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[1] A method for the inversion of hyperspectral remote sensing was developed to
determine the absorption coefficient for chromophoric dissolved organic matter (CDOM)
in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico,
where water types vary from Case 1 to turbid Case 2. Above‐surface hyperspectral remote
sensing data were measured by a ship‐mounted spectroradiometer and then used to
estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM
and chlorophyll fluorescence, turbidities, and other related water properties were also
measured at very high resolution (0.5–2 m) using in situ, underwater, and flow‐through
(shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of
CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption‐
backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total
particulate backscattering coefficient), and the second is between ap (a of total particles)
and bbp. These two relationships are referred as ad‐based and ap‐based methods,
respectively. Consequently, based on Lee’s quasi‐analytical algorithm (QAA), we
developed the so‐called Extended Quasi‐Analytical Algorithm (QAA‐E) to decompose
adg, using both ad‐based and ap‐based methods. The absorption‐backscattering
relationships and the QAA‐E were tested using synthetic and in situ data from the
International Ocean‐Colour Coordinating Group (IOCCG) as well as our own field data.
The results indicate the ad‐based method is relatively better than the ap‐based method.
The accuracy of CDOM estimation is significantly improved by separating ag from
adg (R

2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of
the newly introduced coefficients were also analyzed to ensure QAA‐E is robust.
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1. Introduction

[2] Dissolved organic carbon (DOC), the carbon content
of dissolved organic matter (DOM), is one of the largest
carbon pools in aquatic systems [Amon and Benner, 1994;
Carlson et al., 1994]. As the photoactive fraction of DOM,
chromophoric dissolved organic matter (CDOM) in seawa-
ter can be used as a tracer of terrestrial DOC in the marine
environment [Blough et al., 1993; Del Castillo et al., 1999;
Jerlov, 1976]. Many observations provide evidence of a
good correlation between CDOM and DOC loading across
the different subcatchments [Ferrari et al., 1996; Kowalczuk
et al., 2005b; Mannino et al., 2008; Stedmon et al., 2006;
Vodacek et al., 1997], despite the absence of this covariation

in a few cases [Chen et al., 2004]. Together with the other
two ocean color components, chlorophyll and nonalgal
particles (NAP), CDOM plays an important role in deter-
mining photochemical characteristics of water in nature; its
high optical absorption at short wavelengths (350–440 nm)
may affect the photosynthesis of aquatic phytoplankton
[Bukata et al., 1995; Kirk, 1994]. In addition, due to its
biotic sources, CDOM is also a good proxy for monitoring
the dynamics of organic ecosystems [Doney et al., 1995;
Shooter and Brimblecombe, 1989; Valentine and Zepp,
1993].
[3] Since CDOM has an effect on the underwater light

field and water’s inherent optical properties (IOP), and
consequently determines the Lw (water‐leaving radiance) or
Rrs (remote sensing reflectance) received by above‐surface
remote sensors, inversion of remote sensing data provides a
rapid and efficient approach to estimate CDOM within a
large spatial‐temporal scale [Sathyendranath, 2000; Lee,
2006; Mobley, 1994]. Hence in ocean color sciences,
CDOM’s absorption properties (e.g., its absorption coeffi-
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cients at 440 nm) are usually used as a proxy of its con-
centration [Nelson and Siegel, 2002]. In the earliest algo-
rithms using CZCS (Coastal Zone Color Scanner),
chlorophyll’s concentrations were empirically inverted and
CDOM can be accordingly assessed with the hypothesis that
it covaries with chlorophyll [Gordon and Morel, 1983;
Hoge et al., 1995; Morel and Prieur, 1977]. Later, several
semianalytical models have been developed and applied to
SeaWiFS (Sea‐viewing Wide Field‐of‐view Sensor) and
MODIS (Moderate Resolution Imaging Spectroradiometer)
[Carder et al., 1999; Garver and Siegel, 1997; O’Reilly et
al., 1998; Siegel et al., 2002], in which CDOM’s absorp-
tion coefficients are directly and independently inverted
from Rrs. The semianalytical models are based on the radi-
ative transfer equations as well as the simplification of
radiance and underwater light field [Mobley, 1994].
Recently, in situ hyperspectral measurements with newly
developed remote sensing reflectance models [Lee et al.,
1999] have also been used to estimate CDOM as one of
ocean color components, such as AVIRIS (Airborne Visible
Infrared Imaging Spectrometer) with model‐driven optimi-
zation [Lee et al., 2001], and EO‐1 Hyperion with MIM
(Matrix Inversion Method) [Brando and Dekker, 2003].
These recent methods combine hyperspectral remote sensing
data, some semianalytical models, new factors (e.g., the
bottom effects) and computational techniques, and hence
improve the accuracy of CDOM inversion.
[4] Among those semianalytical models, a bio‐optical

model is widely used—it is a simplified 3‐component model
that only takes account of three major constituents usually
present in water: phytoplankton (mainly chlorophyll),
CDOM, and detritus (or nonalgal particle, NAP). In this
model, the water’s absorption and backscattering coeffi-
cients, a(l) and bb(l), are expressed as

a �ð Þ ¼ aw �ð Þ þ aph �ð Þ þ ag �ð Þ þ ad �ð Þ ð1Þ

and

bb �ð Þ ¼ bbw �ð Þ þ bbp �ð Þ; ð2Þ

respectively, where the subscripts, w, ph, g and d denote the
contributions of pure seawater, phytoplankton, CDOM, and
NAP, respectively, and p in the backscattering term means
the total particulate backscattering coefficients including
both phytoplankton and NAP. For absorption coefficients,
ag and ad are usually combined in one term, adg, so‐called
colored detrital matter (CDM) [Siegel and Michaels, 1996].
[5] Most previous CDOM inversion algorithms have

derived adg rather than ag. There are three major reasons for
not separating ag from adg. First, CDOM and NAP have
similar spectral shapes and slopes [Bricaud et al., 1981;
Kirk, 1994]:

ad=g �ð Þ ¼ ad=g �refð Þ exp �Sd=g �� �refð Þ
� �

; ð3Þ

where ad/g(l) denotes ad(l) or ag(l), and Sd/g denotes cor-
responding Sd or Sg. The reference wavelength lref is chosen
to be 440 nm or 443 nm, and the spectral slope Sd/g often
ranges from about 0.011 to 0.025 nm−1 [Bricaud et al.,
1981, 1998; Carder et al., 1989; Green and Blough,
1994; Kratzer et al., 2000; Roesler et al., 1989; Yentsch,

1962]. Consequently, it is difficult to distinguish their ab-
sorptions from each other. Second, the previous research
focused more on estimating aph due to the interests on
phytoplankton pigments, particularly chlorophyll a [O’Reilly
et al., 1998; Sathyendranath et al., 1994]. adg is more likely
the by‐product so that it is not necessary to separate it fur-
ther. Third, the majority of ocean color algorithms are tar-
geted and applied for Case 1 water in open seas, where
CDOM and NAP were observed to covary well with the
phytoplankton [Morel and Prieur, 1977; Prieur and
Sathyendranath, 1981]. In addition, the fraction of NAP in
Case 1 water is very low. For example, according to Nelson
et al. [1998], NAP contributes only 9% of the nonwater
absorption at 440 nm in the Sargasso Sea. As a result, ad’s
contribution to adg is negligible.
[6] With increasing interests in CDOM, it is essential to

decompose adg and derive ag through an accurate inversion.
More recent observations suggest that the CDOM‐chloro-
phyll covariation are weak and controversial even for Case 1
water [Carder et al., 1999], and may either overestimate or
underestimate chlorophyll and hence CDOM [Arrigo et al.,
1994; Hochman et al., 1994]. Many CDOM studies aim to
trace and monitor the dynamics of terrigenous DOC and
therefore pay more attention to inland, estuarine and coastal
water, so‐called Case 2 water. Case 2 water contains more
CDOM derived from terrestrial vegetation than from the
local in‐water phytoplankton [Nelson and Siegel, 2002], and
therefore CDOM and chlorophyll are generally independent.
Moreover, high concentrations of NAP are often observed in
Case 2 water, which have a considerable contribution to adg
[Sathyendranath, 2000]. All these reasons indicate that
separation of adg is necessary for Case 2 water and some-
times even for Case 1 water.
[7] Separating adg is a very challenging task and not well

investigated. Several published algorithms are able to
retrieve ag and ad separately, but their applications are
limited for various reasons [Lee, 2006]. The empirical al-
gorithms are difficult to extrapolate and may result in sig-
nificant errors [Kowalczuk et al., 2005a; Lee et al., 1998;
Sathyendranath et al., 2001]. Forward optimizations and
LUT (look‐up table) methods are time consuming and hence
unfavorable to handle large data sets, such as satellite ima-
ges [Lee et al., 1996; Liu and Miller, 2008; Van Der Woerd
and Pasterkamp, 2008]. The accuracy of semianalytical al-
gorithms, such as MIM, depends on the accurate preset of
spectral models for each individual ocean color component
[Barnard et al., 1999; D’Sa et al., 2006; Doerffer and
Fischer, 1994; Green et al., 2008; Hoge and Lyon, 1996].
Some of the pure statistical techniques, such as PCA
(principal component analysis) and aNN (artificial neural
network), lack analytical and theoretical bases, and the
results might be hard to interpret [Doerffer and Schiller,
1998; Fischer, 1985; Mueller et al., 2003; Sandidge and
Holyer, 1998]. On the other hand, due to our insufficient
knowledge of the interaction and dynamics of in‐water
photochemical constituents plus the extreme complexity of
radiative transfer, a fully analytical inversion model is still
unreachable [Sathyendranath, 2000; Mobley, 1994].
[8] The main objective of the present study is to develop a

proper quasi‐analytical approach to invert the exact CDOM
absorption from above‐surface remote sensing. To reach this
goal, very high resolution measurements were conducted on
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Figure 1. (a) Cruise tracks of above‐surface (by ASD) and underwater (by ECOShuttle) measurements
and discrete water sampling locations in the Mississippi and Atchafalaya river plumes and the northern
Gulf of Mexico. The spectra and properties of 7 selected samples are shown in Figure 5 and Table 1,
respectively. (b) Measured CDOM concentrations (QSU) along the tracks.
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the Mississippi and Atchafalaya river plumes as well as the
northern Gulf of Mexico, where CDOM, chlorophyll and
NAP’s variations are large and water types are diverse from
simple Case 1 to complex Case 2. About 300,000 in situ
measurements of CDOM, chlorophyll, NAP, water’s IOPs
and other properties, as well as 20,000 water hyperspectra
were collected almost simultaneously, providing a huge data
set for ocean color study. Based on the former quasi‐ana-
lytical algorithm (QAA), we developed an extension to
separate ag from adg. The results show that the proposed
separation method performs excellently and is promising for
future satellite image inversion.

2. Data Acquisition

2.1. Study Site

[9] The Mississippi River is the longest river in the United
States, and its watershed occupies about 41% of total con-
tinental area of the Unite States. At Old River Junction, a
man‐made system controls the flow of the Mississippi River
to the Gulf of Mexico. The U.S. Army Corps of Engineers
reports that seventy percent of the flow drains out of the
Birdfoot region through the lower Mississippi River while
thirty percent is diverted to the Atchafalaya basin, forming
the Atchafalaya River [U.S. Army Corps of Engineers,
2008]. Both outlets in the Gulf of Mexico form large
plumes containing high sediment and organic matter con-
centrations. The lower Atchafalaya River passes through
wetlands, salt marshes and bayous, and empties into the
shallow Atchafalaya Bay with a large capacity to trap sed-
iment. Also, the near coastal wetlands are highly productive
ecosystems which interact with riverine and estuarine waters
and represent a source of coastal CDOM [Lane et al., 2002;
Pakulski et al., 2000]. On the other hand, the lower Mis-
sissippi holds a catchment with low vegetation coverage that
has been highly channelized. Therefore, the interaction of
the river with historical floodplains is greatly reduced and is
therefore expected to have lower CDOM inputs to the Gulf
of Mexico than the Atchafalaya.
[10] The in situ CDOM concentration and spectral data

were measured on the RV Pelican during a 7 day cruise, 23–
29 August 2007, in the Mississippi and Atchafalaya river
plume regions as well as the northern Gulf of Mexico. The
cruise tracks were designed to cross the CDOM gradients in
the plumes, aiming to capture the largest variations in
CDOM. The data acquisition activities include (1) contin-
uous above‐surface hyperspectral measurements of water
apparent optical properties (AOP), (2) continuous under-
water measurements of temperature, salinity, density, dis-
solved oxygen and UV radiance, CDOM fluorescence,
chlorophyll fluorescence, optical backscatter, and depth, (3)
continuous measurements of the IOPs (absorption and
backscattering coefficients) of water pumped from the
sampling platform, and (4) discrete water sampling from the
pumped water for analysis of absorption spectra, CDOM
fluorescence, and dissolved organic carbon in the labora-
tory. The GPS‐derived ship position was recorded concur-
rently with the in situ data. The site map, cruise track, and
sampling locations of above measurements are illustrated in
Figure 1a.

2.2. Above‐Surface Hyperspectral Measurements

[11] The above‐surface remote sensing reflectance of
seawater was measured by a portable spectroradiometer
(Applied Spectral Devices FieldSpec®3), with a full spectral
range (350–2500 nm). The spectral sampling interval of
output is 1 nm. The fiber optic collection sensor was
mounted on the bow of the vessel pointed straight down at
the sea surface at a height of approximately 4 m. The sensor
was mounted in a way that the sensor could be turned by
hand to measure water total radiance/reflectance (down), sky
radiance (up), or at a white barium oxide white board
(down) for calibration. The above‐surface measurement was
referred to NASA’s ocean optics protocols for satellite
ocean color sensor validation [Mueller et al., 2003].
[12] The measurements were continuous during the day-

time, from around 08:30 to 18:30 local time. Data were not
collected during very high seas that created white caps.
During the entire cruise, we collected 75 data sets with
approximately 20,000 hyperspectral samples. Each data set
contains 100 to 3000 samples that were obtained under
similar illumination conditions with individual sky radiance
measurements and white board calibrations. The calibration
frequency between each data set depended on the change of
solar zenith and illumination conditions throughout the day,
particularly considering cloud and wind conditions, typi-
cally every 20–30 min or less. The frequency of sampling
was approximately 5–20 s per sample depending on CDOM
gradient and navigation speed (lower frequency for open sea
and higher frequency for river plume regions). Each sample
is an average of 10 spectral measures to reduce the noise
[Analytical Spectral Devices, Inc., 2009]. The weather
during the cruise was in general sunny, occasionally with
light clouds and gentle wind, except for a few hours of
strong winds on 23 August. Sampling locations were re-
corded by a GPS unit synchronized with the Analytical
Spectral Devices (ASD) spectroradiometer.
[13] Compared with the satellite images, the in situ above‐

surface hyperspectral measurements bear two advantages:
(1) much less atmospheric effect and (2) better synchroni-
zation to the in situ CDOM measurements. One goal of our
project is to investigate whether above‐surface hyperspectral
remote sensing is capable of estimating CDOM concentra-
tion in ocean and coastal waters with satisfactory accuracy.
This knowledge will contribute to our ability to estimate
coastal CDOM concentrations from hyperspectral satellite
images such as those from EO‐1 Hyperion.

2.3. Underwater Measurements

[14] In situ underwater measurements were carried out
using the ECOShuttle, a towed, undulating vehicle based on
the Nu‐Shuttle manufactured by Chelsea Instruments.
Instrumentation mounted inside the ECOShuttle include a
SeaBird Electronics SBE 9/11 CTD system providing tem-
perature, salinity and depth measurements; a CDOM fluo-
rometer, a chlorophyll fluorometer and an optical
backscatter sensor (OBS) manufactured by Seapoint Sen-
sors, Inc; and a YSI dissolved oxygen sensor provided by
SeaBird Electronics. The CTD is calibrated at the factory
annually. CDOM voltages were compared with discrete
samples and converted to quinine sulfate units (QSU)
equivalent to 1mg/l of quinine sulfate at pH = 2, lex = 337 nm,
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and lem = 450 nm. Chlorophyll fluorescence was calibrated
using the factory suggested conversion factor. The ECOSh-
uttle was generally programmed for a sawtooth pattern from
2–3 m depth (just below the influence of the ship’s wake) to a
depth 5 m above the bottom (to avoid the bottom). Ship speed
was 6–8 knots. The sampling resolution was in the range of
0.5–2m (around 3 samples per second) along the cruise track.
About 1,000,000 underwater measurements were acquired.
To minimize the random error, we averaged the successive
measurements within every 0.2 m depth, which resulted in
300,000 measurements used in the study.
[15] In addition, a stainless steel well pump mounted on

the underside of the ECOShuttle pumped uncontaminated
(only touches stainless steel and Teflon) seawater into the
shipboard lab via a 0.5‐inch ID Teflon tube in the tow cable.
This seawater flow was distributed into a Wetlabs AC‐9
multispectral absorption meter that measures the water’s
total attenuation and absorption coefficients at 9 wave-
lengths (412, 440, 488, 510, 532, 555, 650, 676, 715 nm).
Milli‐Q water was used as a reference. In addition, the
flowing seawater supplies a source for discrete sample
analysis of DOC and optical properties. Complete details of
the ECOShuttle system are given by Chen [1999], Chen et
al. [2004], and Chen and Gardner [2004].

2.4. Discrete Samples

[16] Discrete water samples supplied by the ECOShuttle’s
pumping system were collected to calibrate the real time
underway measurements (Figure 1a). The interval of sam-
pling was generally determined by the ECOShuttle depth,
the sampling lag time and the location. When a sample was
to be taken, an instantaneous record of the in situ data was
produced and a stopwatch started to determine the exact
time for collection. Samples were drawn precisely after the
determined delay time had passed (the ECOShuttle gener-
ally spent 10–20 s at the surface). The delay time was
determined by matching salinity minima and maxima as the
ECOShuttle undulated through a river plume, usually
around 4 min. Careful alignment of in‐line data with
ECOShuttle data was made after the cruise. Fluorescence of
filtered seawater samples was measured with a Photon
Technologies International Quantum Master‐1 spectrofluo-
rometer equipped with a double excitation monochromator,
a single emission monochromator and a cooled photo-
multiplier assembly. CDOM absorption spectra (200–800
nm) were measured by a Cary 50 spectrophotometer with a
1 cm path length cell. The details of lab processing and
computation were described by Huang and Chen [2009].

3. Methods

3.1. Data Preprocessing

3.1.1. Above‐Surface Hyperspectra
[17] The radiance received by the above‐surface spectro-

radiometer includes both water‐leaving radiance and the
radiance from the water surface reflection. Water surface
reflection contains no information about the in‐water con-
stituents, but contaminates the subsurface volumetric radi-
ance. Before inversion, the surface radiance need to be
removed to obtain the remote sensing reflectance or water‐
leaving radiance, which are the eligible inputs of inverse
algorithms [Yu et al., 2010].

[18] Remote sensing reflectanceRrs at given direction (�,’)
and wavelength l is calculated by Mobley [1999]

Rrs ¼
Rg Lt � Lrð Þ

�Lg
; ð4Þ

where Lt is the total water radiance received by sensors, and Lr
is the radiance reflected by the sea surface. Hence Lt − Lr is
the water‐leaving radiance; Lg is the radiance reflected by the
Spectralon reference panel (white reference); and the Rg is the
reflectance of the white reference. Since the white reference is
a Lambertian surface, Rg is equivalent to irradiance reflec-
tance, defined as the ratio of upward planar irradiance and
downward planar irradiance. pLg/Rg gives the downwelling
spectral plane irradiance incident onto the sea surface.
[19] In equation (4), technically we could not measure Lr

directly but it can be approximately computed by Lr ≈ rLs,
where Ls is sky radiance from the corresponding incident
angle and the r is the ratio representing the proportion of Lr
to Ls. In our cruise, we mainly recorded the total water
reflectance Rt, instead of the Lt (only a small number of Lt
were recorded for calibration purpose). In ASD, Rt is
determined by Rt = Lt/Lg. Therefore equation (4) could be
rewritten by all directly measured variables, except r, that is,

Rrs ¼
Rg

�
Rt �

�Ls
Lg

� �

: ð5Þ

Rg is in the range of 0.990 to 0.992 at wavelengths from 400
to 700 nm. r was simulated individually for each data set
using Hydro‐Ecolight® [Mobley and Sundman, 2008], with
specific in situ solar zenith, wind speed, cloud cover, and
other atmospheric properties. We used a nadir view, rather
than the recommended viewing angles of zenith 45° and
azimuth 135°. The reason is for a consecutive measurement
along the cruise, this nadir viewing angle keeps fixed sen-
sor‐Sun geometry, and the sensor azimuth angle ’ is inde-
pendent of ship moving direction. Therefore the sensor view
angle is consistent while the vessel frequently alters its
navigating direction at varying time of day (different solar
angle). In addition, according to the previous results
[Mobley, 1999, Figure 7], the nadir view, that is, � = 0° and
’ = 0°, is beneficial in removing water surface reflectance.
In our calculation, we found that r slightly varied with solar
zenith and wind speed, but was highly impacted by cloud
cover. For solar zenith � > 30°, wind speed < 5 m/s and clear
sky, r for the nadir viewing is approximately 0.021. The
spectral data measured with solar zenith � < 20° (around
11:30 A.M.–12:30 P.M.), wind speed > 10 m/s, or under
cloud shadow were not included in the analysis due to the
induced high uncertainty.
3.1.2. CDOM Concentration and Water’s IOP
[20] Due to complex and variable CDOM chemistry,

CDOM concentration is usually represented by its optical
properties, for example, the fluorescence intensity, rather
than its physical mass, as the mg/l or g/l used for chlorophyll
and NAP. In ocean color science, CDOM’s absorption
coefficient at 440 nm, ag(440), is often taken as the proxy of
its concentration and remote sensing inversion also often
returns ag(440) [Lee, 2006]. In our underwater continuous
measurement, CDOM concentrations were measured by a
fluorometer that returns voltages (V) as CDOM’s proxy. In
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our discrete samples, we measured CDOM fluorescence in
QSU and CDOM absorption (ag). Those three CDOM
proxies, QSU, ag(440) and instantaneous voltage, have been
found strongly correlated (Figure 2). Based on these linear
relationships, the voltages continuously measured can be
converted to QSU or ag.
[21] We used an empirical approach to compute in situ

individual absorption properties ag, ad and aph from the total
absorption coefficient at measured by AC‐9, which were
used to calibrate J1 and J2 (section 3.3) and validate inver-
sion algorithm. Since our underwater measurement was
taken at very high resolution, some water samples are high
CDOM but very low chlorophyll and NAP (in chlorophyll
fluorometer voltage and OBS fluorometer voltage, respec-
tively). For these samples, the water’s total absorption

coefficient should be contributed almost completely by
CDOM, that is, at ≈ ag, especially for short wavelength
(412, 440 nm) where CDOM has relatively strong absorp-
tions. Then for these samples, we used at to approximate ag.
We validated this by relating at to CDOM concentration in
Figure 3. Figure 3a shows the samples having relatively
high chlorophyll and NAP’s concentrations (CHL > 1.5 mg/l,
and OBS > 50 FTU) and Figure 3b shows those CDOM‐

dominant samples only (CHL < 0.1 mg/l, OBS < 0.1 FTU).
The latter demonstrates a fairly good correlation between at
and QSU. We then use this correlation to estimate ag from
V, as âg derived, for all samples. After that, âp can be
obtained by at − âg. We further applied the similar approach
to convert chlorophyll and NAP’s voltages to their respec-
tive absorption coefficients (Figures 3c and 3d). For those
samples with relatively high NAP but low chlorophyll, âp
should be mostly contributed by NAP. Therefore, we used
âp to approximate âd and applied the relationship between âp
and OBS to derive âd. Finally, âph was obtained by âp − âd.
[22] Compared with the results of discrete sample analy-

sis, âg obtained by this empirical approach tends to be larger
(biaslog = 0.5) because of the minor contributions of chlo-
rophyll, NAP and other possible in‐water constituents in
CDOM‐dominant samples. To minimize potential un-
certainties, we did not directly use these converted values
âg, âph and âd, but take into account their proportions in ât,
defined as the sum of âg, âph, and âd. These proportions
were used to partition at, measured by AC‐9, i.e., ag = at ·
(âg/ât), aph = at · (âph/ât), and ad = at · (âd/ât).
[23] In this study, the total attenuation coefficient c and

the total absorption coefficient at were measured by AC‐9.
The total scattering coefficient b was calculated by sub-
tracting absorption coefficients from attenuation coeffi-
cients, that is, b = c − a. Then backscattering coefficients,
bb, can be calculated by estimating the contributions of
backscattering to the total scattering. Generally the propor-
tions of bb to b is 2% [Kirk, 1994], that is, bb = 2% · b. Then
backscattering coefficients of particles can be given by
subtracting water’s backscattering from the total backscat-
tering, that is, bbp = bb − bbw.

3.2. Quasi‐Analytical Algorithm

[24] Given the water remote sensing reflectance as input,
the quasi‐analytical algorithm (QAA) proposed by Lee et al.
[2002] could be used to retrieve a, bbp, aph, and adg at dif-
ferent levels. This algorithm combines several classic
empirical, semianalytical, and analytical models, which are
all well known and have been fully studied and validated
[Lee et al., 2002]. Later, Lee et al. [2007] improved the
empirical estimation of a(555), making it more accurate and
seamless. The original QAA consists of three levels with 10
steps. Starting from input of Rrs or rrs (just below‐surface
remote sensing reflectance), at each level, different IOPs are
estimated and applied to the next level as new inputs
(Figure 4). The final output of QAA is aph(l) and adg(l), in
which adg(440) is often taken as CDOM’s concentration.
One of the merits of QAA is that it does not require the
prior knowledge of aquatic constituents, since its parameters
have already been synthesized for all water cases. QAA has
been used in ocean color inversions with good performance
[Chang and Gould, 2006; Lee, 2006; Lee and Carder,
2004; Zhan et al., 2005]. In a recent algorithm compari-

Figure 2. Correlations among CDOM’s proxies, QSU,
volts, and absorption coefficients ag(440). (a) Volts versus
QSU. (b) QSU versus ag(440).
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son by Qin et al. [2007], QAA was verified to have the
highest accuracy in retrieving the coefficients of total
absorption and backscattering among seven other algo-
rithms. However, they also found that when water is turbid,
the accuracy of the algorithm generally degrades rapidly
with increasing CDOM and NAP concentrations. Details of
QAA (Version 4) are presented in Table A1 of Appendix A.

3.3. QAA‐E: Separate ag From adg

[25] At the last level, QAA separates water’s total
absorption coefficients into aph and adg. To retrieve CDOM
concentration, adg need to be further decomposed to ag and ad.
Due to their similar features of absorption, CDOM and
nonalgal particles are difficult to distinguish from their total

absorption coefficient. Lee [1994] has proposed an empirical
separation method by making a regression fit between ad440
and c by the formula

ad 440ð Þ ¼ 61:44�1:31; ð6Þ

where c is a parameter derived from a radiative transfer
model [Lee, 1994]. This empirical equation (6) was only
based on 39 samples collected from Mississippi River, so
whether this method is appropriate for more varied water
conditions and locations is not yet known.
[26] Although CDOM and nonalgal particles have the

similar absorptions properties, we noticed they have com-
pletely different backscatter properties. Backscattering plays

Figure 3. Separating at(440) into three components. (a) If samples are not CDOM‐dominant, there are
no correlations between at(440) and QSU. (b) For CDOM‐dominant samples, the correlation between
at(440) and QSU is significant. (c) ad(440) and (d) aph(440) are further separated from at(440) using
similar approaches. Note that in Figure 3b, at(440) is approximately equal to ag(440).
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the equally important role as absorption in determining
remote sensing reflectance. Normally CDOM is considered
to have no backscattering, whereas particles have strong
backscattering, even in longer wavelength. This property
inspires a semianalytical decomposition approach by esti-
mating the nonalgal particle absorption coefficient using
particulate backscattering properties.
[27] According to Babin et al. [2003a, 2003b], the non-

algal particulate absorption and total particulate backscat-
tering coefficients may be represented as a function of the
absorption and backscattering at a reference wavelength,
respectively, that is,

ad �ð Þ ¼ ad �a;ref

� �

exp Sd �� �a;ref

� �� �

ð7Þ

and

bbp �ð Þ ¼ bbp �b;ref

� � �

�b;ref

� �Y

; ð8Þ

where ad(la,ref) and bbp(lb,ref) are the specific absorption
and backscattering coefficients at their respective reference
wavelength, typically, la,ref = 443 and lb,ref = 555. Sd and Y
are the parameters determining their exponential decay
slopes. Babin et al. [2003a] reported Sd = 0.0123 and Y =
−0.15. Sd is very close to Sdg = 0.015 used in QAA. Y is a
function of just below‐surface remote sensing reflectance rrs
(see the equations of rrs and Y in Table A1 of Appendix A).
Then the relationship between ad and bbp is

ad �ð Þ

bbpð�Þ
¼

ad 443ð Þ exp½�0:015 �� 443ð Þ�

bbp 555ð Þ �=555ð ÞY
: ð9Þ

Figure 4. Concept and schematic flowchart of the level‐by‐level QAA and QAA‐E.
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ad(l) could be derived through equation (9) as long as the
bbp(l) and the ratio q = ad443/bbp555 are known. In QAA,
bbp(l) is already retrieved, so we only need to determine q.
ad443 and bbp555 are both connected to suspended par-
ticulate matter (SPM); their ratio could be derived from
two equations suggested by Babin et al. [2003a, 2003b]:

ad 443ð Þ : SPM ¼ 0:041

bbp 555ð Þ : SPM ¼ 0:51

Therefore, we get q = 0.0804, namely, ad443 = 0.0804bbp555.
However, for ocean color components, the relationship
between their optical properties and physical concentrations is
often expressed by a power function. For instance, the specific
absorption coefficients of chlorophyll aph*(440) = 0.06[C]0.65

[Maritorena et al., 2000]. In addition, equation (6) implies
ad440 is a power function of a radiative transfer parameter.
Based on the above consideration, if ad443 and bbp555 are
both power functions of SPM, then q is also a power function
of SPM. This equally means ad443 could be expressed as a
power function of bbp555, that is,

ad 440ð Þ ¼ J1bbp 555ð ÞJ2 : ð10Þ

Then coefficients J1 and J2 can be estimated from a least square
fit. Once ad443 is known (here assuming it is equal to ad440),
we then obtain ag440 by subtracting ad443 from the known
adg440. The full flowchart and equations of QAA‐E are also
summarized in Figure 4 and Table A2 of Appendix A,
respectively.
[28] However, according to Babin et al. [2003b], the

relationship between ad440 and SPM may not be accurate
because the phytoplankton is a fraction of the SPM, which
does not contribute to ad440 but does to aph440. Therefore,
the exact relationship should be created between the ap440
(the sum of ad440 and aph440) and SPM. In the same way,
we can further obtain the following expression:

ap 440ð Þ ¼ J1bbp 555ð ÞJ2 : ð11Þ

Then an alternative method to retrieve ag440 is using

ag 440ð Þ ¼ at 440ð Þ � ap 440ð Þ; ð12Þ

where at440 is the total absorption coefficient for the three
ocean color components. It is derived by QAA at the level 1.
[29] In this study, the above two schemes, called ad‐based

and ap‐based, respectively, were both applied to retrieve
ag440. If adg is directly used to represent ag440 without
decomposition, we call it an adg‐based scheme. The results
of J1 and J2 and comparison of the three schemes are shown
in section 3.4.

3.4. Accuracy Assessment

[30] Algorithm performance was evaluated using the
following three statistics: the relative error, normalized
bias, and root mean square error (RMSE). The former two

assess systematic error, and the latter assesses random
error:

Errori ¼
xmodel
i

�xobs
i

xobs
i

bias ¼ Mean Errorð Þ

RMSE ¼ Stdev Errorð Þ;

where xmodel is the variable of interest derived from proposed
models or algorithms, xobs is the same variable known as the
truth, either observed from in situ measurement or the syn-
thetic simulation, and “Mean” and “Stdev” are the mean and
standard deviation of errors, respectively.
[31] The statistical distributions of ocean color compo-

nents often follow lognormal distribution [O’Reilly et al.,
1998]. Therefore, the error, bias and RMSE can be also
normalized as

Errorlog i ¼ log xmodel
i

� �

� log xobsi

� �

biaslog ¼ Mean Errorlog
� �

RMSElog ¼
1

n�2

P

n

i¼1

log xmodel
i

� �

� log xobsi

� �� �2

� �1
2

;

where n is the number of observations [Lee, 2006].

4. Results and Discussion

4.1. The Field‐Measured CDOM and Water’s IOPs
and AOPs

[32] The field‐measured CDOM demonstrated a wide
range from 0.6 to 80 QSU (Figure 1b). The Atchafalaya
River plume shows a steeper CDOM gradient than the
Mississippi. Selected hyperspectral above‐surface spectra of
different water types are shown in Figure 5 (see also Table 1).
The highest remote sensing reflectance reaches approxi-
mately 0.025 sr−1 for the waters at the Atchafalaya River
mouth (SS# 46‐678; SS# denotes the data set‐spectrum
number. Refer to Figure 1a for their sampling locations).
The Rrs spectrum of the Atchafalaya end‐member can be
characterized by three minor peaks at 570 nm, 640 nm, and
690 nm. The inland sample, SS# 44‐1218, presents the
same three peaks. Another sample in the Atchafalaya River
plume (SS# 51‐1800) also has three peaks, but apparently
the latter two peaks have lower Rrs than the first. Compared
to the Atchafalaya, samples located in the Mississippi River
plume (SS# 1‐648, 10‐2668, and 6‐1511) show a relatively
low remote sensing reflectance. The inland river channel
(SS# 44‐1218) also has higher reflectance than the Mis-
sissippi River mouth (SS# 1‐648). Lower spectral reflec-
tance magnitudes are seen farther from the coastline, for
example, the three curves along the Mississippi plume: SS#
10‐2668, 6‐1511, and 26‐3082. Very turbid waters have an
additional peak near 800 nm which is induced by high
concentration of suspended sediments.

4.2. Determination of the Absorption‐Backscattering
Relationship

[33] In QAA‐E, the ad440 is derived from the bbp555 by
the equation (10), in which parameters J1 and J2 were fitted
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by two data sets: the synthetic data and our field data. The
synthetic data, containing 500 samples, are provided by
IOCCG for ocean color algorithm testing and validation.
They are simulated by Hydrolight® and cover a wide range
of natural water variation.
[34] The results of least square fitting are shown in

Figure 6 and Figure 7. Using IOCCG synthetic data
(Figure 6), for ad‐based scheme, J1 = 2.355 and J2 = 1.025,
with R2 = 0.79; and for ap‐based scheme, J1 = 6.188 and
J2 = 0.953, with R2 = 0.89. The greater R2 of ap‐based
scheme indicates bbp555 are better correlated to ap440 than
ad440. Both J2 are close to 1, implying the ad and ap are
about linearly related to bbp. The difference of J1 from the
two methods represents how much aph440 contributes to
ap440. Using our field data (Figure 7), for ad‐based
scheme, J1 = 0.966 and J2 = 1.038, with R2 = 0.965; and
for ap‐based scheme, J1 = 1.026 and J2 = 0.817, with R2 =
0.954. We can see that both J1 and J2 from two schemes
are very close. This implies aph440 does not contribute to
ap440 significantly. J1 and J2 are critical parameters to
derive ad440 and ap440, and hence ag440. We will discuss

their sensitivities regarding to the estimate accuracy of
ag440 in section 4.5.

4.3. QAA‐E Test Using IOCCG Synthetic Data

[35] The results of the QAA‐E test are shown in Figure 8 and
Table 2. The error statistics show QAA‐E performs excel-
lently in retrieving ag440. The ad440’s RMSE is abnormally
high because ad440s absolute values are very low and its
RMSE is subjected to the effect of extreme estimates.
Comparatively, the fact that the RMSElog is much less than
the RMSE indicates in this case the RMSElog is much better
to present random error than the RMSE.
[36] If we do not separate adg440, that is, use the QAA‐

derived adg440 to approximate the real ag440, then ag440 is
apparently overestimated (Figure 8a). Figure 8c shows that
ad440 was estimated better than ap440 (Figure 8b). After adg
separation, the overestimation is well corrected, both for
ad‐based and ap‐based schemes (Figures 8d–8g). The biases
decreased from 0.488 to 0.174 and 0.216, (for biaslog, from
0.1488 to 0.0448 and 0.0287), respectively. By the ad‐based
scheme, the RMSE also decreased from 1.116 to 0.458 (for

Figure 5. Selected typical hyperspectral remote sensing spectra. Each curve is labeled by set‐spectrum
number. Their locations are marked in Figure 1a, and water properties and IOPs are shown in Table 1.

Table 1. The Measured Water Properties of Selected Samplesa

Location
Set‐ Spectrum

Number
Depth
(m)

Salinity
(PSU)

CDOM
(QSU)

CHL
(mg/l)

OBS
(FTU)

a440
(m−1)

a555
(m−1)

a650
(m−1)

c440
(m−1)

c555
(m−1)

c650
(m−1)

Atchafalaya 46‐678 0.83 0.29 82.21 1.40 312.91 7.068 0.263 0.080 48.98 47.18 39.66
Atchafalaya 51‐1800 0.41 0.23 78.62 1.14 212.18 3.663 0.991 0.282 49.10 36.68 32.28
Mississippi 1‐648 0.19 6.47 31.96 0.01 0.06 1.644 0.360 0.106 10.27 7.634 6.462
Mississippi 10‐2668 3.29 30.41 6.30 0.73 8.78 0.634 0.166 0.049 4.32 3.500 3.113
Mississippi 6‐1511 24.80 36.20 2.91 0.18 0.01 0.351 0.113 0.032 3.23 2.810 2.582
Gulf 37‐829 6.93 34.15 1.99 0.37 1.23 0.327 0.088 0.023 3.08 2.792 2.659
Gulf 26‐3082 16.95 36.25 0.77 0.07 0.07 0.192 0.060 0.015 2.17 2.044 1.979

aNo ECOShuttle data for the inland water sample 44‐1218.
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the RMSElog, from 0.206 to 0.155), but by the ap‐based
scheme, the RMSE is slightly worse than that without sep-
aration. The ad‐based scheme returns 498 valid outcomes
(positive values) whereas the ap‐based only returns 485. As
to R2, the ad‐based scheme keeps the same R2 and R2 II (R‐
squared determination for regression type II) as the adg‐
based scheme, while the ap‐based scheme has a higher R2

but lower R2 II. We plot their results in Figure 8d and
Figure 8f in log scale and Figure 8e and Figure 8g in linear
scale, respectively. By comparisons, the ad‐based scheme
performs better than the ap‐based scheme for low ag440
(around 0.01 m−1) but worse for high ag440 (around 2 m−1).
Although theoretically the ap‐based scheme is more ideal
than the ad‐based, actually the ad‐based scheme performs a
little better than the ap‐based overall, except the biaslog and
R2 II. We think this may be caused by the phytoplankton
which introduces more uncertainty into the ap440.
[37] Beside the above accuracy statistics, the ad‐adg ratio

was also used to assess the performance of QAA‐E. An
assumption for adg separation is that ad takes significant
proportion in adg. In this study, we set the ratio = 0.1 as the
condition that the adg should be separated. The ratio of the
synthetic data ranges from 0.019 to 0.74 with the average

0.21 and follows a lognormal distribution (Figure 9a). As
the inversion results, the derived ad‐adg ratio has very
similar range (from 0.015 to 0.84 with average 0.19) and
distribution (Figure 9b). The detailed comparison (from 0.1
to 0.7 with interval 0.02) between the measured and derived
ad‐adg ratios also shows they match very well (Figure 9c).
[38] We also analyzed the relationship between prediction

error and ad‐adg ratio. The results show that when the ratio is
low (0.1–0.4), the error (bias) is also low (Figure 10a); but
as the ratio is high, most errors tend to be positive and hence
make a large bias. This phenomenon implies that the QAA‐
E works well for moderate ad‐adg ratios, but for very large
ad‐adg ratios further refinement is required. The very large
ad‐adg ratio means the sediment concentration is extremely
high and in this case the water optical properties are very
complicated. The remote sensing inversion of ag for such
water remains challenging.

4.4. QAA‐E Test Using IOCCG in Situ Data

[39] The synthetic data test shows QAA‐E is able to
separate adg440 effectively and hence improve the accuracy
of CDOM’s inversion. We also applied QAA‐E to the
IOCCG in situ data set which was collected by 11 experi-
ments, 656 stations, throughout the global oceans, mostly
sampled in coastal areas. This in situ data set only provides
adg440 and aph440, so we were unable to validate the
accuracy of the inverted ag440. Nevertheless, we can still
evaluate ad‐adg ratio using QAA‐E‐derived ad440 and in
situ adg440. In the test, J1 and J2 were set by the values

Figure 6. Relationships between bbp555 and (a) ad440 and
(b) ap440, using synthetic data. Their equations are fitted
as ad440 = 2.355bbp

1.025 (R2 = 0.79) and ap440 =
6.188bbp

0.953 (R2 = 0.89), respectively.

Figure 7. Relationships between bbp555 and (a) ad440 and
(b) ap440, using the measured in situ data. Their equations
are fitted as ad440 = 0.966bbp

1.038 (R2 = 0.965) and ap440 =
1.026bbp

0.817 (R2 = 0.954), respectively.
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Figure 8. QAA‐E test using IOCCG synthetic data. (a) The adg‐based scheme, namely, without adg440
separation, (b) ap440, (c) ad440, and (d‐g) all resultant ag440, where Figures 8d and 8e are ap‐based and
Figures 8f and 8g are ad‐based. Note that Figures 8d and 8f are plotted in log scale and Figures 8e and 8g
are in linear scale.
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derived from the synthetic data. Among the 656 samples,
only one sample returns an invalid ad440 that is slightly
higher than the corresponding adg440. For the remaining
655 samples in Figure 11a, QAA‐E is well able to capture
the characteristic of ad‐adg ratio observed from the synthetic
data—not only the range (0.013–0.95) and average (0.15),
but also a perfect lognormal distribution (Figure 11b). The
derived ad‐adg ratios were also mapped, presenting a rea-
sonable distribution (Figure 11c). Most of the samples with
the ratio greater than 0.1 are found in the regions close to
estuaries and coasts, where the concentrations of nonalgal
sediments are assumed relatively higher than in the open
oceans. We noticed the ad‐adg ratio is relatively low for the
experiment LMER‐TIES (Figure 11a), located at the Che-
sapeake Bay. Here the measured adg and derived ad are both
relatively higher than other experiments but the ad‐adg ratio
is lower, indicating ag440 dominates the adg440 in spite of a
large ad440. In all, the high ad‐adg ratios most likely occur
in coastal and estuarine regions, but waters in those regions
are not always with high ad‐adg ratios.

4.5. Sensitivity Analysis of J1 and J2

[40] Two new parameters, J1 and J2, were introduced into
QAA‐E, and their values were obtained by fitting known
data. They play an important role in determining ad440 or
ap440, and hence have an effect on the prediction accuracy
of ag440. A sensitivity analysis was conducted in order to
test how they influence the final results. Four statistical
variables, valid number n, R2, bias, and RMSE, were used in
the analysis. Fitting IOCCG synthetic data, in ad‐based
scheme, resulted in J1 = 2.355 and J2 = 1.025; while by
fitting in situ data, we got J1 = 0.966 and J2 = 1.038. These
results imply that the ad440 and bbp555 are approximately
linearly related but the slope may vary. Based on the above
values, in this sensitivity analysis, the range of J1 was set
from 0.5 to 4.5 with interval 0.02, and that of J2 was from

0.5 to 1.5 with interval 0.01, so for each statistic variable, in
total we tested 20,000 combinations of J1 and J2.
[41] The results of sensitivity analysis on the synthetic

data are shown in Figure 12. The valid number n is the
number of samples with derived adg440 greater than ad440
(i.e., positive âg440). Figure 12a shows J2 is critical to the
valid number n. When 1 < J2 < 1.5, n almost keeps a con-
stant 500 within the J1’s full range 0.5–4.5, that means in
their ranges, all 500 samples were derived validly. Note that
n indicates how robust the inverse algorithm is to a wide
range of environments. R2, bias, and RMSE were all cal-
culated based on the valid results. If n is much less than the
amount of input data, the algorithm does not perform well
even if the other three variables look good. The ranges of J1
and J2 for R

2 (Figure 12b) is similar to the case of n. In J2’s
range 1–1.5, RMSE ranges from 0.35 to 0.5, and small J2
and large J1 make a relatively low RMSE (Figure 12c).
Similarly, the best J2 which leads to bias = 0 is around
0.8–0.9. Given J2 is set, the bias is not sensitive to J1
(Figure 12d).
[42] The same analysis was also applied to our in situ data

as well as the ap‐based scheme, and we obtained similar
results. We therefore can conclude that for ad‐based scheme,
the derived results (ag440) are not sensitive to valid ranges
of J1 and J2: 0.5 < J1 < 4.5 and 1.0 < J2 < 1.5. Within the
two ranges, J1 is less sensitive than J2. Moreover, a large J1
and a small J2 tend to make QAA‐E return relatively better
results. For the ap‐based scheme, the ranges are 0.5 < J1 <
8.5 and 0.8 < J2 < 2.0.

4.6. Inversion of ag440 Using Field Spectral Data

[43] The QAA‐E was finally applied to estimate CDOM
concentrations in the Mississippi and Atchafalaya river
plume regions. The results are shown in Figure 13 and Table
2. The at440 and adg440 were derived by the original QAA
(Figures 13a and 13b), and the others were derived by
QAA‐E (Figures 13c–13g). There are 3,010 above‐surface
spectra used in the inversion and most of them, 2996 sam-
ples, returns valid results.
[44] In general, the accuracy of CDOM estimation is

good. Using the ad‐based scheme, the ag440’s RMSE is
about 0.12 (RMSElog = 0.32). The ap‐based scheme also
performs well with RMSE = 0.138 and RMSElog = 0.222.
However, their biases are a little larger than our expectation.
We noticed that at440, adg440 and bbp555 also have large
biases, a type of systematic error. That these biases are all
negative indicates they are all underestimated. Therefore,
the same underestimation for the derived ag440 may not be
caused by QAA‐E algorithm but likely by at440, adg440, or
bbp555 derived by QAA. The possible source of systematic
errors and uncertainties are discussed in the section 4.7.
Similar to the synthetic data, ag440 are predicted more
accurate than ap440 and ad440 (Figures 13c and 13d) but the
difference is that the ap‐based scheme performs a little better
than the ad‐based. Note that the result that the adg‐based
scheme also well estimates the ag440 does not mean the adg
separation is unnecessary. Since the adg‐based scheme is
assumed to overestimate the ag440, if the systematic bias
underestimates ag440, then the final results appear better,
because coincidentally the overestimation and underesti-
mation are counteracted.

Table 2. Summary of Error Analysis for QAA and QAA‐E, Using

Synthetic and in Situ Dataa

N n R2 R2 II bias RMSE biaslog RMSElog

IOCCG Synthetic Data
at 500 500 0.92 0.99 0.140 0.107 0.0522 0.082
bbp 500 500 0.92 0.99 0.026 0.081 0.0045 0.074
ap 500 500 0.67 0.87 0.136 0.437 0.0042 0.225
ad 500 500 0.45 0.76 0.359 4.737 0.0047 0.341
adg 500 500 0.81 0.98 0.131 0.248 0.0389 0.118
ag1 500 498 0.81 0.97 0.174 0.458 0.0448 0.155
ag2 500 485 0.91 0.92 0.216 1.201 0.0287 0.256
ag3 500 500 0.80 0.97 0.488 1.116 0.1488 0.206

In Situ Data of Atchafalaya and Mississippi River Plumes
at 3010 3010 0.71 0.69 −0.418 0.103 −0.252 0.278
bbp 3010 2996 0.88 0.55 −0.913 0.095 −1.142 1.177
ap 3010 2996 0.23 0.36 −0.524 8.064 −0.419 0.473
ad 3010 2996 0.29 0.48 −0.495 2.264 −0.407 0.495
adg 3010 3010 0.70 0.59 −0.484 0.117 −0.306 0.330
ag1 3010 2996 0.65 0.53 −0.473 0.120 −0.299 0.327
ag2 3010 2996 0.64 0.63 −0.323 0.138 −0.188 0.222
ag3 3010 3010 0.71 0.58 −0.443 0.112 −0.273 0.299

aThe absorption coefficients and backscattering coefficients are at
440 and 555 nm, respectively. ag1, ag2, and ag3 refer to ag derived by
ad‐based, ap‐based (QAA‐E), and adg‐based algorithms (QAA),
respectively. N is the number of input samples, and n is the number of
samples with valid output.
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Figure 9. Compositions of adg(440) (ad‐adg ratio) for (a) measured ratios of IOCCG synthetic data and
(b) derived ratios using QAA‐E. (c) The detailed comparison (from 0.1 to 0.7 with interval 0.02) between
them.
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[45] The distribution of derived ad‐adg ratios also implies
the good performance of QAA‐E, because the ratio is less
subjected to systematic error. For this study, ad440 and
ag440 are both underestimated due to the systematic error of
at440. When ad‐adg ratio is calculated, the systematic error
is able to be canceled. Figure 14 shows for about 1,700
samples, the derived ratio, from 0.1 to 0.4 with a 0.01
interval, matches the measured ratio very well, except only a
few samples with large ratios. The error versus ad‐adg ratio
is plotted in Figure 10b. Due to the systematic error we
mentioned above, we can see that most errors are negative.
There is still a potential trend that errors become larger as
the ratio increases.

4.7. Model Uncertainty and Future Work

[46] First, the uncertainty may come from the data mea-
surement and preprocessing. At high CDOM concentrations
above about 70 QSU, an “inner filter” effect is seen in the in
situ fluorescence measurement. Dilution of discrete samples
confirms this [Green and Blough, 1994]. With underway
fluorescence sensor, correction through dilution is not via-
ble. However, if the geometry of the in situ fluorometer, the

excitation and emission wavelengths of sensor, and the
absorption spectrum of the water are known, a correction to
the in situ data can be made. Gardner et al. [2005] examined
this issue in the Neponset Estuary. Using the same equation
for inner filter effect, there would be a about a 10% effect on
the most highly concentrated CDOM samples in the Atch-
afalaya. In this study, 1.6% of measures have CDOM con-
centration higher than 70 QSU, so the error should not be
significant for our conclusion. Another possible factor is the
depth effect. In the entire cruise, the high resolution
underwater sampling of water’s IOPs was carried out at
inconsistent depth varying at a wide range from 0.2 to 30 m.
From the surface to deep water, in situ CDOM concentration
and water’s IOP might show a strong variation. However,
water radiance received by above surface sensor is a
cumulative effect of the entire water optical column.
Therefore the depth of field IOP measurement might con-
tribute to uncertainty of IOP prediction. Since the depth
profiles of water’s IOPs are complex and vary with water
cases and even locations, it is challenging to convert a
CDOM measure at one depth to another comparable stan-
dard depth across all samples. In addition, the computation

Figure 10. Inverse errors versus ad‐adg ratios. (a) IOCCG synthetic data. (b) Our in situ data. Note that
errors were corrected by removing inherent errors introduced by QAA‐derived adg(440).
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Figure 11. The ratio of âd440/adg440 and their worldwide locations. (a) The adg440 are in situ data pro-
vided by IOCCG and measured by 11 experiments, and âd440 are derived from ad‐based QAA‐E algo-
rithm, which returns 655 valid âd440 for the total 656 samples input. (b) Statistical distribution of âd440/
adg440 follows a perfect lognormal distribution with an average of 0.15. (c) Sample geographical loca-
tions: most samples with the ratio > 0.2 locate in or near estuarine or coastal regions, where non‐algal
particles are often richer than open oceans.

ZHU ET AL.: REMOTE SENSING ESTIMATION OF CDOM C02011C02011

16 of 22



Figure 12. Sensitivity analysis for parameters J1 and J2, using IOCCG synthetic data and ad‐based
QAA‐E. Four statistic variables are evaluated: (a) valid number n, (b) R2, (c) RMSE, and (d) bias. The
results indicate the robust ranges of the two parameters are 0.5 < J1 < 4.5 and 1 < J2 < 1.5, respectively.
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Figure 13. Comparison between QAA‐derived (a) at440 and (b) adg440, and QAA‐E‐derived (c) ap440,
(d) ad440, (e) ap‐based ag440, (f) ad‐based ag440, and (g) adg‐based ag440, using in situ data.
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of individual absorption coefficients from ocean color
fluorescence voltages and the total absorption coefficient
measured by AC‐9 may lead to uncertainty. Those indi-
vidual absorption coefficients have been used to estimate J1
and J2 and to validate the inversion algorithm. In general,
this uncertainty is expected to be small given J1 and J2 are
not sensitive parameters.
[47] Second the uncertainty may come from the inverse

algorithms. The QAA is not specially designed for Case 2
water, and some parameters used in QAA compromise for
Case 1 and Case 2. Therefore, for the Mississippi and
Atchafalaya Case 2 waters, it may lead to large errors.
Moreover, the Case 2 water itself is more complicated than
Case 1 and is not well simulated by current ocean color
remote sensing models. Some uncertainty is probably
induced by QAA‐E because the relationship between ad440
or ap440 and bbp555 may be more complex than an expo-
nential function we have used in this study. Particularly
the ap‐based method uses one function to summarize two
relationships, ad440 versus bbp and aph440 versus bbp. The
latter has not been well understood. Although theoretically
bbp is more closely connected to ap, it does not necessarily

mean ap is more accurately estimated than ad based on
simple functions like equation (10) and equation (11). The
optical properties of phytoplankton are more complicated
due to the diversity of phytoplankton and the relationship
between aph and therefore bbp may not be well represented
by a simple exponential function as equation (11). On the
other hand, the contribution of phytoplankton to bbp is much
smaller than that of inorganic particles. Under certain cir-
cumstance, it is possible that using one function to capture
the relationship between the combined absorption coeffi-
cient ap and bbp (ap) would lead to more error than simply
ignoring aph. Additionally, although the two parameters J1
and J2, given in their preset ranges, are not very sensitive to
the data set, the worst J1 and J2 may still bring a relatively
large error. Therefore in future work, it would be ideal to
calibrate coefficients J1 and J2 by local data.
[48] The third uncertain factor is remote sensing reflec-

tance Rrs, which cannot be directly measured but derived by
removing the simulated water surface reflectance. The sur-
face reflectance simulation by Hydrolight® might bring
some errors due to its inherent model uncertainty and
approximation of input parameters, such as using average

Figure 14. The measured and derived ad‐adg ratios, using our in situ data.

Table A1. Steps of the QAA (Version 4) to Drive Absorption Coefficients a, aph, adg, and Backscattering Coefficient bbp
a

Step Property Math Formula Approach

0 rrs rrs = Rrs/(0.52 + 1.7Rrs) semianalytical

1 u(l) u(l) =
�g0þ g2

0
þ4g1rrs �ð Þ½ �

1
2

2g1
semianalytical

2 a(555) a(555) = aw(555) + 10−1.226−1.214c−0.35c2, c = log (
Rrs 440ð ÞþRrs 490ð Þ

Rrs 555ð Þþ2
Rrs 640ð Þ
Rrs 490ð Þ

Rrs 640ð Þ
) empirical

3 bbp(555) bbp(555) =
u 555ð Þa 555ð Þ
1�u 555ð Þ � bbw 555ð Þ analytical

4 Y Y = 2.2{1 − 1.2 exp [−0.9
rrs 440ð Þ
rrs 555ð Þ]} empirical

5 bbp(l) bbp(l) = bbp(555)(
555
� )Y semianalytical

6 a(l) a(l) =
1�u �ð Þ½ � bbw �ð Þþbbp �ð Þ½ �

u �ð Þ analytical

7 z = aCHL(410)/aCHL(440) z = 0.71 + 0:06
0:8þrrs 440ð Þ=rrs 555ð Þ empirical

8 x = adg(410)/adg(440) x = exp[S(440 − 410)] semianalytical

9 adg(440) adg(440) =
a 410ð Þ��a 440ð Þ½ �

��� −
aw 410ð Þ��aw 440ð Þ½ �

��� analytical

10 aCHL(440) aCHL(440) = a(440) − adg(440) − aw(440) analytical

aParameters are suggested as g0 = 0.0895, g1 = 0.1247, and S = 0.015. aw(l) and bbw(l) are absorption coefficient and backscattering coefficient of pure
water at wavelength l, respectively.
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wind speed over half hour as instantaneous value. How to
measure and obtain Rrs as accurate as possible remains an
important topic for future research.

5. Conclusion

[49] Very high resolution data of inherent and apparent
optical properties of seawater were collected in the Mis-
sissippi and Atchafalaya river plumes. These data reveal
considerable variability in these regions. Above‐surface
hyperspectral remote sensing data were used to observe
ocean color characteristics of seawater, and CDOM con-
centrations were estimated using the remote sensing data.
The different combinations of three ocean color components
lead to the different shapes of the remote sensing reflectance
observations. For turbid waters containing very high
CDOM, chlorophyll and detrital particles, three peaks at
570 nm, 640 nm, and 690 nm were observed in addition to
a relatively low peak at 800 nm.
[50] Based on known semianalytical models and our in

situ data, the relationship between ad440 (or ap440) and
bbp555 was determined with an exponential function ad440
(or ap440) = J1bbp(555)

J2. Consequently, based on QAA,
QAA‐E was developed with three extended steps to
decompose adg to ad and ag, either using ad‐based or
ap‐based methods. Our results show that (1) QAA‐E per-
forms well in separating ag from adg, and the ad‐based
method performs a little better than the ap‐based method,
and (2) the retrieved ag estimates show excellent correspon-
dence to in situ measurement (R2 = 0.65) while providing the
additional retrieval of ad simultaneously. More insightful
understanding on CDOM and particulate optical properties
is required to further improve the algorithm, particularly for
retrieving ad.
[51] This study provides a successful approach for using

above‐surface remote sensing to accurately estimate CDOM
concentrations. Our future work will focus on evaluating
QAA‐E’s capability of estimating CDOM from satellite
imagery. QAA‐E uses Rrs or rrs at the same wavelength as
QAA does. Therefore, the QAA‐E is applicable to all sat-
ellite images that QAA could handle.

Appendix A

[52] Based on the work of Lee et al. [2002, 2007], the
latest QAA (version 4) and QAA‐E algorithms are orga-
nized into the steps shown in Tables A1 and A2, given input
data with the remote sensing reflectance measured either
above surface, Rrs, or below surface, rrs (values at or around
440 nm, 490 nm, 555 nm, and 640 nm are required).
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