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This study analyses the status and temporal dynamics 
of the tropical forest aboveground carbon (AGC) 
stocks. We used an integrated geospatial approach in-
corporating satellite synthetic aperture radar (SAR) 
data with a continuous forest inventory over a ten-
year period utilizing statistical up-scaling procedure 
over a tropical deciduous forest of India as a case 
study. Logarithmic regression relationship was ob-
served as the best fit model to derive the aboveground 
biomass from SAR backscatter coefficients with an 
absolute model accuracy of 80.61%. This was further 
employed to model the change in forest AGC stock 
from 2007 to 2016. Results show a significant decrease 
in carbon stock and the release of 918.5 Gg of carbon 
in the atmosphere from deforestation and forest de-
gradation in the study area within the ten-year period. 
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GLOBAL carbon dioxide (CO2) concentration has sur-

passed the alarming level of 400 ppm that would never 

relapse back in recent future1,2. Increase of atmospheric 

CO2 leads to global warming, ultimately resulting in  

abrupt climate transformations3, mainly owing to anthro-

pogenic activities4. Forest is the most vital ecosystem 

component that regulates the carbon cycle by sequester-

ing CO2 within terrestrial landscapes in its biomass5. 

Hence, the forest aboveground biomass (AGB) that moni-

tors the terrestrial carbon balance serves as an important 

parameter measuring the forest aboveground carbon 

(AGC)2. Temporal monitoring of forest carbon stocks 

provides information regarding REDD (reducing emis-

sions from deforestation and forest degradation)5 and 

gives an insight into the forest health and global climate  

alteration phenomena6.  

 Remote sensing offers the best provision for continual 

monitoring and enumeration of forest carbon stocks, im-

portant for REDD/REDD+ monitoring7. Forest CO2 emis-

sions can be empirically calculated from forest AGB2, 

which in turn can be measured through remote sensing8. 

The direct method for AGB estimation includes field  

inventory, while the indirect method uses remote sensing 

satellite sensors8,9. Both optical and radar data are exten-

sively used for AGB studies, but active remote sensing 

sensors, like the synthetic aperture radar (SAR) prove 

beneficial over the optical remote sensing10; however, the 

integrated use of optical sensors and SAR also proved 

valuable11. Extensive use of SAR for biomass studies is 

well documented8,10. It can be applied to enumerate the 

forest AGC concentration with significant accuracy12. 

 The limitations of optical sensors in biomass estima-

tion are overcome by SAR due to its innate capabilities. 

SAR data are available in multi-polarized multi-

frequency bands, and shorter frequency bands like L and 

P with cross polarization are more useful for biomass 

studies due to greater penetration through canopy10,13. 

However, co-polarization, like HH (horizontal–horizontal 

polarization) showed higher interactions with the vertical 

structured trunk and main stem than cross-polarization 

data, like HV (horizontal–vertical polarization), revealing 

greater sensitivity towards the bole AGB2,11,14–17. A limi-

tation of SAR in AGB estimation is the saturation of 

AGB estimates at a threshold level producing a logarith-

mic relation between AGB and SAR backscatter val-

ues14,18,19. The AGB saturation levels for SAR bands are 

biome-specific and vary with biogeophysical characteris-

tics of any ecosystem10,13,20–22. Uncertainties in the esti-

mates are dependent on various factors like SAR 

frequency, reference data, forest stand structural attri-

butes, species composition and complexities, etc.10,20,23. 

 The study uses the top–down–bottom–up approach  

integrating field inventory and geospatial technology for 

monitoring the decadal forest carbon stocks in context to 

REDD over a tropical deciduous forest area. Due to the 

limited accessibility of the study area, we had to depend 

mainly on remote sensing data for obtaining information. 

 Bhimbandh Wildlife Sanctuary is a tropical deciduous 

mixed forest in Munger, Bihar, India (25°19′30″–
24°56′50″N lat and 86°33′33″–86°11′51″E long). Figure 

1 study region covers an area of 672.65 km2 with approx-

imately 89% under forest cover as of 2010. Summer maxi-

mum temperature rises up 45°C, winter minimum 

temperature ranges around 3.5°–9°C and annual rainfall 

is 1078.7 mm on an average. The sanctuary has mainly 

sal forest, bamboo forest, scrub and many small forests 

with diverse species of flora. Significant flora comprise 

of Shorea robusta (sal), Diospyros melanoxylon (kendu), 

Boswellia serrata (salai), Terminalia tomentosa (asan), 

Madhuca longifolia (mahua), Acacia catechu (khair) and 

Dendrocalamus strictus (bamboo)24. 

 The top–down–bottom–up approach consists of two 

sections. First, the top–down section where the entire 

study area is reduced to a few representative samples on 

which the model for estimation is developed. Second, the 

bottom–up section where the model is applied over the 

entire area to generate estimates for the entire area, 

represented as spatial maps created in GIS framework. 

 SAR data from ALOS PALSAR of 2007 and ALOS-2 

PALSAR-2 of 2016 with similar month of data acquisition 

were used in the study. Table 1 shows the specifications. 
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Figure 1. Maps showing the location of Bhimbandh Wildlife Sanctuary in Bihar, India. 
 

 

 
 

Figure 2. Relation between aboveground biomass (AGB) and syn-
thetic aperture radar (SAR) backscatter values (HH: Horizontal–
horizontal polarization, HV: horizontal–vertical polarization). 

 

 

Table 1. Specifications of synthetic aperture radar (SAR) data used 

Parameters SAR data 
 

Satellite ALOS ALOS-2 

Sensor/payload PALSAR PALSAR-2 

Launching country (organization) Japan (JAXA) Japan (JAXA) 

Date of launch 24 January 2006 24 May 2014 

Spatial resolution (m) 25 3 

Swath width (km) 70 70 

Incident angle (°) 34.3 35.3° 
Wavelengths/bands L-band L-band 

Mode and polarization Fine beam dual  Full (quad) pol 

  (HH/HV) (HH/HV/VH/VV) 

Number of looks (azimuth : range) 4 : 1 1 : 1 

Data acquisition year 2007 2016 

Data source JAXA (Japan) 

 

 

 A total of 45 random square sample plots of 1000 m2 

(0.1 ha) area were selected, of which 80% (i.e. 36) was 

used to design the AGB regression model and the rest 

20% (i.e. 9) for model validation and confirming the pre-

diction accuracy, according to the Pareto principle. A 

sample of 30 or more statistically represents the normal 

distribution of any sampling25, and the required sample 

size can vary between 0.001% and 0.005% of the total 

study area26. Tree-specific volumetric equations that in-

corporate tree height and girth information collected from 

the plot were used to derive the tree stem volume, which 

when multiplied with the respective specific gravity  

generated the tree AGB6. All the tree AGB values of a 

particular plot were summed to derive the field-based plot 

AGB of that particular sample plot. 

 The preprocessing of raw single look complex (SLC) 

ALOS PALSAR and ALOS-2 PALSAR-2 data was per-

formed in a sequence of steps in SARScape and SNAP 

software respectively. Slant range distortions in SAR data 

were eliminated in the conversion of slant range image to 

ground range image, resulting in equal pixel-spaced SLC 

data. Square pixels in the imagery were produced by multi-

looking that simultaneously reduces the speckles occur-

ring in the imagery. The data occurring in complex number 

format were converted to amplitude and power images in 

order to obtain floating-point image with real values  

in the pixels. The image was georectified using satellite 

orbital parameters and terrain-corrected using range 

Doppler approach with SRTM DEM resampled to 30 m 

pixel size by nearest neighbourhood algorithm and finally 

reprojected to the UTM-WGS84 coordinate system.  

Radiometric calibration was performed, converting the 

power data to linear backscatter and decibel image using 

eq. (1) below27. 

 

 σ 0 = 10* log10 (POWER) + CF – A,  (1) 

 

where σ 0 is the backscatter value (dB), POWER the 

power image, CF (= –83.0) the calibration factor and A 
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Figure 3. Estimated aboveground carbon (AGC) stocks in 2007 and 2016. 
 

 
Table 2. Temporal carbon measurements for 2007 and 2016 

Parameters 2007 2016 
 

Mean aboveground biomass (AGB) (Mg/ha) 78.88 51.57 

Total AGB (Gg) 5306.06 3469.06 

Mean carbon (MgC/ha) 39.44 25.79 

SD of carbon (MgC/ha) 163.91 106.33 

Total carbon (GgC) 2653.03 1734.53 

Equivalent CO2 (Gg) 9736.63 6365.72 

 

 

(= 32.0) is the conversion factor for the level 1.1 SLC 

product. 

 The best-fit regression model was developed using the 

relationship between field-inventory AGB values based 

on randomly selected 36 sample plots with the corres-

ponding SAR σ 0 values. The AGC model was derived 

from the AGB model using the carbon fraction value. 

Approximately, the carbon content as forest AGC is 50% 

of the forest AGB2,12,15 and the equivalent carbon dioxide 

emission is obtained by multiplying AGC with 3.67 (refs 

5, 12). The AGB model on which the AGC model is de-

signed has been validated with the remaining 20% of the 

plot data using statistical metrices11. The spatio-temporal 

AGC maps were generated in a GIS framework to meas-

ure the decadal change in forest AGC content. 

 Landsat imagery of 2007 and 2016 was used to classify 

the study region into forest and non-forest areas to meas-

ure changes in the forest-cover using visual interpretation 

from the standard false colour composite (FCC) images. 

The overall decline in forest cover from 2007 to 2016 

was 10.6 km2 (Table 2). 

 Field-inventorized minimum, maximum, mean and 

standard deviation values for AGB were 11.35, 172.07, 

73.31 and 40.62 t/ha respectively. Figure 2 shows a loga-

rithmic relation between AGB and SAR backscatter  

values, where HV polarization shows relatively early  

saturation than HH polarization. Also, Figure 2 depicts 

the relatively wide range of backscatter values in forests 

for HV data (–25 to –12 dB) in comparison to narrower 

ranges for HH data (–15 to –6 dB). However, HH polari-

zation image shows a better relationship with the AGB 

plot in comparison to HV-polarized image from the L-

band SAR data (Figure 2), as shown in eq. (2). 

 

 0
L_HHσ = 3.07 ln (AGB) – 22.957. (2)  

 

Validating the model with the 20% sample data resulted 

in an R2 of 0.71 (P < 0.001), RMSE of 22.34 t/ha and 

Willmott’s index of agreement of 0.88. This reveals that 

the model generates predicted values that fit the actual 

field values with high levels of agreement, and the abso-

lute accuracy of the model is 80.6%. The AGC model 

(eq. (3)) was derived as an inversion of the logarithmic 

relation in eq. (2) and considering the 50% contribution 

of carbon in AGB, as mentioned earlier. 

 

 
0(0.2765 )

AGC 0.5 AGB 533.65 e .HH
σ×= × = ×  (3) 

 

The AGC model in eq. (3) was used to develop the tem-

poral AGC maps for 2007 and 2016, units expressed in 

Mg/ha. The maps have been reclassified into five groups 
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Figure 4. (Left) AGC stocks in 2007 and 2016. (Right) The total and mean AGC stocks for 2007 and 2016 are represented as 
blue and green cylinders respectively. 

 

 
 

Figure 5. Temporal change in the forest carbon uptake. 

 

 

(Figure 3). Carbon concentration less than 25 t/ha occurs 

near the periphery, settlements and water bodies, while 

concentration increases in the interior where vegetation 

density is high. Figure 3 signifies that forest AGC stock 

has decreased from 2007 to 2016; with most of the area 

within the 50 t/ha class during 2016, while during 2007, 

mostly the area showed concentration above 50 t/ha class. 

In 2007, mean carbon concentration was 39.44 t/ha that 

decreased to 25.78 t/ha in 2016 (Table 2). Hence, the rate 

at which carbon stock decreased was 1.366 t/ha/yr during 

the ten-year period. The total forest carbon stock was 

26.5303 × 102 GgC in 2007 that reduced to 17.3452 × 

102 GgC in 2016 (Table 2). The variance and standard 

deviation values also showed a decline during the period 

(Table 2). More the standard deviation or variance, more 

is the spread; hence, more spread was observed in 2007 

than in 2016. Carbon concentration in the >100 tC/ha 

class decreased considerably from 2007 to 2016, while 

for other classes the values increased, other than the 75–

100 tC/ha class showing a small decrease (Figure 4). As 

seen from Figure 4, the overall decline in forest carbon 

stock over the ten-year period was approximately 

918.5 GgC. Figure 5 shows the pixel-wise spatial map of 

the change in the forest carbon uptake, with red colour 

depicting negative change, i.e. decrease in carbon stock 

from 2007 to 2016, and the green colour representing 

positive change or increase during the same temporal 

span.  

 Climate change and its impacts have severe conse-

quences on the ecosystem, and human life and livelihood. 

Increase in atmospheric carbon concentration indicated 

by the ‘400 ppm world’ is the most dangerous crisis of 

the time. Most of the terrestrial biomass sequestered as 

forest aboveground bole biomass is indicative of carbon 

sequestered in the forest that can be measured and moni-

tored using satellite data. Decrease of carbon sequestered 

within forests indicates that the carbon is set free in the 

atmosphere to contribute towards climate change leading 

to global warming. The same has been observed in the 

study area during the ten-year period, 2007–2016.  

Deforestation was not a major problem in the study site. 

Hence, the decline in carbon stock over the specified time 

period is mainly due to forest degradation. 

 Assessment of forest biomass through conventional in 

situ approach has several limitations in spite of having 

high accuracy levels. Remote sensing provides the  

only viable solution but has used uncertainties during  

assessment. However, continual monitoring of forest 

changes is possible with the huge archived data available. 

Hence remote sensing technology provides an easy, time-

ly and cost-effective solution to the limitations of the in 

situ approach. Moreover, assessment using SAR data is 

even more advantageous than optical data, although there 

are certain limitations of the SAR-based approaches10. 

The successful wall-to-wall implementation of SAR  
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remote sensing technology in forest carbon stock assess-

ment has the potential to measure and monitor carbon 

stock changes in context to REDD/REDD+. 

 The present study aims to assess decadal carbon uptake 

variability over a tropical deciduous forest using remote 

sensing. A decrease of total and mean forest AGC stock 

was registered from 2.653 × 106 Mg and 3944 Mg/km2 in 

2007 to 1.734 × 106 Mg and 2578 Mg/km2 in 2016 re-

spectively. This indicated a release of 918.5 Gg of carbon 

to the atmosphere from deforestation and forest degrada-

tion in the study area during the ten-year time period. 

Forest degradation is the major factor for a decline in 

these estimates. The approach has significant applicability 

in computing and monitoring of forest AGC stocks in the 

scope of REDD/REDD+ and climate change scenario. 
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