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Abstract: This work proposes a new method for estimating the molar excess Gibbs energy and
activity of liquid alloy based on recent research. The local composition theory provides a connection
between the structures of liquid alloys and the thermodynamic models. The partial pair distribution
function (PPDF) was utilized to calculate the parameters of the MIVM, RSM, Wilson, and NRTL. The
statistics of the number of molecular pairs of MIVM and RSM were rewritten, which resulted in new
forms of the two models. To enhance the NRTL’s estimation performance, the coordination number
was incorporated into it (M-NRTL). The aforementioned model and Quasi-chemical model (QCM)
were utilized to estimate the excess Gibbs energy and activity of 19 alloys. The alloys contained
multiple sets of PPDFs, which enabled the calculation of multiple sets of model parameters. The
work examined the impact of expressing the model parameters as first-order linear functions of
the components or as constants on the accuracy of the estimation. The parameters were treated as
constants. MIVM, RSM, and M-NRTL provided an average relative deviation (ARD) of activity of
less than ±20% for 15, 10, and 9 alloys by estimation. When model parameters were expressed as
a function of components, QCM showed the best estimation performance, having nine alloys with
an ARD of less than ±20%. The number of alloys with an ARD of less than ±20% corresponding to
MIVM, RSM, Wilson, NRTL, and M-NRTL was six, five, three, five, and two, respectively. This new
method offers simplicity, numerical calculation stability, and excellent reproducibility.

Keywords: estimation activity; liquid alloy; partial pair distribution function; local composition
thermodynamic model; quasi-lattice theory

1. Introduction

The excess Gibbs energy and activity thermodynamics models are widely used in gas-
liquid phase equilibrium reactions [1–4]. Engineers usually obtain the model parameters
by using experimentally-determined excess Gibbs energy and activity to fit a regression
equation [5–10]. Therefore, it is challenging to use the thermodynamic models to estimate
gas-liquid equilibrium without relying on experimental thermodynamic values [11–13].
In 1999, Sam et al. used ab initio molecular dynamics (AIMD) simulations to obtain the
molecular pair potential from clusters of eight atoms composed of water and alcohol (acid)
as the UNIQUAC model parameters. The prediction worked well, while Wilson’s model
did not [14,15]. In 2002, Raabe et al. combined AIMD with NRTL to predict the gas-liquid
equilibria of nitrogen-ethane mixtures, and the estimates were in good agreement with
experimental data [16]. In 2004, Neiman et al. used a conductor-like screening model for
real solvents (COSMO-RS) and combined AIMD with UNIQUAC to predict the phase
equilibria of 16 binary organic mixtures. The predicted results deviated greatly from
the experimental results. Neiman also used combined AIMD with Wilson’s model and
the NRTL model to predict the phase equilibria of 16 binary organic mixtures, but also
obtained poor results. Neiman et al. pointed out that there are two basic issues to consider
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when using AIMD to calculate thermodynamic model parameters: the first is whether
the potential parameters of the model are true molecular pair potentials, and the second
is whether the liquid structure interaction potential can be expressed as the molecular
cluster potential [17]. The thermodynamic model parameters using first principles are
contentious, and researchers have been actively exploring new methods. In 2015, Haghtalab
et al. used a PPDF of five binary organic mixtures obtained by molecular dynamics to
calculate the model parameters of Wilson, NRTL, and UNIQUAC. This approach used an
adjustable parameter, the local structure radius, to determine the upper limits of integration
for the PPDF [18]. Ravichandran et al. expressed the NRTL model parameter as a function
of the molecular pair potentials, molecular diameter, and local structure radius. They
predicted the gas-liquid equilibria of 14 binary organic mixtures. That study showed that
completely miscible mixtures provided good prediction results, while partially miscible
mixtures did not [19,20]. That work necessitated the simultaneous calculation of molecular
pair potentials and PPDF, as the method to obtain the local structure radius was not
standardized, which may result in disparate findings in different studies. In 2019, Dorini
et al. proposed a combined PPDF and QCM to predict the excess Gibbs energy [21,22]. The
key to this approach was the application of the short-range ordering σ as a bridge between
the PPDF and the model parameters β and ω. Dorini’s method provided good prediction
results for Bi-Pb and Bi-Li liquid alloys, and the method required fitting β under a multi-
component mixture to obtain ω. In that work, a single-component PPDF was employed
to solve for ω, yielding complex solutions for parameters. This demonstrated that the
PPDF and QCM combined method was not flawless. At present, the specific methods for
predicting excess Gibbs energy and activity have different shortcomings. Most research
on the excess Gibbs energy and activity thermodynamics models has been focused on
finding a prediction method with strong physical significance, straightforward parameters,
excellent reproducibility, and superior estimative capability.

In this context, this work proposes a method in which PPDF combines the MIVM [23],
RSM [24], NRTL [25], and Wilson’s model [15] to estimate the excess Gibbs energy and
activity of liquid mixtures. The L-PPDF was separated from PPDF in order to calculate
the local coordination number and molecular pair potential, which were then used to
derive the model’s parameter expression. Based on the understanding of the local structure
theory, a new description of the number of molecular pairs in the derivation process of
MIVM and RSM was provided, along with a new rewritten form of MIVM and RSM. To
enhance the performance of NRTL, NRTL was incorporated with coordination numbers.
The above models and Dorini’s method were used to estimate the excess Gibbs free energy
and activity of 19 liquid metals to enrich the research on the thermodynamic properties of
liquid systems estimated by thermodynamic models.

2. Thermodynamic Models and Calculating Parameters
2.1. Obtaining Local Structure Parameters from Partial Pair Distribution Function

The PPDF of liquid alloys can depict the liquid structure of short-range and long-range
ordering [26–28]. Figure 1 shows a typical PPDF, which exhibits a distinct peak near the
origin. The PPDF reflects the probability distribution of an atom interacting with the central
atom. Researchers define atom distributions that interact solely with the central atom and
are unaffected by the third atom as the first coordination shell, also referred to as the local
partial pair distribution function (L-PPDF) [29–32]. The L-PPDF holds crucial local liquid
structure information and can be combined with liquid lattice theory. Extracting L-PPDF
from the first peak of PPDF is the key in this work. Different researchers have different
understandings of the specific form of L-PPDF. In Waseda, Mikolaj, and Cahoon’s study,
they took PPDF in the range of r0-r1 as the L-PPDF or used the left side of the peak to
represent its right side [33–35]. These two methods of defining L-PPDF are, in fact, not
appropriate. Based on a theoretical study in which L-PPDF is equal to PPDF at the distance
r0-rm, the PPDF within the range rm-r1 is a superposition result of the first coordination shell
with the second coordination shell. Obtaining the independent first peak by extrapolating
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the first peak of PPDF in the range rm-r1 is an objective method, as shown in the blue curve
in Figure 1. The shape of the peak closely matches a Gaussian function, so the Gaussian
function was adopted as the mathematical form of the L-PPDF [30]:

gij(r) =


gij(rm) exp

(
− (rm−r)2

2uij
2

)
r < rm

gij(rm) exp
(
− (r−rm)2

2vij
2

)
rm < r

(1)

where r0 is the starting coordinate of gij(r) and is not 0; r1 is the position of the first valley of
gij(r); gij(r) is the local partial pair distribution function of ij; uij and vij are found by fitting
the data on the left side of the peak and the coordinates of point 2 [(rm + r1)/2, gij((rm +
r1)/2)]. This same method was used to obtain the L-PPDF of molecular pairs ii and jj. Next,
gii(r), gjj(r), and gij(r) = gji(r) represent L-PPDF, but not PPDF. The total number of atoms in
the L-PPDF shell was defined as the local coordination number. For the i-j binary liquid
mixture, the empirical equation of the local coordination number assumed by MIVM can
be redefined by L-PPDF as [23]:

Zii = xiρ04π
∫ r1

r0
r2gii(r)dr; Zij = xjρ04π

∫ r1
r0

r2gij(r)dr;
Zjj = xjρ04π

∫ r1
r0

r2gjj(r)dr; Zji = xiρ04π
∫ r1

r0
r2gij(r)dr;

(2)

where xi and xj are the molar fractions of i and j; ρ0 is the average number density and is
a function of xj and temperature. In Dorini’s work, the short-range ordering parameter
σ and the average coordination number (Z) can be written in terms of local coordination
numbers [21]:

σ = xi
Zij

Zii + Zij
+ xj

Zji

Zjj + Zji
(3)

Z = xi(Zii + Zij) + xj(Zji + Zjj) (4)
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Figure 1. Schematic diagram of extracting the local partial pair distribution function (L-PPDF)
from the partial pair distribution function (PPDF), 1 is (rm, g(rm)), 3 is (r1, 0), and 2 is ((rm + r1)/2,
g((rm + r1)/2)), red curve is partial pair distribution function, blue curve is local partial pair distribu-
tion function.
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The molecular pair potentials function is a crucial factor in the study of liquid struc-
tures, and also plays a decisive role in the thermodynamic properties [36,37]. The PPDF
is the outcome of dynamic equilibrium under the pair potential function [33] (pages 20
and 21). In the case of low density gases, Davidson uses the virial equation and pair
distribution function to derive the function expressions of the pair distribution function
with pair potential function [38]. Assuming that this equation can be approximately used
to calculate the pair potential function of binary liquid alloys, then:

εii(r) = −kT ln gii(r) ε jj(r) = −kT ln gjj(r) εij(r) = ε ji(r) = −kT ln gij(r) (5)

where T is the temperature of the mixture; k is the Boltzmann constant. The molecular pair
potentials in the thermodynamic models are numerical rather than functional and indicate
the meaning of the average values of local molecular pair potentials. As per the definition
of L-PPDF, the probability density distribution function of atoms (j) in the first coordination
shell with atoms (i) as the center is expressed as follows:

Pii(r) =
xiρ0gii(r)

Zii
= gii(r)∫ r1

r0
4πgii(r)r2dr

Pjj(r) =
gjj(r)∫ r1

r0
4πgjj(r)r2dr

; Pij(r) =
gij(r)∫ r1

r0
4πgij(r)r2dr

(6)

where Pii(r), Pjj(r), and Pij(r) = Pji(r) are the probability density functions of pairs ii, jj, and
ij, respectively. Utilizing the expectation principle [39], the molecular pair potentials can be
expressed as:

εii
kT =

∫ r1
r0

εii(r)gii(r)∫ r1
r0

4πgii(r)r2dr
dV = −

∫ r1
r0

ln gii(r)gii(r)r2dr∫ r1
r0

gii(r)r2dr

ε jj
kT = −

∫ r1
r0

ln gjj(r)gjj(r)r2dr∫ r1
r0

gjj(r)r2dr
;

εij
kT = −

∫ r1
r0

ln gij(r)gij(r)r2dr∫ r1
r0

gij(r)r2dr

(7)

According to the integral characteristics of the integral function, the integration sim-
plification method of Gaussian functions can be used to write Equations (2) and (7) in
a non-integral form [30]. Taking Zii and εii/kT as examples, the specific non-integral
expressions are:

Zii = xiρ04πgii(rm)

[(
uii

3 + vii
3
)√2π

2
+

(uii + vii)r2
m
√

2π

2
− 2rm

(
uii

2 − vii
2
)]

(8)

εii
kT

= 1− ln gii(rm) +

(
u3

ii + v3
ii
)√

2π − (uii + vii)rm
2
√

2π

2
(
u3

ii + v3
ii
)√

2π + 2(uii + vii)r2
m
√

2π + 8rm
(
v2

ii − u2
ii
) (9)

The local coordination number containing structural information and pair potential
containing energy information are all the information that is required to calculate the model
parameters.

2.2. Thermodynamic Model

In this work, five models, MIVM, RSM, Wilson’s model, NRTL, and QCM, were used
to estimate the excess Gibbs energy and activity of liquid alloys. The corresponding model
equations are provided in this section.

2.2.1. Four-Parameter Molecular Interaction Volume Model (MIVM)

To combine the MIVM model with the L-PPDF and obtain good estimative perfor-
mance, a novel form of MIVM was derived. It is known that the molar excess Gibbs energy
of a mixture can be expressed by the initial MIVM [23]:

GE
m = RT

[
xi ln

(
Φi
xi

)
+ xj ln

(
Φi
xj

)
+

∆εp

2kT

]
(10)
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Φi =
xiiVmi

xiiVmi + xijVmj
Φj =

xjjVmj

xjjVmj + xjiVmi
(11)

∆εp =
[
Zixi

(
xiiεii + xijεij − εii

)
+ Zjxj

(
xjjε jj + xjiε ji − ε jj

)]
(12)

where R is the gas constant; Vmi and Vmj are the molar volumes of i and j [40]; Zi and
Zj are the first coordination number of pure substances i and j [33] (Pages 54 and 55); xii,
xjj, xij, and xji are local mole fractions [15,41]. xij is defined as a ratio of the number of j
atoms surrounding the center atom i in a sphere relative to the total number of surrounding
atoms. Therefore, the local mole fractions can be expressed by their local coordinate
numbers [23,41]:

xii =
Zii

Zii + Zij
; xij =

Zij

Zii + Zij
; xjj =

Zjj

Zjj + Zji
; xji =

Zji

Zjj + Zji
(13)

Equations (2), (7), (11), and (12) can be substituted into Equation (10) to obtain the four
parameters of the MIVM expressions:

GE
m

RT
= xi ln

(
Vmi

xiVmi + xjVmjBij

)
+ xj ln

(
Vmj

xjVmj + xiVmiBji

)
+

xixj

2

[
ZiBijλij

xi + xjBij
+

ZjBjiλji

xj + xiBji

]
(14)

Bij =

∫ r1
r0

r2gij(r)dr∫ r1
r0

r2gii(r)dr
; Bji =

∫ r1
r0

r2gij(r)dr∫ r1
r0

r2gjj(r)dr
(15)

λij =
εij − εii

kT
; λji =

ε ji − ε jj

kT
(16)

MIVM employs the local structure theory of liquid mixtures to calculate the number
of molecular pairs in the derivation. Based on an understanding of the local structure
theory, the expression for the number of molecular pairs of i-j mixtures can be rewritten
and incorporated into the deduction process of MIVM. This results in a new form of the
M-MIVM Equation (17). Further details of the deduction process can be found in the
Supplementary Materials.

GE
m

RT
= xi ln

(
Vmi

xiVmi + xjVmiBij

)
+ xj ln

(
Vmj

xjVmj + xiVmiBji

)
− 2πxixjρ0

[
ψij + ψji

]
(17)

ψij =
∫ r1

r0
ln gij(r)gij(r)r2dr−

∫ r1
r0

ln gii(r)gii(r)r2dr
ψji =

∫ r1
r0

ln gji(r)gji(r)r2dr−
∫ r1

r0
ln gjj(r)gjj(r)r2dr

(18)

Comparing Equation (17) with (14), it can be seen that the entropy term containing the
volume information was consistent, while the enthalpy term containing the energy of the
pair potential was different. Equations (17) and (14) represent macroscopic thermodynamic
properties on the left side of the equal sign, with the parameters on the right side of the
equal sign being L-PPDF. The equation itself relates the microstructure to macroscopic
properties.

2.2.2. Regular Solution Model (RSM)

In 1929, Hildebrand et al. proposed the theory of regular solution when the mixing
entropy vanished at constant temperature and constant volume [24]. Lennard-Jones gave
the cell theories of liquids [42]. Guggenheim combined cell theories with the regular
solution theory, and Equation (19) was obtained [43,44]:

GE
m

RT
=

w
kT

xixj (19)
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where w, the interchange energy, is a function of Z and the molecular pair potential:

w
kT

= Z

[
εij

kT
−
(
εii + ε jj

)
2kT

]
(20)

By substituting Equations (4) and (7) into Equation (20), the value of w/kT can be
determined. Guggenheim employed a simplification for the derivation of Equation (19)
to account for the variation of the coordination number during the liquid mixing process,
wherein the coordination numbers of the i, j, and i-j mixtures used the same coordination
number Z. As per the theory of the pair distribution function, the coordination numbers of
pure substances i and j are distinct. The four coordination numbers in the i-j mixture are
not necessarily associated with the coordination numbers of pure substances i and j. The
relationship based on the coordination number of molecular pairs given by Guggenheim in
the derivation of Equation (19) can be made more consistent with the liquid local structure
theory, yielding the new form of M-RSM shown in Equation (21). The detailed derivation
process is provided in the Supplementary Materials.

GE
m

RT
= −2πρ0xixj

[
ψij + ψji

]
(21)

2.2.3. Wilson’s Model

Wilson presented an expression for the excess Gibbs energy of a mixture based on
local structure considerations [15]:

GE
m

RT
= −xi ln

(
xi + Aijxj

)
− xj ln

(
xj + Ajixi

)
(22)

where Aij and Aji can be expressed by the molar volume and local molar fraction as follows:

Aij =
Vixixij

Vjxjxii
=

Vmi exp(− εij
kT )

Vmj exp(− εii
kT )

Aji =
Vm j exp(− εij

kT )

Vmi exp(− εii
kT )

(23)

Equation (23) is the original form derived by Wilson in his work [15]. If this equation
were used for calculation, Equations (7), (13), and (23) would be in conflict, as Wilson
expressed the local mole fraction as a function of the molecular pair potential, which differs
from the expression used in this work. Equation (13) is more appropriate, so Aij and Aji

were rewritten in this work. If Aij and Aji retain the volume term, the GE
m and activity

estimated from Wilson’s model are unreasonable. In this work, the method of Haghtalab
was followed, which eliminates the volume ratio. Consequently, the expressions of Aij and
Aji are [18]:

Aij =
xixij

xjxii
=

∫ r1
r0

r2gij(r)dr∫ r1
r0

r2gii(r)dr
; Aji =

xjxji

xixjj
=

∫ r1
r0

r2gij(r)dr∫ r1
r0

r2gjj(r)dr
(24)

The form of Equations (15) and (24) are identical. Equation (24) is consistent with
Haghtalab’s, and the difference is the specific integral functions used. The integral function
in Equation (24) is L-PPDF, which represents local structural characteristics, while Haghta-
lab’s integral function is PPDF, with the upper limit of integration determined by fitting
adjustment.
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2.2.4. Nonrandom Two-Liquid (NRTL) Model

Renon et al. used the concept of a local component to derive the nonrandom two-
liquid equation, which is applicable to both partially miscible and completely miscible
mixtures [25,45]:

GE
m

RT
= xixj

(
τji exp

(
−αijτij

)
xi + xj exp

(
−αijτij

) + τij exp
(
−αijτij

)
xj + xi exp

(
−αijτij

)) (25)

The value of αij is set to 0.3; τij, τij can be expressed in terms of the molecular pair
potential:

τij =
εij − εii

kT
; τji =

ε ji − ε jj

kT
(26)

Equations (16) and (26) are identical. In practice, we observed that the NRTL estimation
value is usually low. Adding a coordination number to NRTL improved its estimation
performance. The M-NRTL Equation (27) is a form of the NRTL equation with the addition
of a coordination number. This equation is obtained through practical application and its
rationale is not explained theoretically.

GE
m

RT
= xixj

(
Zjτji exp

(
−αijτij

)
xi + xj exp

(
−αijτij

) + Ziτij exp
(
−αijτij

)
xj + xi exp

(
−αijτij

)) (27)

2.2.5. Quasi-Chemical Model (QCM)

Guggenheim’s quasi-lattice theory assumes that the mixing of different kinds of atoms
is random. The quasi-lattice theory is also called strict-regular solution theory; it can
derive the RSM expression [46]. Since w/kT in RSM is not zero, the molecular pair cannot
be randomly mixed. Guggenheim therefore proposed a quasi-chemical approximation
method to deal with the deviation from randomness, which was called the QCM [22,47].

GE
m

RT
=

ω

kT
xixj

(
2

β + 1

)
(28)

β =

√
1 + 4xixj

(
exp

( ω

ZkT

)2
− 1
)

(29)

where ω/kT is the exchange energy of a mixture (theoretically, ω = w) and β is the random
mixing factor. Dorini expressed σ in terms of β [21]:

σ =
4xixj

β + 1
(30)

Dorini postulated that Z is a linear function of xj [21]:

Z = Z0 + Zcxj (31)

By performing Z regression, the values of Z0 and Zc can be determined. ω can be
solved by substituting β and Equation (31) into Equation (29). In the practical application
of Dorini’s calculation of β with multiple components, Equation (29) should be used to fit a
regression in order to calculate ω/kT.

The excess Gibbs energy quantities describe the energy changes following a mixture
of components. The gas-liquid phase equilibrium also requires knowing the activity.
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According to the relationship between partial molar quantities and molar quantities in
solution thermodynamics:

gi = g +

(
∂g
∂xi

)
n 6=i,C

−
C−1

∑
j=1

xj

(
∂g
∂xj

)
n 6=j,C

; gC = g−
C−1

∑
j=1

xj

(
∂g
∂xj

)
n 6=j,C

(32)

where gi =
GE

i
RT , gC =

GE
C

RT , and g = GE
m

RT . Here, xC = 1−
C−1
∑

j=1
xj is chosen as a subordinate

variable. C is the number of components. For the i-j system, C = 2, and xj = 1 − xi was
chosen as the subordinate variable.

ln γi =
GE

i
RT = g +

(
∂g
∂xi

)
− xi

(
∂g
∂xi

)
= g + xj

(
∂g
∂xi

)
ai = γixi

ln γj =
GE

j
RT = g− xi

(
∂g
∂xi

)
aj = γjxj

(33)

where γi and γj are the activity coefficients of i, j, and ai, aj are the activities of i, j. Substitut-
ing the above Equations (14), (17), (19), (21), (23), (25), (27), and (28) into Equation (33), the
corresponding activity equation can be obtained. These expressions are thermodynamically
consistent because Equation (33) is equivalent to the Gibbs-Duhem equation [48].

3. Results and Discussion
3.1. Calculation of Thermodynamic Model Parameters

In the process of exploring the PPDF-thermodynamic model method, we noticed
that for the same liquid alloy, different parameters are calculated for gij(r) with different
components (xi). In order to present the variation of model parameters with components
(xi), the liquid alloys selected are those with multiple sets of PPDFs. To ensure the credibility
of the method, it is necessary to do validation of a large number of systems, and liquid
alloys that can be found in the literature are used as the target of method validation. The
PPDF data used in this work were obtained from the published literature, and the specific
alloys were Al-Au [49], Al-Cu [50], Al-Co [51], Al-Ge [52], Al-In [53], Al-Mg [54], Al-Si [55],
Al-Sn [56], Bi-Pb [57], Co-Ni [58], Cs-K [59], Cu-Fe [60], Cu-Mg [61], Cu-Sb [62], Cu-Zr [63],
Fe-Ni [58], K-Na [64], Mg-Si [65], and Mg-Zn [66]. Hardy and Flemr respectively considered
model parameters containing molecular potential energy information to be a function of
composition [67,68]. In practice, they are typically treated as constants that do not vary with
composition. In this work, both parameter treatments were employed to compare which
parameter has better estimation performance. The relationship between model parameters
and components is described by a first-order linear function, with Equation (34) as the
specific form.

Y(xi) = PY
1 xi + PY

2 Y ∈
[

Z,
w

ZkT
, Bij, Bji, λij, λji, ψij, ψji

]
(34)

where PY
1 and PY

2 are determined by fitting. Table S42 in the Supplemental Material gives
the PY

1 and PY
2 corresponding to the model parameters of each alloy. A more representative

approach to dealing with the parameter constants involves taking the average of the
parameters across different components. To objectively compare the performance of the
two parameters above, we also give the parameters with the best estimation performance
for each alloy as a comparison. Table S41 in the Supplemental Material gives the two types
of parameters.

To clearly explain the method of combining PPDF and the thermodynamic model for
estimations, Al0.6Cu0.4 was used as an example to estimate excess Gibbs free energy and
activity. The corresponding L-PPDF mathematical expression was obtained according to
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Equation (1) [50], Equation (35) is the corresponding mathematical equation, Figure 2 is the
L-PPDF function graph, and Table 1 lists the structural parameter tables.

gii(r) =


2.43 exp

(
− (2.76−r)2

0.09

)
2.43 exp

(
− (r−2.76)2

0.14

) ; gjj(r) =


2.35 exp

(
− (2.41−r)2

0.04

)
2.35 exp

(
− (r−2.41)2

0.13

) ;

gij(r) =


3.63 exp

(
− (2.49−r)2

0.08

)
r < rm

3.63 exp
(
− (r−2.49)2

0.11

)
rm < r

(35)

Metals 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

                      
Figure 2. The local partial pair distribution functions of Al0.6Cu0.4 alloy, T = 1400K [50]. 

Table 1. The local structure parameters of Al0.6Cu0.4., T = 1400K. 

Type ii jj ij 
r0 1.74 1.57 1.59 
rm 2.76 2.41 2.49 
r1 4.67 4.23 3.85 

g(rm) 2.43 2.35 3.63 
u 0.21 0.14 0.19 
v 0.26 0.25 0.22 
ρ0 0.0625 xi 0.6 

r0,rm,r1, and g(rm) extracted from PPDF of Al0.6Cu0.4. [50], u, v obtained by fitting the L-PPDF. 

By substituting the data in Table 1 into Equations (8) and (9), the corresponding 
partial coordination numbers and pair potentials can be obtained. According to the 
model parameter equation, the specific model parameter values can be obtained. All 
model parameter values are listed in Table 2. 

Table 2. Model parameters of Al0.6Cu0.4., T = 1400 K. 

Pair Potentials Partial Coordination Numbers 
εii/kT εij/kT εji/kT εjj/kT Zii Zij Zji Zjj 
−0.37 −0.745 −0.75 −0.31 5.32 3.78 5.68 2.26 

MIVM RSM M-MIVM 
Bij Bij λji λji Z w/ZkT ψij ψji 

1.66 0.43 0.43 0.38 8.63 −0.86 5.38 3.67 
QCM      

σ β ω/ZkT      
0.53 1.04 −2.09      

Substituting the model parameters in Table 2 into Equations (14), (17), (19), (21), 
(22), (25), (27), (28), and (33), the estimated values of molar excess Gibbs energy and ac-
tivity by the eight equations can be achieved and compared with experiment data of the 
liquid Al-Cu at T = 1400 K [69], as shown in Figure 3 

0 1 2 3 4 5 6
r/Å

-0.5

0

0.5

1

1.5

2

2.5
(2.76,2.43)

(3.75,0.61)

gii(r)

0 1 2 3 4 5 6
r/Å

-0.5

0

0.5

1

1.5

2

2.5

(2.49,2.35)

(3.39,0.48)

gjj(r)

0 1 2 3 4 5 6
r/Å

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(2.49,3.63)

(3.62,0.47)

gij(r)

Figure 2. The local partial pair distribution functions of Al0.6Cu0.4 alloy, T = 1400K [50].

Table 1. The local structure parameters of Al0.6Cu0.4., T = 1400K.

Type ii jj ij

r0 1.74 1.57 1.59
rm 2.76 2.41 2.49
r1 4.67 4.23 3.85

g(rm) 2.43 2.35 3.63
u 0.21 0.14 0.19
v 0.26 0.25 0.22
ρ0 0.0625 xi 0.6

r0,rm,r1, and g(rm) extracted from PPDF of Al0.6Cu0.4. [50], u, v obtained by fitting the L-PPDF.

By substituting the data in Table 1 into Equations (8) and (9), the corresponding
partial coordination numbers and pair potentials can be obtained. According to the model
parameter equation, the specific model parameter values can be obtained. All model
parameter values are listed in Table 2.
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Table 2. Model parameters of Al0.6Cu0.4., T = 1400 K.

Pair Potentials Partial Coordination Numbers

εii/kT εij/kT εji/kT εjj/kT Zii Zij Zji Zjj
−0.37 −0.745 −0.75 −0.31 5.32 3.78 5.68 2.26

MIVM RSM M-MIVM

Bij Bij λji λji Z w/ZkT ψij ψji
1.66 0.43 0.43 0.38 8.63 −0.86 5.38 3.67

QCM

σ β ω/ZkT
0.53 1.04 −2.09

Substituting the model parameters in Table 2 into Equations (14), (17), (19), (21), (22),
(25), (27), (28), and (33), the estimated values of molar excess Gibbs energy and activity
by the eight equations can be achieved and compared with experiment data of the liquid
Al-Cu at T = 1400 K [69], as shown in Figure 3
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Figure 3. Comparison of the estimated values of eight equations with experiment data (black dots) of
activity and molar excess Gibbs energy of the liquid Al-Cu at T = 1400 K [69].

Analyzing Figure 3, it can be seen that the molar excess Gibbs energy of Al-Cu is a
negative deviation system, which is not symmetric, about xj = 0.5, and the activity exhibits
a deviation characteristic of moderate strength. All models are able to correctly describe
the type of deviation of the molar excess Gibbs energy of Al-Cu, which is the most basic
requirement for the reliability of the prediction methods. All models of molar excess Gibbs
energy seem to be symmetric with xj = 0.5 and do not have a description of the asymmetric
character of molar excess Gibbs energy. The difference between the models is the difference
in the intensity of the deviations. The accuracies of the eight models describing molar excess
Gibbs energy from good to bad are: RSM, M-RSM, MIVM, M-MIVM, M-NRTL, NRTL,
Wilson, and QCM. The models can be divided into two classes; the absolute values of molar
excess Gibbs free energy of Wilson, NRTL, and QCM are smaller than the experimental
values, and the absolute values of molar excess Gibbs free energy of RSM, M-RSM, MIVM,
M-MIVM, and M-NRTL are larger than the experimental values. RSM is based on cell
theories and is the best performer, and the main problem of RSM is that it is not adapted to
asymmetric systems. M-RSM is strongly correlated with RSM, and the difference between
the two equations is that the molecular pair statistics methods are different, but M-RSM
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inherits the main information of RSM, so M-RSM also performs better. The relationship
between M-RSM and M-MIVM can be described by the formula: M-MIVM = M-RSM +
Wilson. It is known that the molar excess Gibbs energy description given by Wilson is
significantly small, and in M-MIVM, M-RSM plays a dominant role. Furthermore, due to
the strong correlation between MIVM and M-MIVM, it can be deduced that the main role
in MIVM is enthalpy term (energy term). It can be concluded that the suitability of Al-Cu
on cell theories is the main reason for the good performance of RSM, M-RSM, MIVM, and
M-MIVM. The reason for the poor performance of Wilson and NRTL can be attributed
to the theoretical basis of the model, which is based on local structure theory and does
not fully match the theoretical basis of the distribution function. The QCM and RSM are
more alike and their poor performance is probably related to the calculation methods of
the parameters. M-NRTL adds the coordination number based on NRTL, and it is not
straightforward to know which one performs better, so quantitative analysis needs to
be done. By applying the ARD Equation (36), the ARD values can be obtained and are
listed in Table 3. The ARD of molar excess Gibbs energy and activity of NRTL are 84.67%
and 459.87%, respectively, and the ARD of M-NRTL are 65.61% and 47.56%, respectively.
Adding the coordination number to NRTL indeed has the effect of improving the model
performance. The preliminary conclusion that we can obtain with the Al-Cu analysis is that
the theoretical basis of the model is important for estimating performance. The method of
calculation of model parameters affects the performance of the model.

±ARD% = 100%
N

N
∑

n=1

∣∣∣∣GE
m(exp)n−GE

m(cal)n
GE

m(exp)n

∣∣∣∣
±ARD% = 100%

2N

N
∑

n=1

[∣∣∣ ai(exp)n−ai(cal)n
ai(exp)n

∣∣∣+ ∣∣∣ aj(exp)n−aj(cal)n
aj(exp)n

∣∣∣] (36)

Table 3. The average relative deviations (ARD) of molar excess Gibbs energy and activity of the
liquid Al-Cu at T = 1400 K for eight equations (±%).

Model MIVM Wilson NRTL RSM QCM M-MIVM M-NRTL M-RSM

GE
m 30.5 69.15 65.61 15.99 72.23 40.07 84.67 27.90

Activity 28.40 504.02 459.87 24.56 605.14 33.99 47.56 29.28

3.2. Estimating Thermodynamic Values

The descriptive capability of the model will be limited by its theoretical basis, and
the adaptability of the model can be expressed by fitting. If the model has a poor fitting
performance, it will naturally not have a satisfactory estimation performance. If the model
has a poor fit performance, it cannot have a good estimation performance. Fitting analysis
was conducted for the eight models, the ARD of the activities are shown in Figure 4. MIVM
and M-MIVM showed superior performance in all 19 liquid alloys. The bar graphs of RSM,
M-RSM, and QCM were consistent. This is because RSM, M-RSM, and QCM have different
definitions of parameters, but when used for fitting, they are all essentially single-parameter
models, thus exhibiting the same fitting performance. RSM, M-RSM, and QCM had three
alloys with an ARD greater than±20%: Al-Au: ±39.08%; Al-Cu: ±30.88%; Cu-Sb: ±24.94%.
Their estimation performance was poor. When evaluating the estimative capabilities of
the three models, the aforementioned three alloys should be excluded. NRTL, Wilson, and
M-NRTL are two-parameter models, and they demonstrate well-fitting performances in
most alloys with an ARD of less than ±20%, allowing for a reasonable description of the
activity of all systems. The strength of the model fitting ability and the number of adjustable
parameters were significantly correlated. The order of the fitting ability of the eight models was
MIVM = M-MIVM > NRTL > Wilson > M-NRTL > RSM = M-RSM = QCM.
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The data in Table S42 in the Supplemental Material were used to derive a first-order
linear function of the parameters of components, which was then used to estimate the
molar excess Gibbs energy and activity of each alloy using each model. The ARD of activity
is visualized in Figure 5. After the parameters were expressed as functions, overall, the
proportion of all models with an ARD <±20% was relatively low, indicating that the model
estimation performance was poor. Apart from the QCM, the other seven models had an
ARD > ±40% for half of the alloys. This may indicate that obtaining the model parameters
as a function of components was not advantageous in this work. The QCM performed
better than other models because Dorini’s method uses multiple L-PPDFs for fitting and
expresses Z and β as a function of the components. The other seven models introduced local
structural parameters by solving the equations for the model parameters, which may be
affected by fluctuations in the PDDF. If the model parameters were expressed as a function
of the components, the fluctuations of the parameters could easily exceed the permissible
limits of the model. The issue is that the variations in PPDF with components are objective,
and the parameters should be dependent on the components. However, experience has
demonstrated that expressing the model parameters as a linear function of composition is
inadequate. In theory, to achieve a high-precision estimation, the model parameters should
be represented as a function of components, which must be solved in subsequent research.
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The parameters in Table S41 in the Supplemental Material were put into the model
to estimate and evaluate the model’s performance when the parameter constants were
manipulated. The ARDs with the best single-component estimation performance are
shown in Figure 6, and the ARD with the average of the parameter values are shown in
Figure 7. By analyzing Figure 6, it can be seen that MIVM achieved an ARD of less than
±20% for 15 alloys, indicating good performance. RSM and M-RSM achieved an ARD
of less than ±20% for 10 alloys. M-NRTL and M-MIVM obtained an ARD of less than
±20% for nine alloys. Wilson, NRTL, and QCM estimations performed poorly, with only
four, six, and five alloys having an ARD of less than ±20%, respectively. MIVM, RSM,
M-NRTL, M-MIVM, and M-RSM had good estimating performance, all with a common
high number of alloys with an ARD of less than ±20%, and a low proportion of alloys with
an ARD greater than ±40%. The significant difference between Figures 5 and 6 further
confirms that representing the parameters of the above models as component functions
drastically reduces the model’s estimative ability. The poor performance of the Wilson,
NRTL, and QCM models is highlighted by the high proportion of alloys with an ARD
greater than ±40%, indicating that the combinations of L-PPDF and these three models are
still not mature enough. M-NRTL was originally an improved model of NRTL in practice.
A comparison of the results of NRTL and M-NRTL revealed that the reasonableness of
the model itself has an influence on the performance of the model parameters calculated
using L-PPDF. Analyzing Figure 5, it shows that QCM has better estimative performance,
making it reasonable to use multiple L-PPDFs and fitting regression to calculate the model
parameters for QCM. However, the method of solving the model parameters by solving
equations is unsuitable, indicating that the representation of parameters can also influence
the estimative performance of the model.
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of alloys with an ARD greater than 40% increased from one to four. The theoretical basis 
of the MIVM model is superior to that of the RSM, so naturally, it will perform better 
than the RSM in the optimal situation. In Figure 7, the performance of MIVM and RSM 
were similar, which is due to their common local structure theoretical basis. Compared 
with the other models, RSM showed better adaptability to parameter fluctuations, which 
made it suitable for treating parameters as constants. Thus, it can be expected that RSM 
will show similar performance when estimating with any set of L-PPDFs. The estimation 
performance of RSM is more dependent on the applicability of its model in the system. 
RSM is a strict regular solution model that is unsuitable for describing the energy 
changes caused by volume changes during liquid mixing processes. Consequently, RSM 
cannot accurately describe systems with asymmetric activity curves and mixing devia-
tions, which limits its performance for such systems. Wilson, NRTL, and QCM used pa-
rameter averages with half the number of alloys having an ARD greater than ±60%, 
showing that these three models had poor estimation performance. A total of three mod-
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Figure 6. ARD comparison of the estimations of activity in 19 alloys for eight models after taking the
optimal single parameters.

Figure 6 reflects the best model estimation performance, which is used to analyze
the feasibility of L-PPDF combined with a thermodynamic model to estimate the excess
Gibbs energy and activity. The purpose of parameter averaging is to demonstrate the
average performance that an estimation made with parameters that any one component
may have, which is more indicative of a model’s true estimative capability. Figure 7 shows
the estimated ARD of the estimation graph corresponding to the average of the model
parameters, which was significantly worse than in Figure 6. RSM and MIVM have good
estimative performance, with an ARD of less than ±20% for 10 alloys. The corresponding
numbers of alloys with an ARD less than ±20% for the Wilson, NRTL, QCM, M-NRTL,
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M-MIVM, and M-RSM were five, six, six, four, four, and five, respectively. The performance
of MIVM, M-NRTL, M-MIVM, and M-RSM fluctuated greatly in Figures 6 and 7, and
the estimative performance of the four models decreased significantly after parameter
averaging treatment. RSM, Wilson, NRTL, and QCM showed little variation in Figures 6
and 7. After averaging MIVM model parameters, the estimation performance decreased,
but half of the alloys still had an ARD of less than ±20%. The number of alloys with
an ARD greater than 40% increased from one to four. The theoretical basis of the MIVM
model is superior to that of the RSM, so naturally, it will perform better than the RSM
in the optimal situation. In Figure 7, the performance of MIVM and RSM were similar,
which is due to their common local structure theoretical basis. Compared with the other
models, RSM showed better adaptability to parameter fluctuations, which made it suitable
for treating parameters as constants. Thus, it can be expected that RSM will show similar
performance when estimating with any set of L-PPDFs. The estimation performance of
RSM is more dependent on the applicability of its model in the system. RSM is a strict
regular solution model that is unsuitable for describing the energy changes caused by
volume changes during liquid mixing processes. Consequently, RSM cannot accurately
describe systems with asymmetric activity curves and mixing deviations, which limits its
performance for such systems. Wilson, NRTL, and QCM used parameter averages with
half the number of alloys having an ARD greater than ±60%, showing that these three
models had poor estimation performance. A total of three models, M-MIVM, M-RSM, and
M-NRTL, showed similar estimation performance. The significant features of the three
models were that there were few alloys with an ARD of less than ±20% and greater than
60%. Most alloys had an ARD in the range of ±20 to ±40%. For these three models, the
parameters are averages, and only reasonable estimations of low-precision estimates can be
obtained.
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Figure 7. ARD comparison of the estimated activities of 19 alloys using eight models after taking the
average value of the parameters.

4. Conclusions

In this work, the parameters of the MIVM, RSM, Wilson’s model, NRTL model, and
QCM models were calculated using L-PPDF to estimate the excess Gibbs energy and activity
of 19 alloys. MIVM achieved an ARD less than±20% for 15 alloys; RSM had an ARD of less
than ±20% for 10 alloys; QCM achieved an ARD of less than ±20% for nine alloys; NRTL
itself had poor estimation performance, but upon increasing the coordination numbers,
M-NRTL achieved an ARD of less than ±20% for 10 alloys. Based on an understanding of
the local structure of a mixture, the representation of the neighboring molecular pairs in
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the derivation process of MIVM and RSM was changed to obtain two new model forms:
M-MIVM and M-RSM. These achieved an ARD of less than ±20% for nine and eight alloys,
respectively. Of the models mentioned in this paper, only Wilson’s estimation performance
was always poor, with an ARD of less than ±20% for only five alloys. The experimental
results show that the method proposed in this work for calculating the thermodynamic
model parameters using L-PPDF to estimate the activity of mixtures is feasible and has a
certain range of applicability.

The reliability of the method of combining PPDF and thermodynamic models to
achieve molar excess Gibbs energy and activity estimation is demonstrated by statistical
results for 19 liquid alloys. To prove the reliability of the approach, it needs to be validated in
a larger number of systems. The present work does not analyze the PPDF-thermodynamic
model performance differences in different types of liquid alloys. The performance of
the method can be improved by studying the applicability of the PPDF-thermodynamic
model in different systems. The L-PPDF representation of the potential function used in
this work is simple and does not represent the true potential distribution of a liquid system.
There are many studies on the calculation of the potential function using the distribution
function, which can be combined with the method proposed in this work to improve the
PPDF-thermodynamic model performance. In general, the PPDF-thermodynamic model
for estimating the molar excess Gibbs energy and activity has a large potential, and with
continued intensive research, the method has the potential to achieve an accuracy consistent
with experimentally determined thermodynamic data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met13050996/s1, Figures S1–S19: The partial pair distribution
function for 19 alloys; Figure S20–S38: The activity and molar excess Gibbs energy of the 19 alloys
for eight equations; Figures S39–S42 depict the plots of w/ZkT and Z with xi for the nineteen alloys;
Figures S43–S46 show the variations in the four model parameters, Bij, Bji, λij and λji with xi; Figures
S47–S50 show the variation of the two model parameters, ψij and ψji with xi.; Tables S1–S19: The
equation parameter of local partial distribution function gii(r), gjj(r), gij(r) of 19 alloys ; Tables S20–S38:
The models parameters solved by local partial pair distribution function under the multiple mole
fractions of 19 alloys; Tables S39–S40: Fitting parameters of eight models in nineteen alloys; Table S41
The constant model parameters for 19 alloys. Table S42 The coefficients of the first-order equation
for the model parameters of 19 alloys. Tables S43–S46: The eight models applying four methods
of calculating parameters to obtain the average relative deviation of Gibbs excess free energy and
activity for 19 alloys; The MMIVM derivation process. The M-RSM derivation process.
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Nomenclature

Aij, Aji Wilson’s model parameters
Bij, Bji, λij, λji molecular interaction volume model (MIVM) parameters
Ψij,Ψji modify molecular interaction volume model (MIVM) and modify regular solution model parameters
GE

m molar excess Gibbs energy, J/mol
Pii(r), Pjj(r), Pij(r) probability density function of pairs i-i, j-j, i-j
R gas constant, 8.314 J/(K·mol)
T absolute temperature, K
Vmi,Vmj molar volume of i and j, cm3/mol
Zii, Zjj, Zij, Zjj local coordination number (the first subscript represents the central atom; the second subscript

represents the surrounding atom)
Zi, Zj the first coordination number of i and j
Z average coordination number of liquid alloy
Z0, Zc the parameters in the first-order multinomial expression of Z
ai, aj activity of component i and j
gii(r), gjj(r), gij(r), gji(r) local partial pair distribution functions. gij(r) is the probability of finding atom j in the spherical shell

in the interval r to r + dr centered on atom i. gii(r), gjj(r) and gji(r) have similar meanings.
r0 position of the starting coordinate of pair distribution function is not 0, Å
rm position of the first peak of the partial pair distribution function, Å
r1 coordinate of the valley of the partial pair distribution function, Å
k Boltzmann constant, 1.38 × 10−23 J/K
xii, xij, xjj, xji local molecular fractions
xi, xj molar fractions of i and j
u, v Gaussian function width parameter
W regular solution model parameter
εii(r), εjj(r), εij(r), εjj(r) local pair potential function, J
εii, εij, εij, εjj molecular pair potential, J
ω, β quasi chemical model parameters
σ short-range ordering
τij, τji, αij nonrandom two-liquid model parameters
ρ0 average number density Å−3

γi, γj activity coefficient of i, j
P1, P2 parameters of the first order linear equation
AIMD ab initio molecular dynamics
ARD average relative deviation
MIVM molecular interaction volume model
M-MIVM modify molecular interaction volume model
M-RSM modify regular solution model
NRTL nonrandom two-liquid
PPDF partial pair distribution function
L-PPDF local partial pair distribution function
QCM quasi-chemical model
UNIQUAC universal quasi-chemical theory
RSM regular solution model
STGE Scientific Group Thermodata Group Europe
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