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Abstract. This paper describes a method for residual tumour cellularity
(TC) estimation in Neoadjuvant treatment (NAT) of advanced breast
cancer. This is determined manually by visual inspection by a radiologist,
then an automated computation will contribute to reduce time workload
and increase precision and accuracy. TC is estimated as the ratio of
tumour area by total image area estimated after the NAT. The method
proposed computes TC by using machine learning techniques trained
with information on morphological parameters of segmented nuclei in
order to classify regions of the image as tumour or normal. The data
is provided by the 2019 SPIE Breast challenge, which was proposed to
develop automated TC computation algorithms. Three algorithms were
implemented: Support Vector Machines, Nearest K-means and Adaptive
Boosting (AdaBoost) decision trees. Performance based on accuracy is
compared and evaluated and the best result was obtained with Support
Vector Machines. Results obtained by the methods implemented were
submitted during ongoing challenge with a maximum of 0.76 of prediction
probability of success.

Keywords: Computational Pathology · Cellularity Estimation · Ma-
chine Learning Comparison

1 Introduction

Breast cancer NAT therapy has been used as a locally treatment for breast-
conserving surgery [1], it provides prognostic and survival information [2] and is
also used to determine a rate of local recurrence [3]. Efficacy of NAT is deter-
mined by means of the pathological complete response (pCR) but an accurate
assessment of pCR is needed. It has been proposed [4] the Residual Cancer Bur-
den (RCB) as a long term prognosis method. RCB is supported by two metrics:
residual Tumour Cellularity (TC) within the Tumour Bed (TB) and assessment
of lynph nodes. RCB is scored in a continuous value but is further categorised in
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four classes RCB-0 to RCB-III. Then TC is a key parameter for RCB computa-
tion. Currently, TC is assessed by an eye-balling routine estimating the propor-
tion of TB and is compared to a standard sketch reference. Values are assigned
manually and are rounded to the nearest tenth percent value. This procedure is
time-consuming and requires an experienced well trained pathologist. With the
recent development of computational methods based on the use of artificial in-
telligence and computer vision algorithms combined with the use of whole slides
scanners, Digital Pathology can provide a more efficient and accurate method
to address this problem, as it has been proved in computer aid diagnosis (CAD)
[5], as in other clinical application tasks like segmentation of a region of interest
(ROI), mitosis detection, gland segmentation, and even new clinic pathological
relationships with a specific image morphological behaviour [6].

Machine learning algorithms [7] are based on the use of extracted image
features to train the method with known data, by means of digital pathology
steps: color separation, nuclei segmentation and morphological features extrac-
tion [8]. However, Deep learning methods based on Convolutional Neural Net-
works (CNNs) [9] have the advantage of train the net directly with the images
without feature extraction. TC estimation problem was addressed by Peikari
[10] who proposed a method based on nuclei segmentation and morphological
parameters extraction used to train machine learning algorithms to classify cells
as benign or malign. Akbar [1] compares this technique with deep learning and
evaluates performance and also Pei [11] implemented a direct method based on
transfer learning approach. Also during the 2019 SPIE Breast Path Q Challenge
called for development of automated TC algorithms.

The present paper describes a method for an automated TC estimation based
on machine learning methods using key selected best correlated parameters to
TC. A prior correlation analysis of morphological features at nuclei, regional
and global image level were done and only highest correlated parameters were
employed to train the method.

2 Materials and Methods

2.1 Materials

The data set for this study comes from the Breast SPIE Challenge 2019 collected
at the Sunnybrook Health Sciences Centre, Toronto. It comprises a set of 67
whole slide image (WSI) from post-NAT patients of Breast Cancer stained with
Hematoxilyn and Eosin (H&E) [10]. The specimens were handled according to
routine clinical protocols andWSIs scanning was performed at 20×magnification
(0.5µ m/pixel). There is a training set of 2579 patches of size 255×255 extracted
from the above WSIs which has a reference standard from 2 pathologists who
classified cellularity on a score scale from 0 to 1. This manual classification is
used as the reference Ground Truth (GT) of this study. Fig. 1 shows samples of
these images with TC values from 0 to 1.0. At each sample there is a caption
information with pathologist classification and results obtained by the methods.
Also there is a set set of 1119 images provided to analyse and submit results
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to the contest, with no information on TC. A third set of selected images was
provided by the challenge committee with pathology annotations indicating:
normal, malignant and lymphocytes. All these three data sets were used in this
work.

2.2 Methods

The method proposed in this study implements traditional digital pathology
steps [8]: color separation, nuclei segmentation, binarisation and feature extrac-
tion from nuclei, regional and global areas of the image. This method uses the
same methodology as described by Peikari hand engineering processing but with
the advantage of being trained only by key selected morphological image features
that are strongly correlated with TC.

A special image processing software was developed to analyse a large amount
of pathology images. A master control routine selects and processes one by one
the corresponding image and also saves the result in an output data file. A super-
vised operation mode of the software is used to train machine learning algorithms
to determine a predicting function for classifying cells into the two corresponding
categories: benign or malign. The unsupervised mode process the full image set
and after extraction of image features it also executes the corresponding predict-
ing function that classifies every segmented cell. Finally, TB region is estimated
in order to compute TC as a unique value for the corresponding patch image.

The full method software was implemented in Matlab R© (The MathworksTM,
Natick, USA) 2019b version, using digital image processing, statistical and ma-
chine learning toolboxes.

The method process is depicted in Fig. 2. First, nuclei is segmented and
its corresponding key parameters are extracted (Fig. 2a). After the prediction
function is computed nuclei is classified in either benign (green) or malign (red)
(Fig. 2b). Next, an estimation of of full cell cytoplasm by morphological dilation
is shown as the white circles around malign cells (Fig. 2c). The full cellularity
detected region is shown in Fig. 2d. Finally TC is computed by the ratio of
cellularity area by global image area. A continuous TC value is obtained by
the method in contrast with the selected TC by pathologist in tenths intervals,
a continuous value can offer a better accuracy, which indicate TC should be
reformulated.

Data pre-processing . First, a correlation analysis of main morphological pa-
rameters with residual TC was obtained. Results indicated 22 parameters have
a strong correlation with cancer cellularity and only these key parameters were
used to train machine learning methods. These 22 parameters were obtained
from the nuclei morphological analysis, from a regional analysis of the nuclei
surrounding neighborhood and from the full image. The relevance of this pa-
per is a machine learning training procedure with only key data for a better
performance of predicting function. Three algorithms were employed to classify
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 1. Several representative samples of breast cancer NAT tissue stained with Hema-
toxilyn and Eosin (H&E). The images correspond to different values of TC, from 0 to
1. Each image contains four annotations; a classification as assess by a pathologist and
the results by each of the methods implemented in this paper.
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(a) (b)

(c) (d)

Fig. 2. Visual description of the method. (a) The original image, the image is seg-
mented and key parameters are computed, then a classification predictor estimates
either malignant or benign cells, shown in red and green respectively in (b). A dilation
of segmented malignant nuclei estimates full cytoplasm of every detected malignant
cell (c) and overall cellularity region is shown in white in (d).

cells as benign or malign: Support Vector Machines, Nearest K-Network and Ad-
aBoost. These algorithms were trained during a pre-processing step to generate
a predictive function to classify each cell.

Training of machine learning algorithms

Support Vector Machines (SVM) were presented as a training algorithm for
optimal margin classifier [12], and it is based on determination of a decision
function of pattern vectors of x of dimension n classifying in either A or B,
which means benign or malign. The input is a set of p examples of xi, in this
case the 22 strongest correlated features extracted. Relationship of the strongest
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related parameters with TC are presented in Fig. 3, for the optimal cases a clear
separation can be observed in figures.

(a)

(b)

Fig. 3. Morphological relationship between strongest correlated parameters. The 4
strongest morphological correlated parameters (from the 22 detected) with TC are
compared, which are: 1) an average stroma concentration determined by a pink colour
filter, 2) average Value V from HSV global image, 3) stroma concentration from pink
colour separation image as well as 4) background colour concentration from the image.
Image indicates key parameters have a clear classification category
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Then a decision function is expressed as D(x) =
∑

wiφi(x)+b in which φi(x)
is a predefined function of x and wi and b are adjustable parameters. Assuming
that there is a separation margin M between both classes the algorithm deter-
mines vector w that maximizes M attained to minimise ykD(xk) = M∗. This
algorithm was selected as it has been successfully reported in different pathology
studies included TC estimation [11].

K- Nearest Neighbour method [13] for machine learning classification was also
selected because is one of the most popular algorithms within clustering and data
classification methods, in this case, grouping between benign and malign classes.
This method is based on the following: let assume T is a two dimensional set of
vectors with their corresponding elements {xi, yi}, which is used as the training
set, then a new sample, say x = un is given, and the algorithm has to estimate
the class that this sample belongs. The algorithm starts from the simplest case
K = 1 the sample closest to u is found and set v = y where y is the closest class
of the nearest neighbour sample. To extend this idea to the K−NN dimension,
the nearest K neighbours elements need to be found and a majority decision
rule classifies the new sample. Distance is measured by the euclidean distance.

AdaBoost is an algorithm that has a best performance on binary classification
problems, for that reason it was selected to classify between malign and benign
nuclei cell. AdaBoost is a decision tree type learning algorithm [14], which is a
predictive model that starts from observations of a certain item represented by
branches and goes to conclusions about item target value (leaves). The algorithm
is as follows. It starts assuming same weight to each training point w = 1

N
. Next

error rate for weak classifier is calculated as e =
∑

wi and those classifiers with
lowest error rate are picked up and it computes a voting power α = 1

2 log
1−ǫ
ǫ
. The

classifier is appended in the assemble and decides if classifier is good enough.
Weights of previous wrong classifiers are updated by new w as follows wnew =
wold

2(1−ǫ) for point classified correctly and wnew = wold

2ǫ for incorrectly case.

3 Results

An automated estimation of TC was computed from two test data sets. Three
prediction functions trained by machine learning algorithms were determined to
be used with the automated processing software of breast cancer images that
classifies cells and computes TC. The method was tested with a training set of
2579 images already classified by a pathologist with a TC value. Also it was
tested with the 1119 images for submission of SPEI Breast Challenge, with an
unknown TC value. Fig. 4 shows the statistical behaviour of the method’s result
for the training set as scatter plots and Fig. 5 the same results as boxplots.
Fig. 4(a) is the corresponding dispersion plot for SVM prediction function in
which every black circle represents a single patch image computation result and
the line indicate the true value. The red spot is the median point. Fig. 4(b)
shows the results for KNN algorithm and Fig. 4(c) for AdaBoost. Initially, to
evaluate the performance mean square error of the three results were computed
and presented in first row of Table 1. Dispersion plot indicates the method ap-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.09.034348doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.034348
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Ortega-Rúız et al.

proximates to the pathologist classification assignment. Results have a better
approximation at higher cellularity values (TC > 0.70) and performs well with
KNN algorithm. Also around the middle region (0.4 < TC < 0.6) has a good ap-
proximation with AdaBoost. At low cellularity values (TC < 0.3) three methods
present deviation, with its higher at cellularity zero, which correspond to images
with only benign nuclei cells. According to Minimum Square Error (MSE) SVM
performs better overall the cellularity region. This result can be validated by a
visual inspection of boxplots of Fig. 5 in the three cases there is a positive cor-
relation between the actual celullarity (horizontal) and the estimated cellularity
(vertical). However, SVM shows less dispersion, especially in the lower values of
cellularity as compared with the other two techniques.

Finally, the method results from contest challenge data were evaluated by
means of the prediction probability results given by the challenge and are pre-
sented at second row of Table 1 with a maximum of Pk = 0.76 obtained with
SVM algorithm.

Table 1. Performance evaluation of the method. Mean square error (MSE) was com-
puted of the result obtained over the full train data set, using pathologist’s as a ground
truth (GT) reference. Prediction probability determined after data submission at the
contest. Confidence intervals are presented in brackets.

Performance SVM KNN AdaBoost Data Set

Metric

MSE 0.0352 0.0655 0.08 Training Data

Prediction 0.766 [0.72,0.81] 0.754[0.70, 0.80] 0.712[0.67, 0.75] Test Data
Probability

4 Discussion

An automated processing software for TC computation is presented in this paper.
The methodology was tested to process automatically breast cancer images under
Neoadjuvant treatment. To determine tumour regions, three different machine
learning algorithms for cell classification were evaluated and compared. The best
result was obtained with SVM algorithm. The relevance of this paper is
a selection of a key parameters to train the algorithms which results in a better
performance of similar techniques, however reported deep learning algorithms
outperforms this result, which is a motivation to explore these technique in the
future.
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(a)

(b)

(c)

Fig. 4. Results of implementation on Training Data shown as scatter plots over the
training set of 2579 patches. Horizontal axis is the reference cellularity value and vertical
axis is the value computed by the method. The line represents the true value, every
single circle is an image patch result and the red spot is the median of a single Cellularity
value.
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(a)

(b)

(c)

Fig. 5. Results of implementation on Training Data shown as boxplots. Every boxplot
corresponds to the statistical result of all the same TC value results. Large boxplot
indicate large deviation. A visual inspection indicates the lowest deviation corresponds
to SVM method in (a).
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