 1

N

N∑
i=1

(
Yi(t1) − Yi(t2)

)
,(3)

SATT t1,t2 = 1

nt1

N∑
i=1

(
Yi(t1) − Yi(t2)

)
(4)

× I (Ti = t1).

Because only one of the potential outcomes is ob-
served for every unit, an important piece of informa-
tion to estimate (3) and (4) is the assignment mecha-
nism, P(T |Y (t1),Y (t2),X), where T = {Ti}, Y (t1) =
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{Yi(t1)}, Y (t2) = {Yi(t2)} and X = {Xi} (Imbens and
Rubin, 2015). Three commonly made restrictions of
the assignment mechanism are individualistic, prob-
abilistic and unconfoundedness (Imbens and Rubin,
2015). In the super population, a random sample of N

units automatically results in an individualistic assign-
ment mechanism. A super-population probabilistic as-
signment mechanism entails that

0 < fT |Y (0),Y (1),X
(
t1|Yi(0), Yi(1),Xi , φ

)
< 1

for each possible Xi , Yi(0) and Yi(1), where φ is a
vector of parameters controlling this distribution.

Finally, a super-population assignment mechanism is
unconfounded if

fT |Y (0),Y (1),X(t |y0, y1,x, φ) = fT |X(t |x, φ)

∀yo, y1,x, φ and t ∈ {0,1}.
For notational convenience, we will drop φ throughout.

Under an individualistic assignment mechanism, the
combination of a probabilistic and unconfounded treat-
ment assignment has been referred to both as strong un-
confoundedness and strong ignorability (Stuart, 2010).
The class of assignment mechanisms that are individ-
ualistic, probabilistic, and unconfounded, but whose
control does not lie in the hands of an investiga-
tor, are referred to as regular assignment mechanisms,
and are most commonly identified with observational
data. Weaker versions of unconfoundedness are suf-
ficient for some estimation techniques and estimands
(Imbens, 2000), and are discussed in Section 1.5.4.

Let et1,t2(X) = P(T = t1|X) be the propensity score
(PS), and let êt1,t2(X) be the estimated PS, tradition-
ally calculated using logistic or probit regression. If
treatment assignment is regular, then it is possible
to estimate unbiased unit-level causal effects between
those at different treatment assignments with equal
PSs (Rosenbaum and Rubin, 1983). Propensity scores
are often used for either matching, inverse probability
weighting or subclassification to estimate (3) and (4).

1.1.1 Description of estimands. It is useful to de-
scribe how estimands are affected by the distribution
of X in treatment groups t1 and t2. Figure 1 shows
different sets of overlap in the covariates’ distribu-
tions between those receiving t1 and t2. Each circle
in Figure 1 represents a hypothetical distribution of
X among those exposed to each treatment, allowing
for an infinitesimally small number of units outside of
it. For example, each circle could represent the 99th
percentiles of a two-dimensional multivariate normal
distribution. In Figure 1, shaded regions correspond to
the distribution of covariates in a population of inter-
est, St1 . When 0 < P(T = t2|X = x∗) < 1 ∀x∗ ∈ St1 ,
PATT t1,t2 reflects the ATT of those treated on t1 (Fig-
ure 1, Scenario a).

In Scenario b of Figure 1, PATT t1,t2 also intends to
reflect the ATT of those receiving t1. However, there
exists an x∗ ∈ St1 such that P(T = t2|X = x∗) ≈ 0.
Thus, the assignment mechanism is not regular and it
is impossible to approximate PATT t1,t2 without making
unassailable assumptions due to individuals with co-
variates lying outside the intersection of the two treat-
ment groups.

One advice to handle this issue is to use a common
support region, where those with either X or ê(t1,t2)(X)

beyond the range of X or ê(t1,t2)(X) of those receiv-
ing the other treatment are excluded from the anal-
ysis phase (Dehejia and Wahba, 1998, Crump et al.,
2009). A different advice to reduce differences be-
tween matched subjects is by using a caliper matching
procedure, and dropping units without eligible matches
with similar êt1,t2(X) in the other group (Caliendo and
Kopeinig, 2008, Stuart, 2010). With either of these ad-
vices, the treatment effect only generalizes to those re-
ceiving t1 who were eligible to be treated with treat-
ment t2 (i.e., the intersection of the treatment groups
in Figure 1, Scenario c). Let E1i be an indicator for
subject i having a propensity score within the common
support of ê(t1,t2)(X). Defensible estimands of interest

FIG. 1. Three scenarios of covariate overlap for binary treatment: shaded areas represent subjects included in a matched analysis.
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are now

PATEE1(t1,t2) = E
[
Yi(t1) − Yi(t2)|E1i = 1

]
,(5)

PATTE1(t1,t2)
(6)

= E
[
Yi(t1) − Yi(t2)|E1i = 1, Ti = t1

]
.

Although estimands (5) and (6) share the same com-
mon support, they may differ if the covariates’ distri-
butions of the treated in E1i differ from that of the con-
trol.

1.2 Notation for Multiple Treatments

The choice of estimands grows with increasing treat-
ment options. Let T = {t1, t2, . . . , tZ} be the treat-
ment support for Z total treatments, with Y i = {Yi(t1),

Yi(t2), . . . , Yi(tZ)} the set of potential outcomes for
subject i.

To define potential outcomes and estimate treat-
ment effects with multiple treatments, our assump-
tions are expanded as follows. First, the SUTVA ex-
pands across a subject’s vector of potential outcomes.
Second, a regular treatment assignment mechanism
requires that individualistic, probabilistic and uncon-
foundedness hold for multiple exposures. Like in the
binary case, a random sample of N units from an
infinite super-population results in an individualistic
assignment mechanism. Assignment mechanisms are
super-population probabilistic if

0 < fT |Y (t1),...,Y (tZ),X
(
t |Yi(t1), . . . , Yi(tZ),Xi , φ

)
< 1

∀t ∈ {t1, . . . , tZ},
for each possible Xi , Yi(t1), . . . , Yi(tZ). With multiple
treatments, a super-population unconfounded assign-
ment mechanism requires that

fT |Y (t1),...,Y (tZ),X(t |yt1, . . . , ytZ ,x, φ) = fT |X(t |x, φ)

∀yt1, . . . , ytZ ,x, φ and t ∈ {t1, . . . , tZ}.
We first present a broad definition of the possible con-
trasts that may be of interest with multiple treatments.
Define w1 and w2 as two subgroups of treatments
such that w1,w2 ⊆ T and w1 ∩ w2 = ∅. Next, let
|w1| and |w2| be the cardinality of w1 and w2, respec-
tively. Possible estimands of interest are PATEw1,w2

and PATTw1|w1,w2 , where

PATEw1,w2 = E

[∑
t∈w1

Yi(t)

|w1| −
∑

t∈w2
Yi(t)

|w2|
]
,(7)

PATTw1|w1,w2
(8)

= E

[∑
t∈w1

Yi(t)

|w1| −
∑

t∈w2
Yi(t)

|w2|
∣∣∣Ti ∈ w1

]
.

In (7) and (8), the expectation is over all units, i =
1, . . . ,N , and the summation is over the potential out-
comes of a specific unit.

An example of when (7) and (8) are scientifically
meaningful is in a setting with two conventional and
three atypical antipsychotic drugs, where physicians
first choose drug type (conventional or atypical) be-
fore choosing an exact prescription (Tchernis, Horvitz-
Lennon and Normand, 2005). In this case, an investi-
gator could be interested in the general treatment ef-
fect between conventional treatments, w1 = {t1, t2},
and atypical ones, w2 = {t3, t4, t5}, and an estimand
of interest could be PATEw1,w2 = E[Yi(t1)+Yi(t2)

2 −
Yi(t3)+Yi(t4)+Yi(t5)

3 ].
The most traditional estimands with multiple treat-

ments contrast all treatments using simultaneous pair-
wise comparisons, where w1 and w2 are each com-
posed of one treatment. Using equation (7), there are(Z

2

)
possible PATE’s of interest. It is important to

note that pairwise PATE’s are transitive. Formally, for
w1 = {t1}, w2 = {t2}, and w3 = {t3}, PATEw1,w3 −
PATEw1,w2 = PATEw2,w3 .

For reference group w1 = {t1}, researchers are com-
monly interested in Z − 1 pairwise PATT’s, one for
each of the treatments which the reference group
did not receive (McCaffrey et al., 2013). In order to
compare among the Z − 1 treatments, the PATT’s
should also be transitive, such that PATTw1|w1,w3 −
PATTw1|w1,w2 = PATTw1|w2,w3 . This property gener-
ally does not extend when conditioning on a popu-
lation eligible for different treatment groups. For ex-
ample, unless the super populations of those receiving
treatments w1 and w2 are identical, PATTw1|w1,w2 −
PATTw2|w2,w3 is generally not equal to PATTw1|w1,w3 .

For the remainder of the manuscript, we assume
that pairwise contrasts between treatments are the esti-
mands of interest, so that |w1| = |w2| = · · · = |wz| = 1.

1.3 The Generalized Propensity Score

The generalized propensity score (GPS), r(t,X) =
Pr(T = t |X = x), extends the PS from a binary treat-
ment setting to the multiple treatment setting (Imbens,
2000, Imai and van Dyk, 2004).

With a binary treatment, knowing et1,t2(X) is equiv-
alent to knowing 1 − et1,t2(X). Thus, two individuals
with the same PS are also identical with respect to their
probability of receiving t2. Conditioning with multiple
treatments, however, often must be done on a vector of
GPSs, defined as R(X) = (r(t1,X), . . . , r(tZ,X)), or
a function of R(X) (Imai and van Dyk, 2004).
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Two individuals with the same r(t,X) for treatment
t may have differing R(X)’s. For example, for T =
{t1, t2, t3}, let R(Xi ), R(Xj ), and R(Xk) be the GPS
vectors for subjects i, j , and k, respectively, where
Ti = t1, Tj = t2 and Tk = t3, with

R(Xi ) = (0.30,0.60,0.10),

R(Xj ) = (0.30,0.35,0.35),

R(Xk) = (0.30,0.10,0.60).

Even though r(t1,Xi ) = r(t1,Xj ) = r(t1,Xk) =
0.30, because r(t2,Xi ) 	= r(t2,Xj ) 	= r(t2,Xk) and
r(t3,Xi ) 	= r(t3,Xj ) 	= r(t3,Xk), differences in out-
comes between these subjects would generally not pro-
vide unbiased causal effect estimates (Imbens, 2000).
In part due to this limitation, Imbens (2000) called in-
dividual matching less ‘well-suited’ to multiple treat-
ment settings. Only under the scenario of R(Xi ) =
R(Xj ) = R(Xk) would contrasts in the outcomes of
subjects i, j , and k provide unbiased unit-level esti-
mates of the causal effects between all three treatments
(Imbens, 2000, Imai and van Dyk, 2004).

For nominal treatment, the multinomial logistic and
the multinomial probit models have been proposed to
estimate R(X), and for ordinal treatment, the propor-
tional odds model has been suggested (Imbens, 2000,
Imai and van Dyk, 2004). Alternatively, researchers
have also used models designed for binary outcomes
to estimate R(X), including logistic and probit re-
gression models on different subsets of subjects re-
ceiving each pair of treatments. Although a multi-
nomial model is more intuitive, in practice, Lechner
(2002) identified correlation coefficients of roughly
0.99 when comparing the conditional treatment assign-
ment probabilities from a set of binary probit mod-
els to those from a multinomial probit. As another op-
tion, McCaffrey et al. (2013) used generalized boosted
models to independently estimate P(Ii(t)|X), where
Ii(t) = {1 if Ti = t,0 otherwise}. The probabilities es-
timated using generalized boosted models may not add
up to unity. To address this issue, McCaffrey et al.
(2013) proposed an additional procedure that selects
one treatment as a holdout and estimates P(Ii(t)|X)

using the estimated odds ratios of the probability of be-
ing assigned to each treatment versus the probability of
being assigned to the holdout treatment. The choice of
the holdout treatment may result in different estimated
probabilities, and because it relies on binary estimation
of subsamples of the population, it may not be able to
adjust for the entire R(X). In our review below, we
specify the model that is used to estimate the treatment
assignment probabilities suggested by each method.

1.4 Ordinal Treatments

With ordinal treatments, such as scales (e.g., never–
sometimes–always) or doses (e.g., low–medium–high),
it is sometimes possible to condition on a scalar bal-
ancing score in place of conditioning on a vector. This
can be done by estimating the assignment mechanism
as a function of X using the proportional odds model
(McCullagh, 1980), such that

log
(

P(Ti < t)

P (Ti ≥ t)

)
= θt − βT Xi ,

(9)
t = 1, . . . ,Z − 1.

Letting βT = (β1, . . . , βp)T , Joffe and Rosenbaum
(1999) and Imai and van Dyk (2004) showed that after
using this model for the assignment mechanism, differ-
ences in outcomes between units with different expo-
sure levels but equal βT X scores can provide unbiased
unit-level estimates of causal effects at that βT X.

The balancing property of βT X can be used to match
or subclassify subjects receiving different levels of an
ordinal exposure. Lu et al. (2001) used nonbipartite
matching to form matched sets based on a function of
βT X and the relative distance between exposure levels.
While this method does not specify an exact causal es-
timand, it is used for testing the hypothesis of whether
or not a dose-response relationship exists between T

and Y (see Armstrong, Jagolinzer and Larcker, 2010,
Frank, Akresh and Lu, 2010, Snodgrass et al., 2011 to
name a few).

Imai and van Dyk (2004), Zanutto, Lu and Hornik
(2005), Yanovitzky, Zanutto and Hornik (2005) and
Lopez and Gutman (2014) used equation (9) to esti-
mate treatment assignment by subclassifying subjects
with similar βT X values. After subclassification on
βT X, the distribution of X across treatments is roughly
equivalent for units in the same subclass. Unbiased
causal effects can be estimated within each subclass,
and aggregated across subclasses using a weighted av-
erage to estimate either PATE’s or PATT’s (Zanutto, Lu
and Hornik, 2005). Lopez and Gutman (2014) found
that combining regression adjustment with subclassifi-
cation yielded more precise estimates.

A different strategy for estimating the causal ef-
fects of ordinal exposures is to dichotomize the treat-
ment using a pre-specified cutoff and binary propensity
score methods (Chertow, Normand and McNeil, 2004,
Davidson et al., 2006, Schneeweiss et al., 2007). This
procedure may result in a loss of information, as all
subjects on one side of the cutoff are treated as having
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the same exposure level, and could violate the com-
ponent of SUTVA which requires no hidden treatment.
Royston, Altman and Sauerbrei (2006) identified a loss
of power, residual confounding of the treatment assign-
ment mechanism, and possible bias in estimates as the
results of dichotomization. Moreover, dichotomization
makes identification of an optimal exposure level im-
possible. Thus, matching or subclassifications methods
which maintain all exposure levels while balancing on
βT X are preferred for causal inference with ordinal ex-
posures (Imai and van Dyk, 2004). Inverse probability
weighting can also be used to estimate causal effects
from ordinal treatments (Imbens, 2000).

1.5 Nominal Treatments

Nominal treatments do not follow a specific order.
Thus, it is harder to identify a ‘sensible’ function
that reduces R(X) to a scalar. Several methods have
been proposed to estimate causal effects with multi-
ple treatments from observational data. We provide an
overview of these methods and explicate on their as-
sumptions and estimands.

1.5.1 Series of binomial comparisons. Lechner
(2001, 2002) estimated PATT’s between multiple treat-
ments using a series of binary comparisons (SBC). SBC
implements binary propensity score methods within
each of the

(Z
2

)
pairwise population subsets. For ex-

ample, a treatment effect comparing t1 to t2 uses only
subjects receiving either t1 or t2, ignoring subjects
that received t3. Lechner advocates matching on either
ê(t1,t2)(X), estimated using logistic or probit regres-
sion, or r̂(t1,X)/(r̂(t1,X) + r̂(t2,X)), where r̂(t1,X)

and r̂(t2,X) are estimated using a multinomial regres-
sion model.

Figure 2 (Scenario d) depicts the unique common
support regions for Z = 3 when using SBC, where
treatment effects reflect different subsets of the popu-
lation. Let e(t1,t2)(X,T = t1) and e(t1,t2)(X,T = t2)

be the vector of all binary propensity scores among

FIG. 2. Two scenarios of eligible subjects with three treatments:
shaded areas represent subjects included in a matched analysis.

subjects receiving t1 and t2, respectively. We define
E2i (t1, t2) as the indicator for subject i having a bi-
nary propensity score for treatments t1 and t2 within
the common support:

E2i (t1, t2) =

⎧⎪⎪⎨⎪⎪⎩
1 if e(t1,t2)(Xi ) ∈ e(t1,t2)(X,T = t1)∩

e(t1,t2)(X,T = t2),

0 otherwise.

SBC estimates the causal effect of treatment t1 versus
treatment t2, among those on t1, as

PATTE2(t1|t1,t2)
(10)

= E
[
Yi(t1) − Yi(t2)|Ti = t1,E2i (t1, t2) = 1

]
.

Each pairwise treatment effect from SBC general-
izes only to subjects eligible for that specific pair of
treatments, as opposed to those eligible for all treat-
ments. Such pairwise treatment effects are not transi-
tive, and cannot generally inform which treatment is
optimal when applied to the entire population. For ex-
ample, PATTE2(t1|t1,t2) and PATTE2(t1|t1,t3) may gener-
alize to separate subsets of units who received t1 [i.e.,
the super population where E2i (t1|t1, t2) = 1 could dif-
fer from the super population where E2i (t1|t1, t3) = 1].

Despite this major limitation, versions of SBC have
been applied in economics, politics and public health
(Bryson, Dorsett and Purdon, 2002, Dorsett, 2006,
Levin and Alvarez, 2009, Drichoutis, Lazaridis and
Nayga Jr, 2005, Kosteas, 2010).

1.5.2 Common referent matching. With three treat-
ments, Rassen et al. (2011) proposed common refer-
ent matching (CRM) to create sets with one individual
from each treatment type. For T = {t1, t2, t3}, the treat-
ment t1 such that nt1 = min{nt1, nt2, nt3}, is used as the
reference group.

CRM is composed of 3 steps. (1) Among those re-
ceiving each pair of treatments, {t1, t2} or {t1, t3}, logis-
tic or probit regression is used to estimate et1,t2(X) and
et1,t3(X), respectively; (2) Using 1 : 1 matching, pairs
of units receiving t1 or t2 are matched using êt1,t2(X)

and pairs of units receiving t1 or t3 are matched using
êt1,t3(X); (3) These two cohorts are used to construct
1 : 1 : 1 matched triplets using the patients receiving
t1 who were matched to both a unit receiving t2 and a
unit receiving t3, along with their associated matches.
Matched pairs from treatments t1 and t3 are discarded
if the unit receiving t1 was not matched with a unit on
treatment t2, and pairs of units receiving t1 and t2 are
discarded when there is no match for the reference unit
to a unit receiving t3.
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Let E3i be the indicator for having two pairwise
binary PSs within their respective common supports,
such that

E3i =
{

1 if E2i (t1, t2) = 1 and E2i (t1, t3) = 1,

0 otherwise.

CRM attempts to estimate the following treatment
effects:

PATTE3(t1|t1,t2) = E
[
Yi(t1) − Yi(t2)|Ti = t1,E3i = 1

]
,

PATTE3(t1|t1,t3) = E
[
Yi(t1) − Yi(t3)|Ti = t1,E3i = 1

]
,

PATTE3(t1|t2,t3) = E
[
Yi(t2) − Yi(t3)|Ti = t1,E3i = 1

]
,

PATTE3(t1|t2,t3) is the average difference in the potential
outcomes of receiving treatments t2 and t3 among the
population of subjects who received t1.

Rassen et al. (2011) relied on common sampling
variance estimates produced by the SAS statistical soft-
ware (SAS Institute Inc., 2003) to make inference.
These estimates may underestimate the sampling vari-
ance, because they ignore the variability induced by the
matching procedure. The next section will explain the
possible issues that arise from CRM and similar proce-
dures.

1.5.3 Interlude: Binary PS applications to multiple
treatments. The following hypothetical example with
Z = 3 illustrates issues with the implementation of bi-
nary PS tools, as in SBC and CRM, when there are mul-
tiple treatments.

Let Xi = (x1i

x2i

)
be a vector of covariates for subject i,

and we will assume that Xi |Ti = t ∼ N(μt ,1), where
μt is a 2 × 1 mean vector and 1 is the 2 × 2 identity
matrix. Further, we let μ1 = (0,0), μ2 = (0, a), and
μ3 = (a,0).

An arbitrary linear combination of X can be ex-
pressed as the sum of components along the standard-
ized linear discriminant, Z , and orthogonal to it, W
(Rubin and Thomas, 1992a). Matching on the true or
estimated propensity score does not introduce any bias
in W when Xi |Ti follows a multivariate normal distri-
bution. In addition, after matching, W will have the
same expected second moment (Rubin and Thomas,
1992b). Specifically, when matching treatment 1 to
treatment 2 with a = 2, Z12 = (0

2

)′
X1/

√
2 = √

2X2
and W12 = X1. After matching, Rubin and Thomas
(1992b) showed that

E
(
Zm2

12
) = 2 − �(Nt2, nt2)

∼= 2 − 2π log
(

Nt2

nt2

)
,

E
(
Zm1

12
) = 0 + �(Nt1, nt1)

∼= 2 + 2π log
(

Nt1

nt1

)
,

where Zm1
12 and Zm2

12 are the averages of the standard-
ized linear discriminate in the matched treatments 1
and 2, respectively, �(Nt, nt ) is the average expecta-
tion of the n largest of the N randomly sampled stan-
dard normal variables, and its approximation was de-
picted in Rubin (1976).

In our example with a = 2, μm = E(Zm1
12 ) = E(Zm2

12 )

when
Nt2
nt2

and
Nt1
nt1

are bigger than 3. Similar results

can be derived when matching treatments 1 and 3 with
Z13 = √

2X1 and W13 = X2.
Matching units that received either treatment 1 or 2

separate from units that received either treatment 1 or
3 generates two subpopulations, one with mean

( 0
μm

)
and another with mean

(μm

0

)
. Note that Wm1

12 and Wm2
12

are independent and have similar means (Rubin and
Thomas, 1992b). Similarly, Wm1

13 and Wm3
13 are inde-

pendent and have similar means. Lastly, Wm1
12 is inde-

pendent from Wm1
13 . When using CRM, the units that

are kept as matches that received treatment 1 will have
the high values of X1 and X2. However, because of
the independence, group 2 will still have Wm2

12 that
has a mean close to zero and group 3 will still have
Wm3

13 that has a mean close to zero. Thus, in cer-
tain settings CRM may perform worse than without
matching.

This analysis can be observed in a simple simulation
where, letting a = 2, nt1 = 400, and nt2 = nt3 = 800,
we calculate the sample means among those matched
after using a binary matching algorithm [with caliper
0.25 × SD(et1,t2(X))]. Table 1 shows the median co-
variate values among those receiving each treatment,
using only the subjects that remain after matching.

Among the matched set, those receiving t1 are simi-
lar to those receiving t2 on X1 but not X2, and similar
to those receiving t3 on X2 but not X1.

Figure 3 depicts one iteration. The ellipses repre-
sent 95% quantiles of the bivariate distribution of X1

TABLE 1
Median covariate values among those matched using a binary

algorithm with Z = 3

T X1 X2

t1 0.71 (0.56, 0.82) 0.72 (0.57, 0.83)
t2 0.70 (0.56, 0.84) 0.01 (−0.16, 0.20)
t3 0.01 (−0.19, 0.18) 0.72 (0.58, 0.85)

2.5th, 97.5th percentiles shown in parenthesis.
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FIG. 3. 95% quantiles of bivariate X1 and X2 distribution among subjects matched for Z = 3, for pre-matched (left) and post-matched
(right) cohorts. Means of the pre- and post-matched covariates’ distributions depicted by symbols.

and X2, with one ellipse for subjects receiving each
treatment both before and after matching. The trian-
gles represent the pre-matched sample mean among
those receiving each treatment, while the ‘+’ signs
are the mean covariate values among those matched.
While matching reduced the covariates’ bias relative to
the pre-matched sample, the covariate spaces of those
receiving each treatment remain unique in the post-
matched cohort, and there is limited overlap between
subjects receiving t2 and t3.

1.5.4 Inverse probability weighting for multiple
treatments. One common approach for estimating
causal effects with multiple treatments uses the in-
verse probability of treatment assignment as weights
(Imbens, 2000, Feng et al., 2012, McCaffrey et al.,
2013). When estimating the PATE and PATT with
IPW, a relaxed version of the assumption of a regu-
lar treatment assignment can be adopted. IPW requires
only that ∀t ∈ T , P(Ii(t) = 1|Yi(t),Xi) = P(Ii(t) =
1|Xi) to estimate PATEt1,t2 and PATT t1,t2 . This condi-
tion is referred to as weak unconfoundedness instead
of strong unconfoundedness (Imbens, 2000). Imbens
(2000) acknowledges that the contrast between weak
unconfoundedness and strong unconfoundedness is
‘not very different.’

Feng et al. (2012) implemented IPW to estimate
PATE’s between each pair of treatments, such that to

contrast t1, t2 ∈ T ,

(11)

̂PATEt1,t2 = ̂E
[
Yi(t1)

] − ̂E
[
Yi(t2)

]
where

̂E
[
Yi(t1)

] =
(

N∑
i=1

I (Ti = t1)Yi

r(t1,Xi )

)

×
(

N∑
i=1

I (Ti = t1)

r(t1,Xi )

)−1

and

̂E
[
Yi(t2)

] =
(

N∑
i=1

I (Ti = t2)Yi

r(t2,Xi )

)

×
(

N∑
i=1

I (Ti = t2)

r(t2,Xi )

)−1

.

When using IPW , extreme weights that are close to
0 can yield erratic causal estimates with large sample
variances (Little, 1988, Kang and Schafer, 2007, Stuart
and Rubin, 2008), an issue which is increasingly likely
as Z increases, where treatment assignment probabili-
ties for some treatments may become quite small. For
example, in an analysis of rare treatment decisions with
Z = 7, Kilpatrick et al. (2013) found weights greater
than 104 and resulting confidence intervals that were
sensitive to model specification. A possible solution to
the unstable estimates that has been applied in the bi-
nary treatment setting is to trim subjects with extreme
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weights (Lee, Lessler and Stuart, 2011). Kilpatrick
et al. (2013) observed increased precision with weight
removal, relative to the inclusion of all subjects; how-
ever, dropping extreme weights also yielded increased
bias. This observation reveals a subtle point that is
not always recognized. As shown in Section 1.3, in
contrast to binary propensity scores, the comparison
of units with similar r(t,X) and different R(X) that
receive different treatments has no causal interpreta-
tion (Imbens, 2000). Instead, only a comparison of the
r(t,X) weighted averages has such interpretation. As
a result, trimming units with r(t,X) that are close to 0
or 1 may actually drop units with different covariates’
distributions, which could ultimately increase the bias.

For binary treatment, other approaches have been
suggested to limit the effects of large weights. These
include a doubly robust approach (Tan, 2010), a co-
variate balancing propensity score (Imai and Ratkovic,
2014), and generalized boosted models (McCaffrey,
Ridgeway and Morral, 2004, McCaffrey et al., 2013),
with the latter two methodologies also extending to
a multiple treatments framework. To provide confi-
dence intervals for (11), Feng et al. (2012) use the
2.5 and 97.5 quantiles from a nonparametric boot-
strap algorithm (Efron and Tibshirani, 1994) to obtain a
95% confidence interval, while McCaffrey et al. (2013)
approximate the standard errors by using robust (or
so-called ‘sandwich’) procedure. However, McCaffrey
et al. (2013) acknowledge that there is currently no the-
ory that guarantees that these will result in proper con-
fidence intervals when using generalized boosted mod-
els, and this is an area for further statistical research.

1.5.5 Matching for multiple treatments. Recently,
attempts have been made to group several subjects
together who have similar R(X), including at least
one subject receiving each treatment. With Z = 3,
Rassen et al. (2013) proposed ‘within-trio’ matching
(WithinTrio) to form triplets of subjects. WithinTrio
uses the KD-tree algorithm (Moore, 1991) to optimize
triplet similarities based on units’ GPSs for treatments
t1 and treatments t2, by using a distance function be-
tween all possible pairs of triplets (Hott, Brunelle and
Myers, 2012). Using simulations, Rassen et al. (2013)
found that triplets produced using WithinTrio generally
yielded lower standardized covariate bias when com-
pared to CRM and SBC.

One limitation of WithinTrio is that it uses only t1 as
the reference treatment, where nt1 = min{nt1, nt2, nt3},
and so PATT’s generalizable to those receiving treat-
ment t2 or t3 cannot yet be estimated. Because all sub-
jects receiving t1 are matched, there is also the poten-
tial to form dissimilar triplets, if, for example, all close

matches to a subject who received t1 are already taken
as matches by other subjects. At this stage in its de-
velopment, WithinTrio has focused on Z = 3 treatment
types. An additional limitation is that there is no known
procedure for sampling variance estimates, and appli-
cation of the bootstrap method may be computationally
intensive.

Tu, Jiao and Koh (2012) examined a clustering al-
gorithm to bin units into subclasses based on their
R̂(X)’s using simulations. The authors showed that K-
means clustering (KMC, Johnson et al., 1992) on the
logit transformation of the GPS vector, logit(R̂(X)) =
(log(r̂(t1,X)/(1 − ̂r(t1,X))), . . . , log( ̂r(tZ,X)/(1 −
̂r(tZ,X))), generally provided the highest within sub-

class covariate similarity between those receiving dif-
ferent treatments. Although the authors do not provide
guidelines regarding which units should be included
in generating the clusters (e.g., a common support),
if all subjects were subclassified, causal effects could
be estimated within each subclass and then aggregated
across subclasses using a weighted average to estimate
either PATEs or PATTs. One possible issue with clus-
tering on R(X) is that some subclasses may not include
units from all treatment groups, which will require ex-
trapolation to that subclass. We know of no implemen-
tations of KMC to estimate causal effects for a nominal
exposure with real data. Moreover, there is no known
procedure for estimating the sampling variance, and
randomization based sampling variance estimates may
be too small (Gutman and Rubin, 2015).

2. MATCHING ON A VECTOR OF GENERALIZED
PROPENSITY SCORES

In observational studies that intend to compare mul-
tiple treatments, matching algorithms attempt to elim-
inate extraneous variation due to observed covariates.
In other words, matching attempts to replicate a multi-
arm randomized trial where the covariates’ distribu-
tions of units in each arm are similar. When the number
of covariates is significantly larger than the number of
treatments, matching on the GPS can reduce the com-
plexity of the algorithms in comparison to matching on
the complete set of covariates.

As was shown in Section 1.5.3, relying on standard
matching tools for two treatments may result in treat-
ment groups with different distributions of covariates,
because matching on a single treatment assignment
probability does not ensure similarity across the GPS
vector. Additionally, approaches like SBC and CRM
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generalize to specific pairwise subsets of the popula-
tion, which may be insufficient for clinicians and pol-
icy makers, who are generally looking to compare three
or more active treatments at once (Rassen et al., 2011,
Hott, Brunelle and Myers, 2012). Meanwhile, current
approaches designed to match for multiple treatments
tend to be either inaccessible or limited in scope.

To address these limitations, we propose a new algo-
rithm, called vector matching (VM), which can match
subjects with similar R(X) using available software.
VM is designed to generalize to subjects ‘eligible’ for
all treatments simultaneously, which is representative
of the multi-arm clinical trial that we are hoping to
replicate. We begin by describing the treatment effect
that we estimate using VM.

Estimands and common support. We expand the
work of Dehejia and Wahba (1998) to identify a com-
mon support for multiple treatments as follows. Esti-
mate R(X) using, for example, a multinomial regres-
sion model. For each treatment t ∈ T , let

r(t,X)(low) = max
(
min

(
r(t,X|T = t1)

)
, . . . ,

(12)
min

(
r(t,X|T = tZ)

))
,

r(t,X)(high) = min
(
max

(
r(t,X|T = t1)

)
, . . . ,

(13)
max

(
r(t,X|T = tZ)

))
,

where r(t,X|T = �) is the treatment assignment prob-
ability for t among those who received treatment �.
This is a rectangular common support region that may
drop some units that could be included in the analy-
sis. A more complex common support region based on
multidimensional ellipsoids or convex hull regions pro-
vide areas for further research.

Subjects with r(t,X) /∈ (r(t,X)(low), (r(t,X)(high))

∀t ∈ T may have X values that are not observed for
some treatment groups, and should be discarded. Af-
ter using this exclusion criterion, it is recommended to
re-fit the GPS model, to ensure that estimated GPSs
are not disproportionately impacted by those dropped
(adapted from the binary treatment scenario in Imbens
and Rubin, 2015). Re-fitting is generally done once;
unless the minimum and maximum estimated GPSs are
identical among each group receiving each treatment,
there will always be subjects outside the boundaries in
a continuously re-fit model.

Let E4i be the indicator for all treatment eligibility,
where

E4i =

⎧⎪⎪⎨⎪⎪⎩
1 if r(t,Xi ) ∈ (

r(t,X)(low), r(t,X)(high))
∀t ∈ T ,

0 otherwise.

The shaded region in Figure 2, Scenario e, depicts the
subset of those eligible for all three treatments.

Using t1 as a reference treatment, PATT’s among
subjects eligible for all treatments are defined as fol-
lows:

PATTE4(t1|t1,t2)
(14)

= E
[
Yi(t1) − Yi(t2)|Ti = t1,E4i = 1

]
,

PATTE4(t1|t1,t3)
= E

[
Yi(t1) − Yi(t3)|Ti = t1,E4i = 1

]
,

· · · = · · ·
PATTE4(t1|t1,tZ)

(15)
= E

[
Yi(t1) − Yi(tZ)|Ti = t1,E4i = 1

]
.

There are two benefits to our definition of eli-
gibility. First, all estimands in (14) are transitive;
PATTE4(t1|t1,t2) and PATTE4(t1|t1,t3), for example, could
be contrasted to compare t2 and t3 in the population of
subjects who received t1. Second, because all subjects
included have r(t,X)(low) < r(t,X) < r(t,X)(high) ∀t ,
extrapolation to subjects that did not received a specific
treatment is reduced.

2.1 Vector Matching

As described in Section 1.3, when comparing multi-
ple treatments, the GPS is a vector composed of Z − 1
independent components; ultimately, our goal is simi-
larity across this vector. One possible matching algo-
rithm for R(X) begins by creating K1 intervals based
on r(t1,X) so that there is at least one unit from each
treatment group in each interval. The algorithm con-
tinues by subclassifying units into K2 intervals within
each of the K1 intervals with similar r(t2,X) such that
each new interval includes at least one unit from each
treatment group. This proceeds until all of the compo-
nents of R(X) have been subclassified. Such an algo-
rithm may be influenced by the order that the compo-
nents of R(X) are subclassified. Some orderings of the
components may lead to declaring a large set of units
as unmatchable and may result in estimates that have
limited use in practice.

To handle these difficulties, vector matching consists
of two steps that can be implemented using common
software. First, place subjects into clusters using KMC
such that subjects within each cluster are roughly sim-
ilar on one or more GPS components and there is at
least one subject from each treatment in each cluster.
Second, match pairs of subjects together only if they
appear in the same subclass.



442 M. J. LOPEZ AND R. GUTMAN

Below, we explicate and summarize the procedure
for a reference treatment t ∈ T = {t1, . . . , tZ}:
1. Estimate R(Xi ), i = 1, . . . ,N using, for example, a

multinomial logistic model.
2. Drop units outside the common support (e.g., those

with E4i = 0), and re-fit the model once.
3. ∀t ′ 	= t

(a) Classify all units using KMC on the logit
transform of R̂t,t ′(X), where R̂t,t ′(X) = (r̂(�,X)

∀� 	= t, t ′). This forms K strata of subjects, with
similar Z − 2 GPS scores [not including r̂(t,X) or
r̂(t ′,X)] in each k ∈ K .

• Example: with Z = 5, T = {t1, . . . , t5}, refer-
ence treatment t1 and letting t ′ = t2, VM would
use KMC on logit( ̂r(t3,Xi), ̂r(t4,Xi ), ̂r(t5,Xi ))

(b) Within each strata k ∈ K , use 1 : 1 match-
ing to match those receiving t to those receiving t ′
on logit( ̂r(t,Xi )). Matching is performed with re-
placement using a caliper of ε×SD(logit( ̂r(t,Xi ))),
where ε = 0.25.

• Example: this matches subjects receiving t1 to
those receiving t2 within each of the strata pro-
duced by KMC

4. Subjects receiving t who were matched to sub-
jects receiving all treatments � 	= t , along with their
matches receiving the other treatments, compose
the final matched cohort.

Up to nt1,E4=1 sets can be generated using vector
matching, where nt1,E4=1 is the number of subjects re-
ceiving t1 with E4i = 1.

For Z = 3, vector matching reduces to:

1. Those receiving t1 are matched to those receiv-
ing t2 using logit( ̂r(t1,Xi )) within K-means strata of
logit( ̂r(t3,Xi ))

2. Those receiving t1 are matched to those receiv-
ing t3 using logit( ̂r(t1,Xi )) within K-means strata of
logit( ̂r(t2,Xi ))

3. Extract the subjects receiving t1 who were
matched to both subjects receiving t2 and t3, as well
as their matches.

After the completion of VM, we are left with many
sets that include a unit from the reference treatment and
matched units from each of the other Z − 1 treatments.
By matching within a subclass, we have ensured that
matched units are close on one component of the GPS

and roughly similar on the other components. As a re-
sult, VM improves the balance in covariates’ distribu-
tions between those receiving different treatments rel-
ative to matching on a single element of the GPS. VM
is relatively efficient computationally, and is not as af-
fected by the ordering of the GPS elements.

We implemented VM by matching on logit(r̂(t,X))
as well as r̂(t,X) within strata estimated using KMC.
The logit transformation produced smaller biases,
which parallels findings observed with binary treat-
ment (Rosenbaum and Rubin, 1985). Additionally,
while the recommendation for binary treatment uses
ε = 0.25 (Austin, 2011), we examined ε ∈ {0.25,0.50,

1.0}. Based on the simulation design that is described
in Section 3, VM performed best in terms of bias and
percent of matched eligible subjects with ε = 0.25
(data not shown). The in strata matching procedure is
implemented using the Matching (Sekhon, 2011) pack-
age in R statistical software (R Core Team, 2014).

Figure 4 shows the 95% quantiles of the bivariate X1
and X2 distribution after implementing vector match-
ing on the same iteration as the one shown in Figure 3
(Section 1.5.3). Whereas binary procedures were insuf-
ficient for identifying similar matched sets, the circles
are near perfect overlaps after using vector matching.

2.2 Post-Matching Analysis

Although our focus is on the design phase of match-
ing for multiple treatments, it is important to con-
sider how matched sets could be used to make infer-
ences. Point estimates for (14)–(15) using VM matches
can be obtained by contrasting those matched using
a weighted average, with weights proportional to ψi ,
where ψi is the number of times subject i is part of a
matched set. Let ntrip be the number of matched sets.
Point estimates for (14)–(15) can be obtained using
(16)–(17), where

SATTE4(t1|t1,t2)
(16)

=
∑

i∈E4
YiI (Ti = t1)ψi − YiI (Ti = t2)ψi

ntrip
,

SATTE4(t1|t1,t3)

=
∑

i∈E4
YiI (Ti = t1)ψi − YiI (Ti = t3)ψi

ntrip
,

· · · = · · ·
SATTE4(t1|t1,tZ)

(17)

=
∑

i∈E4
YiI (Ti = t1)ψi − YiI (Ti = tZ)ψi

ntrip
.
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FIG. 4. 95% quantiles of bivariate X1 and X2 distribution among subjects matched for Z = 3, for pre-matched (left) and post-matched
(right) cohorts. Means of the pre- and post-matched distributions depicted by symbols.

As highlighted earlier, an advantage of these estimands
is that they generalize to subjects ‘eligible’ for all treat-
ments.

Like other approaches that match with multiple treat-
ments, estimating the standard error of these point esti-
mates is still an open research question. One approach
for estimating the sampling variances of (16)–(17) is
to use functions of the sample variances of Y within
those matched at each treatment group. Hill and Re-
iter (2006) provide weighted variance formulas where
the variance in each treatment group is weighted to ac-
count for multiplicities in the matched units. Abadie
and Imbens (2006) derived a different weighted con-
sistent estimator for the sampling variance of the PATE
and the PATT for a binary treatment. Their estimator
matches units with similar covariates’ values within
each treatment group to estimate the variability of the
unit level effects. In general, weighted variance esti-
mators may overestimate the true sampling variance,
because they do not account for the correlation be-
tween subjects that are matched to one another. Deriv-
ing closed form solutions for multiple treatments is an
area for further research.

Bootstrapping was proposed as a possible technique
to estimate the standard errors of matching estimators
of the PATE and PATT in a binary treatment setting.
For matching without replacement, Austin and Small

(2014) identified that a bootstrap algorithm that sam-
pled the matched pairs resulted in estimates of the
standard error that were close to the empirical stan-
dard deviation of the sampling distribution of the es-
timated treatment effect. For matching with replace-
ment, Hill and Reiter (2006) proposed a more com-
plex form of the bootstrap algorithm. In the complex
bootstrap algorithm, bootstrap samples from the origi-
nal sample are drawn, and within each bootstrap sam-
ple, a separate propensity score model is fit and unique
sets of matches are identified. In a simulation analy-
sis, the complex bootstrap method was shown to be
statistically valid without having extremely large av-
erage interval lengths. A similar strategy could be em-
ployed with multiple treatments by using VM within
each iteration of the bootstrap. However, we caution
against use of a similar procedure, because in the bi-
nary treatment setting, the bootstrap procedure can ei-
ther overestimate or underestimate the asymptotic vari-
ance given that there can be a high degree of consis-
tency in subjects that are matched to one another after
using with-replacement matching (Abadie and Imbens,
2008).

A different computationally intensive strategy is to
use randomization-based approaches, in which the dis-
tributions of treatment effects under the null are formed
using different permutations of treatment assignments.
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Rosenbaum (2002) described such a permutation ap-
proach in the context of matching with a binary treat-
ment and nonoverlapping sets of matches. Hill and
Reiter (2006) implemented a similar strategy when
matching with replacement by using the Hodges–
Lehmann aligned rank test. In simulation analysis, they
showed that this test outperformed both the bootstrap
and the weighted variance estimators for with replace-
ment matching. Extending this approach for multiple
treatments is possible; each matched set obtained by
VM would be permuted independently, with the ob-
served test statistic compared to the randomization
distribution obtained by these permutations. For mul-
tiple treatments with matched cohorts, the Friedman
test statistic (Sprent and Smeeton, 2007) or the Quade
test statistic (Quade, 1979) can be used as alterna-
tives to the Hodges–Lehman aligned rank test statis-
tic.

3. SIMULATIONS

We examine the performance of the methods de-
scribed in Section 1.5 and the newly proposed method
in reducing the bias on observed X using simulations.
SBC is not included in the analysis because it cannot
be used to contrast three or more treatments simultane-
ously. Additionally, we assume no natural ordering to
the treatment, and thus methods designed for ordinal
treatments (Section 1.4) are excluded.

3.1 Evaluating Balance of Matched Sets by
Simulation

In order to provide advice to investigators and fol-
lowing Rubin (2001), we generated simulation con-
figurations that are either known or can be estimated
from the data. A P -dimensional X was generated for
N = nt1 + nt2 + nt3 subjects receiving one of three
treatments, T ∈ {t1, t2, t3}, with nt1 , nt2 = γ nt1 and
nt3 = γ 2nt1 the sample size of subjects receiving treat-
ments t1, t2 and t3. For a similar set of simulations us-
ing Z = 5, see the Appendix. The values of X were
generated from multivariate symmetric distributions
such that

Ti = t1, i = 1, . . . , nt1,

Ti = t2, i = nt1 + 1, . . . , nt1 + γ nt1,
(18)

Ti = t3, i = nt1 + γ nt1 + 1, . . . ,

nt1 + γ nt1 + γ 2nt1,

Xi |{Ti = t1} ∼ f (μ1,�1),
(19)

i = 1, . . . , nt1,

Xi |{Ti = t2} ∼ f (μ2,�2),
(20)

i = nt1 + 1, . . . , nt1 + γ nt1,

Xi |{Ti = t3} ∼ f (μ3,�3),
(21)

i = nt1 + γ nt1 + 1, . . . , nt1 + γ nt1 + γ 2nt1,

(22)

μ1 = (
(b,0,0), . . . , (b,0,0)

)T
,

μ2 = (
(0, b,0), . . . , (0, b,0)

)T
, and

μ3 = (
(0,0, b), . . . , (0,0, b)

)T
,

(23)

�1 =

⎛⎜⎜⎝
1 τ . . . τ

τ 1 . . . τ

· · . . . ·
τ τ . . . 1

⎞⎟⎟⎠ ,

�2 =

⎛⎜⎜⎝
σ2 τ . . . τ

τ σ2 . . . τ

· · . . . ·
τ τ . . . σ2

⎞⎟⎟⎠ , and

�3 =

⎛⎜⎜⎝
σ3 τ . . . τ

τ σ3 . . . τ

· · . . . ·
τ τ . . . σ3

⎞⎟⎟⎠ .

The following design implicitly assumes a regular as-
signment mechanism (Imbens and Rubin, 2015) that
depends on eight factors (Table 2). The distance be-
tween treated groups, b, is defined in terms of stan-
dardized bias B , where

B = b√
1+σ 2

2 +σ 2
3

3

(24)

in order to evaluate the reduction in initial bias some-
what independently of the variance ratios σ 2

2 and σ 2
3 .

Due to the small number of eligible subjects remain-
ing when P = 6 and nt1 = 500, these simulations are
discarded, leaving 1080 simulation configurations. For
each simulation condition, 200 data sets are generated,
and on each data set, VM (using K = 5 strata), CRM,
IPW and KMC are used to identify matched, weighted
or subclassified sets. For CRM, we used ε = 0.25
(Austin, 2011).
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TABLE 2
Simulation factors

Factor Levels of factor

nt1 {500,2000}
γ = nt2

nt1
= nt3

nt2
{1,2}

f {t7,Normal}
b B = b√

1+σ2
2 +σ2

3
3

takes levels {0,0.25,0.50,

0.75,1.00}
τ {0,0.25}
σ 2

2 {0.5,1,2}
σ 2

3 {0.5,1,2}
P {3,6}

3.2 Simulation Metrics

While several metrics have been proposed for eval-
uating the success of matching with binary treatments
(see, e.g., Austin, Grootendorst and Anderson, 2007,
Austin, 2009), assessments for multiple treatments are
not as well formalized (Stuart, 2010).

For VM or CRM, let ntrip be the number of triplets
formed, and let ψi be the number of times subject i

is part of a triplet. The weighted mean of covariate p,
p = 1, . . . ,P , at treatment t , is defined as X̄pt , such
that

X̄pt =
∑N

i=1 XpiIi(t)ψi

ntrip
.(25)

For IPW , ψi = 1
r(t,Xi )

is each subject’s weight, where
r(t,X) is estimated using multinomial logistic regres-
sion, and ntrip is simply the number of matched sub-
jects receiving each treatment t . With KMC, X̄pt ’s are
calculated within each subclass, and weighted across
subclasses, with weights proportional to the number of
subjects in each subclass.

For a binary treatment, Rubin and Thomas (1996)
and Rubin (2001) suggest that the standardized bias
between Xp in the treatment (t1) and control groups
(t2), SBp12, should be less than 0.25 to make defensi-
ble causal statements, where

SBp12 = X̄p1 − X̄p2

δp1
(26)

and δp1 is the standard deviation of Xp in t1.
In our simulations, we calculated three such biases

for each covariate p for each pair of treatments, SBp12,
SBp13 and SBp23. As in Hade (2012), we extract the
maximum absolute standardized pairwise bias at each

covariate, Max2SBp , such that

Max2SBp = max
(|SBp12|, |SBp13|, |SBp23|).(27)

For all of the matching algorithms and at each p, δp1,
the standard deviation of Xp in the full sample among
those receiving reference t1, is used for standardiza-
tion, to ensure that observed differences in the similar-
ity of those matched are easily contrasted (as in Stuart
and Rubin, 2008.

With three treatment pairs, Max2SBp reflects the
largest discrepancy in estimated covariate means be-
tween any two treatment groups for a specific covari-
ate. Using a similar metric to assess covariate balance,
McCaffrey et al. (2013) advocated using a standard-
ized bias cutoff of 0.20 for multiple treatments. We
also examined average absolute standardized biases,
|SBp12|+|SBp13|+|SBp23|

3 , finding similar results to those
with Max2SBp .

In addition to bias, for VM and CRM we also es-
timated the fraction of units from the entire popula-
tion who received t1 and were eligible to receive the
other two treatments which were included in the fi-
nal matched set, %Matched. This metric provides a
sense of the similarity between those matched and the
population that we are interested in generalizing to.
Simulations with %Matched ≈ 1 and relatively low
Max2SBp ∀p are optimal in the sense that almost all
subjects who received t1 are matched with subjects re-
ceiving t2 and t3 and the distributions of their covari-
ates are similar. %Matched is not relevant for IPW , be-
cause weights are estimated for all subjects that meet
the eligibility criteria.

At each simulation configuration and for each match-
ing algorithm, Max2SBp ∀p and %Matched are ob-
tained, and averaged across 200 replications. For sim-
plicity, we summarize Max2SBp ∀p by averaging over
p, where Max2SB = ∑

p=1,...,P Max2SBp/P .

3.3 Determinants of Matching Performance

Figure 5 shows boxplots of Max2SB and %Matched
across each of the simulation factors. Max2SB was
calculated for VM, CRM, IPW , KMC and in the pre-
matched cohort of eligible subjects. Each point in each
of the boxplots represents the bias at one factors’ con-
figuration. In Figure 5, Max2SB exceeds a cutoff of
0.20 in 57% of combinations when using KMC, com-
pared to 25% when using IPW , 19% when using CRM
and to 4% when using VM. There are 16 simulation
configurations for which IPW yields a Max2SB greater
than 1.5. In general, KMC has done the worst, with
Max2SB in more than 75% of configurations lying
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FIG. 5. Max2SB for pre-matched cohort and by matching algorithms (left), and %Matched for VM and CRM.

above the median Max2SB for each of the other algo-
rithms. This corresponds to results for a binary treat-
ment assignment which suggest that subclassification
alone may not sufficiently to reduce bias in the covari-
ates’ distributions (Gutman and Rubin, 2013), as well
as the problem that some clusters may not include units
from all treatment groups. Given its poor performance,
KMC is not shown in the tables below.

VM matched at least 85% of eligible reference sub-
jects in a matched triplet in 99% of the configurations,
while only 37% of the configurations for CRM reached
the 85% cutoff. VM matched at least 95% of the eligi-
ble reference group subjects on more than 85% of the
configurations.

To identify factors with the largest influence on
the performance of using VM, CRM and IPW , we
rank them by their MSE for both Max2SB as well as
%Matched (as in Rubin, 1979, Cangul et al., 2009).
Because %Matched was highly skewed, we used the
Box–Cox power transformation (Sakia, 1992) to make
this metric approximately normally distributed.

Initial covariate bias B drives the highest propor-
tion of variation in Max2SB, accounting for roughly
85%, 70% and 45% of the variability for CRM, VM
and IPW , respectively (Table 3). Compared to VM and
CRM, IPW biases’ are substantially driven by the dis-
tribution type (f ) and the variance terms σ2 and σ3.
While γ , the rate of those receiving t2 and t3 relative
to the number of subjects receiving t1, is not an im-
portant factor for IPW , it is the second and third most

important factors of CRM and VM, respectively. This
is also noticed with matching methods for binary treat-
ment (Rubin, 1973). B also drives nearly 100% of the
variability in %Matched for VM and CRM (not shown).
The second most influential factor for the ANOVA of
%Matched using those matched via CRM is γ ; for
a binary matching approach, the increased number of
available matches on t2 and t3 increases the likelihood
that a subject receiving t1 is matched.

Having identified the principal determinants of bias
and matching size, we average over the other factors in
order to further detail the effects of the principal ones.
Tables 4 to 7 show Max2SB based on different biases
(B), distributions of X (f ), number of parameters (P ),

TABLE 3
ANOVA for VM, CRM and IPW Max2SB: most influential factors

VM IPW CRM

Variable MSE Variable MSE Variable MSE

B 16,046 B 154,397 B 41,354
p 3776 f 115,220 γ 4089
γ 1259 B × f 42,628 σt 2271
σt 934 σs 22,903 σs 469
σs 791 p 14,746 B : σt 243
τ 692 nt1 11,707 B : γ 233
B × p 692 σt 10,137 B × σs 147
B × σt 223 B × σs 5280 p 64
p × σs 220 B × p 3838 B × nt1 48
p × σt 216 B × nt1 3776 f 28
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TABLE 4
Max2SB, small/equal sample sizes: nt1 = 500, nt2 = 500,

nt3 = 500

P = 3

f = Normal f = t7

B VM CRM IPW VM CRM IPW

0.00 0.06 0.06 0.01 0.05 0.06 0.01
0.25 0.06 0.08 0.03 0.06 0.08 0.04
0.50 0.07 0.13 0.07 0.07 0.13 0.11
0.75 0.10 0.20 0.11 0.09 0.19 0.30
1.00 0.15 0.25 0.17 0.14 0.26 0.58

number of subjects receiving t1 (nt1 ), and the ratio of
units receiving t2 to those receiving t1 (γ ).

In settings with low bias and normally distributed co-
variates, all three matching approaches appear to prop-
erly balance covariates. The average Max2SB using
IPW is less than 0.05 across each simulation config-
uration with B = 0 and f = Normal. As B increases,
Max2SB for CRM rises faster than for VM. IPW bias
also rises with higher B , but in most settings with nor-
mally distributed covariates, IPW yields Max2SB less
than 0.25, but higher than VM.

VM and CRM produce better matched groups than
IPW with heavy tailed covariates. When the covari-
ates are distributed as multivariate t7, the maximum
pairwise bias’s using IPW vary substantially (e.g., Ta-
ble 7). While γ is not a major determinant of Max2SB
for IPW , VM and CRM perform better in settings with
γ = 2 (Tables 5 and 7).

Table 8 shows the %Matched for different values
of nt1 and γ , averaging over P , f , τ , σ2 and σ3.
For low bias and with a larger number of controls
(γ = 2), CRM generally matches as many triplets as

TABLE 5
Max2SB, small/unequal sample sizes: nt1 = 500, nt2 = 1000,

nt3 = 2000

P = 3

f = Normal f = t7

B VM CRM IPW VM CRM IPW

0.00 0.04 0.05 0.01 0.05 0.05 0.01
0.25 0.05 0.05 0.04 0.05 0.05 0.04
0.50 0.05 0.08 0.08 0.06 0.07 0.11
0.75 0.07 0.13 0.12 0.07 0.13 0.29
1.00 0.10 0.20 0.17 0.10 0.19 0.60

VM. With increasing B , however, the fraction of el-
igible units that were matched is much smaller for
CRM. With γ = 1, B = 1 and nt1 = 1000, for exam-
ple, CRM matches only 36% of eligible subjects on
average, compared to 93% of the subjects using VM.

To account for the smaller number of subjects
matched using VM, which is a possible unfair advan-
tage for VM, we also measured bias in the covariates’
distributions for IPW using only the subjects that were
utilized by VM. In more than 98% of configurations,
the biases observed were larger than those using IPW
with all units.

A reduced set of simulations using Z = 5 showed
that both VM and IPW reduce the initial bias. In some
scenarios, VM had larger reduction than IPW , and in
some scenarios the opposite (see the Appendix for ad-
ditional details).

4. CONCLUSION

Many real world problems involve making a deci-
sion among three or more possible interventions. Si-
multaneous assessment of all of these interventions is

TABLE 6
Max2SB, large/equal sample sizes: nt1 = 1000, nt2 = 1000, nt3 = 1000

P = 3 P = 6

f = Normal f = t7 f = Normal f = t7

B VM CRM IPW VM CRM IPW VM CRM IPW VM CRM IPW

0.00 0.04 0.03 0.01 0.04 0.04 0.01 0.05 0.04 0.01 0.05 0.04 0.01
0.25 0.04 0.07 0.03 0.04 0.07 0.04 0.05 0.08 0.04 0.05 0.07 0.05
0.50 0.05 0.14 0.07 0.05 0.13 0.11 0.09 0.14 0.08 0.08 0.14 0.21
0.75 0.07 0.20 0.11 0.07 0.20 0.35 0.13 0.19 0.14 0.14 0.19 0.66
1.00 0.10 0.26 0.16 0.10 0.25 0.75 0.23 0.24 0.23 0.24 0.26 1.06
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TABLE 7
Max2SB, large/equal sample sizes: nt1 = 1000, nt2 = 2000, nt3 = 4000

P = 3 P = 6

f = Normal f = t7 f = Normal f = t7

B VM CRM IPW VM CRM IPW VM CRM IPW VM CRM IPW

0.00 0.03 0.03 0.01 0.03 0.03 0.01 0.04 0.04 0.01 0.04 0.04 0.01
0.25 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.04 0.05
0.50 0.04 0.08 0.08 0.04 0.07 0.12 0.06 0.09 0.09 0.06 0.08 0.20
0.75 0.05 0.14 0.13 0.05 0.12 0.33 0.11 0.16 0.14 0.09 0.15 0.67
1.00 0.08 0.21 0.17 0.07 0.19 0.80 0.17 0.21 0.22 0.16 0.21 1.28

attractive, because it allows for the identification of the
best intervention without the need to perform many
studies in which each pair of interventions is com-
pared. However, even in a randomized controlled en-
vironment, multi-arm trials can be considerably more
complex to design, conduct and analyze than two-arm,
single-question trials (Vermorken et al., 2005). These
complications include sample size requirements, eli-
gibility of all participants for all of the interventions,
the comparisons that will be made, as well as the sum-
maries of those comparisons. These problems are ex-
acerbated in nonrandomized settings. While estimating
causal effects for binary treatment in randomized and
nonrandomized settings has been discussed extensively
in the literature, we highlighted how the specification
of causal effects for multiple treatments may be com-
plex due to the choice of estimands and the different
subsets of the population which investigators are inter-
ested in. Different estimands may yield different con-
clusions with respect to treatment effectiveness, and we
advocate that researchers consider carefully the causal
effect, or sets of causal effects, of primary interest, as
in Dore et al. (2013).

4.1 Discussion of Vector Matching

We demonstrated that matching on a vector can ad-
dress some of the drawbacks of currently available
methods for estimating treatment effects with a nom-
inal treatment assignment. VM attempts to replicate a
randomized multi-arm trial by generating sets of sub-
jects that are roughly equivalent on measured covari-
ates. Simulations demonstrated that, relative to other
available methods, VM generally yielded the lowest
bias in the covariates’ distributions between the differ-
ent treatment groups, while retaining most of the eligi-
ble subjects that received the reference treatment. Un-
der regular assignment mechanism, differences in VM
matched units’ outcomes could be contrasted, provid-
ing treatment effects that can be generalized to the pop-
ulation of subjects receiving t1.

VM is a starting point for algorithms that intend to
estimate transitive treatment effects and reduce bias
when comparing multiple treatments. It is worth expli-
cating on a few of the algorithm’s strengths and weak-
nesses. VM uses with replacement matching because it
has been shown to yield lower bias in comparison to
matching without replacement with binary treatment

TABLE 8
%Matched: The percent of eligible subjects receiving t1 who were matched

nt1 = 500 nt1 = 1000

γ = 1 γ = 2 γ = 1 γ = 2

B VM CRM VM CRM VM CRM VM CRM

0.00 0.99 0.91 0.99 0.99 0.99 0.92 0.99 0.99
0.25 0.97 0.81 0.99 0.97 0.98 0.79 0.99 0.96
0.50 0.95 0.67 0.98 0.87 0.98 0.63 0.99 0.79
0.75 0.94 0.52 0.97 0.72 0.97 0.47 0.98 0.61
1.00 0.91 0.42 0.95 0.55 0.93 0.36 0.96 0.47
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(Abadie and Imbens, 2006). Additionally, matching
with replacement allows estimation of PATT’s which
are generalizable to each treatment group, and not just
the group with the smallest sample size. One difficulty
of matching with replacement is that subjects can be
matched multiple times. As a result, although no ad-
justments are necessary for point estimates, an analysis
phase will require adjustments for estimating sampling
variances (Abadie and Imbens, 2006).

VM can be used to estimate any causal estimand of
interest and is not restricted to differences in averages.
While we concentrated on PATTs in this manuscript,
VM can be extended for PATEs by forming a matched
set for each eligible unit, as opposed to just a set for
each unit receiving the reference treatment. If all el-
igible subjects can be matched to subjects receiving
other treatments, contrasts between the matched co-
horts would generalize to the population as a whole.
As noted in Abadie and Imbens (2006), pair match-
ing for PATEs can only be done with replacement, as
differences in the sample sizes at each treatments will
require some subjects to be matched more often than
others. In this respect, VM would be preferred to CRM,
SBC and WithinTrio, which are limited to only estimat-
ing PATTs.

While KMC is one approach for grouping similar
subjects, by restricting the matching to be within the
clusters, some possible matches may not be considered
by VM because they are on the boundaries of the clus-
ters. This could lead to nonoptimal matches, or even
to the exclusion of some reference units that will not
have a match in the other treatment groups. One plau-
sible extension of VM would be to use fuzzy clustering
(Bezdek, Ehrlich and Full, 1984), which would allow
for units to belong to multiple clusters.

Another downside of KMC is the possibility of ob-
taining clusters where there are no units receiving a
certain treatment. However, clustering on Z − 2 com-
ponents of the GPS, as in vector matching, is preferred
to clustering on all Z components, as would be done in
using KMC alone. For large Z, if clustering on Z − 2
components yields clusters without at least one unit
from each treatment group, one possibility is to re-fit
KMC, given that K-means often returns different par-
titions.

Finally, VM is based on a greedy matching algo-
rithm, which may not be the most optimal procedure to
partition the GPS. Among other alternatives to match-
ing on the GPS, coarsened exact matching could be
used to pair subjects within each of the K-means sub-
classes (Iacus, King and Porro, 2011). With binary

treatment, algorithms like full matching (Rosenbaum,
1991) and mixed integer programming (Zubizarreta,
2012) were proposed to optimally match units such that
the difference in the covariates’ distributions between
the two treatment groups is minimized while retaining
most of the units. In contrast to binary treatment match-
ing, optimally matching for multiple treatments, also
known as k-dimensional matching, was shown to be a
NP-hard problem (Karp, 1972). Further research is re-
quired to apply these methods to multiple treatments.

As with other procedures for estimating causal ef-
fects with multiple treatments, methods for estimating
the sampling variances of estimands when using VM
are not well established. Variance weighting and re-
sampling are two procedures that have been suggested
for estimating the sampling variance of causal esti-
mands with binary treatments, and we proposed that
similar procedures could be used with multiple treat-
ments. However, further research is required to iden-
tify the operating characteristics of each of these pro-
cedures.

One set of strategies that we did not explore is co-
variate adjustment for the GPS or a function of the GPS
using a regression model (Filardo et al., 2007, 2009),
Dearing, McCartney and Taylor, 2009, Spreeuwenberg
et al., 2010). Such techniques are subject to possible
model misspecification and extrapolation problems, as
shown in standard regression adjustment for binary
treatment (Dehejia and Wahba, 1998, 2002), and sim-
ulations have found that these strategies can perform
worse than matching, stratification, or weighting with
multiple treatments (Hade and Lu, 2014).

4.2 Recommendations

Causal modeling is challenging because it requires
estimation of quantities that cannot be measured si-
multaneously. This problem is exacerbated when com-
paring multiple treatments, because the proportion of
these quantities increases. Methods for multiple treat-
ments continue to evolve, and more work is still needed
in several areas, particularly with respect to the estima-
tion of the sampling variance. Below, we provide a list
of recommendations for researchers who are looking
to estimate causal effects with multiple treatments (see
Table 9 for a summary of the acronyms):

1. Comparing multiple treatments in observational
studies is similar to comparing multiple interventions
in a multi-arm trial. Thus, it is important to ascertain
that the data is composed of enough units that are ‘el-
igible’ to receive all of the treatments, and units that
are not eligible should be removed when attempting to
identify the best treatment.
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TABLE 9
Summary of acronyms

Acronym Description

CRM Common referent matching
GPS Generalized propensity score
IPW Inverse probability weighting
KMC K-means clustering
PATE Population average treatment effects
PATT Population average treatment effects among

the treated
RCM Rubin causal model
SATE Sample average treatment effects
SATT Sample average treatment effects among

the treated
SBC Series of binary comparisons
SUTVA Stable unit treatment value assumption
VM Vector matching

2. Causal estimands of interest and the populations
to which these estimands generalize require careful
consideration. These decisions become more complex
with increased number of treatments.

3. For ordinal treatment assignment such as scales
or doses, the linear predictor from a proportional odds
model of treatment assignment acts as a scalar balanc-
ing score on which to balance the covariates’ distribu-
tions. Nonbipartite matching (Lu et al., 2001), subclas-
sification (Imai and van Dyk, 2004, Zanutto, Lu and
Hornik, 2005), and the combination of subclassifica-
tion with regression adjustment (Lopez and Gutman,
2014) stand out as approaches for making inferences.

4. For nominal treatment assignment, methods that
rely on binary propensity scores that are estimated only
on units receiving one of two treatments (such as SBC
and CRM) may result in significant bias in the covari-
ates’ distributions between units receiving the different
treatments. These may lead to biased and nontransitive
estimates and, therefore, should not be applied gener-
ally.

5. For nominal or ordinal treatment assignment, a
simple implementation of K-means clustering (KMC)
may result in clusters that do not include units receiv-
ing all treatments, which results in increased bias. Our
simulations show that in comparison to other matching
and weighting procedures, it suffers from the smallest
bias reduction.

6. For nominal or ordinal treatment assignment,
matching on the GPS using vector matching (VM) or
using inverse probability weighting (IPW) are promis-
ing approaches.

• IPW reduces the bias significantly; however, as
our simulations show, it may suffer from extreme
weights that yield erratic causal estimates. This
problem is exacerbated with increasing number of
treatments or covariates that are not normally dis-
tributed. Simple trimming of units with GPS compo-
nents that are close to 0 or 1 may result in increased
bias, because units that are similar on a single GPS
component may differ on others. Other approaches
for estimating the GPS, such as generalized boosted
models, may solve this issue. However, more re-
search is needed to derive sampling variance esti-
mates for these procedures and to examine their be-
havior in a wide range of applications. Lastly, IPW
estimates are mainly suitable for estimating differ-
ences in averages, and are not well suited for com-
parison of other estimands.

• VM uses an in-strata matching algorithm to identify
matched sets of subjects in order to estimate treat-
ment effects generalizable to the population of units
eligible for each treatment. Across a set of simula-
tion configurations, VM tended to yield the largest
improvement in balance in the covariates’ distribu-
tions between units receiving different treatments.
Under certain assumptions, this would allow for un-
biased comparisons of the effects of multiple inter-
ventions. Additional research is needed to identify
sampling variance formulas for estimates from the
matched cohorts, as well as to explore alternative
mechanisms for matching on the GPS. To sum, VM
is one approach that seems to compare favorably to
commonly available methods, but more research is
needed to explore other alternatives.

APPENDIX

We implement VM and IPW for Z = 5, where X is
generated for N = nt1 + nt2 + nt3 + nt4 + nt5 subjects
receiving one of five treatments, T ∈ {t1, t2, t3, t4, t5},
with nt the sample size of subjects receiving treat-
ment t . Let 1 be the 5 × 5 identify matrix. The val-
ues of X were generated from multivariate symmetric
distributions such that

Ti = t1, i = 1, . . . , nt1,

Ti = t2, i = nt1 + 1, . . . , nt1 + γ nt1,

Ti = t3, i = nt1 + γ nt1 + 1, . . . ,

nt1 + 2 × γ nt1,(28)

Ti = t4, i = nt1 + 2 × γ nt1 + 1, . . . ,
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nt1 + 2 × γ nt1 + γ 2 × nt1,

Ti = t5, i = nt1 + 2 × γ nt1 + γ 2 × nt1 + 1, . . . ,

nt1 + 2 × γ nt1 + 2 × γ 2 × nt1,

Xi |{Ti = t1} ∼ f (μ1,�), i = 1, . . . , nt1,

Xi |{Ti = t2} ∼ f (μ2,�),

i = nt1 + 1, . . . , nt1 + γ nt1,

Xi |{Ti = t3} ∼ f (μ3,�),

i = nt1 + γ nt1 + 1, . . . , nt1 + 2 × γ nt1,

Xi |{Ti = t4} ∼ f (μ4,�),(29)

i = nt1 + 2 × γ nt1 + 1, . . . ,

nt1 + 2 × γ nt1 + γ 2 × nt1,

Xi |{Ti = t5} ∼ f (μ5,�),

i = nt1 + 2 × γ nt1 + γ 2 × nt1 + 1, . . . ,

nt1 + 2 × γ nt1 + 2 × γ 2 × nt1,

(30)

μ1 = (b,0,0,0,0)T , μ2 = (0, b,0,0,0)T ,

μ3 = (0,0, b,0,0)T , μ4 = (0,0,0, b,0)T ,

μ5 = (0,0,0,0, b)T ,

(31) � = 1.

The following design implicitly assumes a regular
assignment mechanism that depends on four factors
(Table 10).

For each simulation condition, 200 data sets are gen-
erated, and on each data set, VM (using K = 5 strata)
and IPW are used to identify matched and weighted
sets. CRM is not considered do to the small number of
matches generated.

In all 20 configurations, both VM and IPW reduced
the average Max2SB relative to the pre-matched cohort.

TABLE 10
Simulation factors

Factor Levels of factor

nt1 {1000}
γ = nt2

nt1
= nt3

nt1
= nt4

nt2
= nt5

nt2
{1,2}

f {t7,Normal}
b {0,0.25,0.50,0.75,1.00}

In cases with large initial bias and with covariates from
t distribution, VM performed better than IPW , but with
smaller initial bias, IPW performed better. On average,
VM matched at least 93% of eligible subjects in each
configuration. Investigating the performance of differ-
ent matching methods with five or more treatments is
an area of further research.
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