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Abstract. We investigate the lower bound of concurrence for multipartite
quantum mixed states. Analytical lower bounds are derived for some multi-
partite systems, by establishing functional relations between concurrence and the
generalized partial transpositions.

1 Introduction

Quantum entanglement plays a crucial role in the rapidly developing theory of quantum
information [1], since they constitute the most important resource for quantum information
processing. An important theoretical challenge in the theory of quantum entanglement is to
give a proper description and quantification of quantum entanglement of multipartite quantum
systems. Entanglement of formation (EoF) [2,3] and concurrence [4] are two well defined
quantitative measures of entanglement. For two-qubit case EoF is a monotonically increasing
function of concurrence and an elegant formula of concurrence was derived analytically by
Wootters in [5], which plays an essential role in describing quantum phase transition in various
interacting quantum many-body systems [6,7] and can be experimentally measured [8].
For higher dimensional case, due to the extremizations involved in the calculation, only a

few of explicit analytic formulae for EoF and concurrence have been found for some special
symmetric states [9,10]. Therefore some nice algorithms and progresses have been concentrated
on possible lower bounds of the EoF and concurrence for qubit-qudit systems [11,12] and for
bipartite systems in arbitrary dimensions [13,14] from numerical optimization over a large
number of free parameters. In [15,16] analytical lower bounds of EoF and concurrence for any
dimensional mixed bipartite quantum states have been presented, which are further shown to
be exact for some special classes of states and detect many bound entangled states. In [17]
another lower bound of EoF for bipartite states has been presented from a new separability
criterion.
Although the entanglement of formation is only well defined for bipartite systems, the

concurrence is well defined even for multipartite states. The lower bound of concurrence for
tripartite states has been studied in [18]. In this note we summarize the results related to the
lower bound of concurrence for bipartite, tripartite systems, and generalize them to arbitrary
multipartite systems.

2 Lower bounds of concurrence for bipartite and tripartite systems

Let H1, H2, . . . , HM be M(≥ 2) N1, N2, . . . , NM -dimensional Hilbert spaces respectively. The
concurrence for a general pure multipartite state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗ HM is defined by

C(|ψ〉) =

√√√√d−
d∑
α=1

Trρ2α , (1)
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where d = 2M−1 − 1 is the number of all possible bipartite separations of an M -partite sys-
tem, the reduced density matrix ρα, α = 1, . . . , d, is obtained by tracing over one part of the
subsystems associated with the α-th bipartite separation.
For bipartite case (M = 2), the concurrence of a pure state |ψ〉 is given by C(|ψ〉) =√
2(1− Trρ21), where the reduced density matrix ρ1 is obtained by tracing over the second

subsystem. Suppose (N1 ≤ N2), in this case |ψ〉 has a standard Schmidt form

|ψ〉 =
∑
i

√
µi|aibi〉, (2)

where
√
µi, i = 1, . . . , N1, are the Schmidt coefficients, |ai〉 and |bi〉 are orthonormal basis in

H1 and H2, respectively. It follows

C(|ψ〉) = 2
√∑
i<j

µiµj , (3)

which varies smoothly from 0 for separable states to 2(N1 − 1)/N1 for maximally entangled
states.
Let ‖G‖ denote the trace norm of a matrix G defined by ‖G‖ = Tr(GG†)1/2. Set ρ = |ψ〉 〈ψ|.

One has

‖ρT1‖ = ‖R(ρ)‖ =
(∑
i

√
µi

)2
, (4)

where ρT1 is the partial transposed matrix of ρ with respect to the first subsystem, R(ρ)
is realigned matrix of ρ defined by R(ρ)ij,kl = ρik,jl, where i and j are the row and column
indices for the first subsystem respectively, while k and l are such indices for the second sub-
system [19–21].
Assume that one has already found an optimal decomposition

∑
i piρ

i for ρ to achieve
the infimum of C(ρ), where ρi are pure state density matrices. Then C(ρ) =

∑
i piC(ρ

i) by
definition. From (3, 4) and the convex property of the trace norm, ‖ρT1‖ ≤

∑
i pi‖(ρi)T1‖,

‖R(ρ)‖ ≤
∑
i pi‖R(ρi)‖, one can prove that for any N1 ⊗N2 (N1 ≤ N2) mixed quantum state

ρ, the concurrence C(ρ) satisfies

C(ρ) ≥
√

2

N1(N1 − 1)
(max(‖ρT1‖, ‖R(ρ)‖)− 1). (5)

For the U ⊗ U∗ invariant mixed Isotropic states with N1 = N2 = N [22,23], The bound (5)
gives the exact value of the concurrence derived in [10].
For multipartite case, we do not have a Schmidt expression like (2). To get a lower bound

of the multipartite concurrence, we need the operations of generalized partial transpose and
realignment. We first recall some notations used in various matrix operations [24,25]. A generic

matrix G can be always written as G =
∑

i,j
aij 〈j|⊗ |i〉, where |i〉 , |j〉 are vectors of a suitably

selected normalized real orthogonal basis. We define the operations Tr (resp. Tc) to be the row
transposition (resp. column transposition) of G which transposes the second (resp. first) vector
in the above tensor product expression of G:

Tr(G) =
∑
i,j

aij 〈j| ⊗ 〈i| , Tc(G) =
∑
i,j

aij |j〉 ⊗ |i〉 . (6)

It is easily verified that TcTr(G) = TrTc(G) = GT , where T denotes matrix transposition.
In the following we define Trk (resp. Tck) to be the row (resp. column) transpositions with

respect to the subsystem k. For instance, Tr12 stands for the row transpositions with respect to
the subsystems 1 and 2. Let Y = {x1, x2, . . .} be a set of such operations on a density matrix
ρ, we denote ρTY = TY(ρ) = Tx1Tx2 . . . (ρ), e.g. ρT{c1,r2,r3} ≡ T{c1}T{r2}T{r3}(ρ).
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We first consider the tripartite case. The concurrence for a general pure tripartite state
|ψ〉 ∈ H1 ⊗H2 ⊗H3 is defined by

C(|ψ〉) =
√
3− Tr(ρ21 + ρ22 + ρ23), (7)

where the reduced density matrix ρ1 (resp. ρ2, ρ3) is obtained by tracing over the subsystems
2 and 3 (resp. 1 and 3, 1 and 2). We discuss a special class of Y: Yi = {ci, ri}, i = 1, 2, 3,
Y4 = {c1, r23}, Y5 = {c12, r3}, Y6 = {c13, r2}. As ρTYi = ρTi , i = 1, 2, 3, where Ti stands for the
partial transposition with respect to the subsystem i, the operations Y1, Y2 and Y3 correspond
to the partial transpositions of ρ.
For the most simple tripartite system, the three qubits case, a state |Ψ〉 can be written in

terms of the generalized Schmidt decomposition [26],

|Ψ〉 = λ0|000〉+ λ1eiφ|100〉+ λ2|101〉+ λ3|110〉+ λ4|111〉 (8)

with normalization condition λi ≥ 0, 0 ≤ φ ≤ π,
∑
i λ
2
i = 1. The corresponding density matrix

ρ = |Ψ〉〈Ψ | has the following properties:

Trρ21 = 1− 2µ0(1− µ0 − µ1),

T rρ22 = 1− 2µ0(1− µ0 − µ1 − µ2)− 2∆,

Trρ23 = 1− 2µ0(1− µ0 − µ1 − µ3)− 2∆,

where ∆ ≡ |λ1λ4eiφ − λ2λ3|2, µi = λ2i , i = 0, 1, . . . , 4. Therefore from (7) we have

C2(ρ) = 2µ0(3− 3µ0 − 3µ1 − µ2 − µ3) + 4∆, (9)

which varies smoothly from 0, for pure product states, to 3/2 for maximally entangled pure
states.
On the other hand, under the operations of Yi, i = 1, 2, 3, one gets

‖ρTY1 ‖ = 1 + 2
√
µ0(µ2 + µ3 + µ4),

‖ρTY2 ‖ = 1 + 2
√
∆+ µ0(µ3 + µ4),

‖ρTY3 ‖ = 1 + 2
√
∆+ µ0(µ2 + µ4).

(10)

Combining (9) and (10) we have

C(ρ) ≥ (‖ρTYj ‖ − 1), j = 1, 2, 3. (11)

A three qubits (2 ⊗ 2 ⊗ 2) system can be viewed as three different bipartite (2 ⊗ 4 or 4 ⊗ 2)
systems. From the results for bipartite systems [15], these three bipartite separations give rise
to, respectively

1− Tr((ρ1)2) ≥
1

2
(‖ρT{c1,r23}‖ − 1)2,

1− Tr((ρ2)2) ≥
1

2
(‖ρT{c13,r2}‖ − 1)2,

1− Tr((ρ3)2) ≥
1

2
(‖ρT{c12,r3}‖ − 1)2.

Therefore

C(ρ) =
√
3− Tr(ρ21)− Tr(ρ22)− Tr(ρ23) ≥

1√
2
max

{
‖ρTYj ‖ − 1

}
, j = 4, 5, 6. (12)
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Hence if we assume that
∑
i piρ

i is the optimal decomposition of ρ such that C(ρ) =
∑
i piC(ρ

i),
where ρi are pure state density matrices. Accounting to that ‖ρTY‖ ≤

∑
i pi‖(ρi)TY‖, from (11)

and (12) one gets a lower bound for the concurrence of three-qubit states:
For any three-qubit mixed quantum state ρ, the concurrence C(ρ) satisfies

C(ρ) ≥ max
{
‖ρTYi ‖ − 1, 1√

2
(‖ρTYj ‖ − 1)

}
, (13)

where i = 1, 2, 3, j = 4, 5, 6.
For higher dimensional tripartite systems, we do not have an expression of (8). The related

lower bound of concurrence for this will be studied in the next section for arbitrary multipartite
systems.

3 Lower bounds of concurrence for multipartite systems

Concerning multipartite (M > 3) systems, we first study a special kind of states. Let us consider
an M -qubit state, the generalized Greenberger-Horne-Zeilinger (GHZ) state,

|Φ〉 = cos θ|00 · · · 0〉+ sin θ|11 · · · 1〉. (14)

For ρ = |Φ〉〈Φ|, we get ρi = Tr{1,...,i−1,i+1,...,M}ρ = cos2 θ|0〉〈0|+sin2 θ|1〉〈1|. Therefore Trρ2i =
cos4 θ + sin4 θ = 1 − 2 sin2 θ cos2 θ, i = 1, 2, . . . ,M . In fact, one can prove that Trρ2i1i2···im =
1 − 2 sin2 θ cos2 θ for all i1 
= i2 
= · · · 
= im ∈ {1, 2, . . . ,M}, 1 ≤ m ≤ M . Hence we have by
definition

C(ρ) =
√
2d sin2 θ cos2 θ. (15)

On the other hand, the partial transpose of ρ with respect to the ith qubit space gives rise to

ρTi = cos2 θ|0 · · · 0i · · · 0〉〈0 · · · 0i · · · 0|+ cos θ sin θ|0 · · · 1i · · · 0〉〈1 · · · 0i · · · 1|
+cos θ sin θ|1 · · · 0i · · · 1〉〈0 · · · 1i · · · 0|+ sin2 θ|1 · · · 1i · · · 1〉〈1 · · · 1i · · · 1|,

i = 1, 2, . . . ,M . As ρTi is Hermitian, its singular values are simply given by the square root of

the eigenvalues of (ρTi)2. The trace norm of ρTi takes the form ‖ρTi‖ = 1+2
√
sin2 θ cos2 θ. The

trace norms of partial transposed ρ with respect to the other sub-qubit spaces can be similarly
calculated. All together we have

‖ρTi1i2···im ‖ = 1 + 2
√
sin2 θ cos2 θ, (16)

where i1 
= i2 
= · · · 
= im ∈ {1, 2, . . . ,M}, 1 ≤ m ≤M .
We consider now the norm of ρ under bipartite realignment. If we make a bipartite realign-

ment with respect to the subsystems i and j, 1 ≤ i 
= j ≤M , while leaving the other subsystems
untouched, we have

Ri|j(ρ) = cos2 θ|0 · · · 0i · · · 0j · · · 0〉〈0 · · · 0i · · · 0j · · · 0|
+cos θ sin θ|0 · · · 0i · · · 1j · · · 0〉〈1 · · · 0i · · · 1j · · · 1|
+cos θ sin θ|1 · · · 1i · · · 0j · · · 1〉〈0 · · · 1i · · · 0j · · · 0|
+sin2 θ|1 · · · 1i · · · 1j · · · 1〉〈1 · · · 1i · · · 1j · · · 1|.

Hence the sum of its singular values gives the norm, ‖Ri|j(ρ)‖ = 1 + 2
√
sin2 θ cos2 θ. Let Θ1

and Θ2 be two different subsystems. One can similarly verify that

‖RΘ1|Θ2(ρ)‖ = 1 + 2
√
sin2 θ cos2 θ. (17)
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From (15), (16) and (17) we have:
For any M -qubit mixed state with decomposition ρ =

∑
i pi|Ψi〉〈Ψi|, if |Ψi〉 can be written

in the form (14) for all i, then the concurrence C(ρ) satisfies

C(ρ) ≥ max{‖ρTΘ‖, ‖RΘ1|Θ2(ρ)‖} − 1, (18)

where Θ,Θ1, Θ2 are subsets of the indices {1, 2, . . . ,M}, Θ1
⋂
Θ2 = ∅.

We remark that once a density matrix has a decomposition with all the pure states of the
form (14), then its all other possible decompositions will also have the form (14), since other
decompositions can be obtained from the unitarily linear combinations of this decomposition,
and any linear combinations of the type (14) still have the form (14).
Second, let us consider another M-qubit state, the generalized W state,

|Ψ〉 = a1|10 · · · 0〉+ a2|01 · · · 0〉+ · · ·+ aM |00 · · · 1〉. (19)

For ρ = |Ψ〉〈Ψ |, we get ρi = Tr{1,...,i−1,i+1,...,M}ρ = |ai|2|1〉〈1| + (
∑
j �=i |aj |2)|0〉〈0|. Therefore

Trρ2i = |ai|4 + (
∑
j �=i |aj |2)2, i = 1, 2, . . . ,M . Generally one can prove that Trρ2i1i2...im =

(|ai1 |2+ai2 |2+ . . .+aim |2)2+(
∑
k �={i1,i2,...,im} |ak|

2)2 for all i1 
= i2 
= · · · 
= im ∈ {1, 2, . . . ,M},
1 ≤ m ≤M . Hence we have by definition

C(ρ) =

√
2M−1

∑
i<j

|aiaj |2. (20)

From direct calculation, the trace norm of the partial transposed matrix ρTi of ρ with respect

to the ith qubit space is given by ‖ρTi‖ = 1 + 2
√∑

j �=i |aiaj |2. The trace norms of partial
transposed ρ with respect to the other sub-qubit spaces can be also similarly calculated,

‖ρTi1i2···im ‖ = 1 + 2
√ ∑
l �={i1,i2,··· ,im}

(|ai1al|2 + |ai2al|2 + · · ·+ |aimal|2), (21)

where i1 
= i2 
= · · · 
= im ∈ {1, 2, . . . ,M}, 1 ≤ m ≤M .
An M-qubit W state can be viewed as d different bipartite systems. Let Γ 1α, Γ

2
α denote two

subsets of the indices {1, 2, . . . ,M}, Γ 1α
⋂
Γ 2α = ∅, Γ 1α

⋃
Γ 2α = {1, 2, . . . ,M}, α = 1, . . . , d. From

the results for bipartite systems [15], these d bipartite separations give rise to, respectively

1− Tr((ρΓ 1α)
2) ≥ 1

2
(‖RΓ 1α|Γ 2α(ρ)‖ − 1)

2, α = 1, . . . , d.

Hence

C(ρ) =

√√√√d−
d∑
α=1

Tr(ρ2Γ 1α
) ≥ 1√

2
max

{
‖RΓ 1α|Γ 2α(ρ)‖ − 1, α = 1, . . . , d

}
.

Therefore for any M -qubit mixed state with decomposition on the generalized W states, ρ =∑
i pi|Ψi〉〈Ψi|, such that |Ψi〉 can be written in the form (19) for all i, the concurrence C(ρ)

satisfies

C(ρ) ≥ max
{
‖ρTΓ1α ‖ − 1, 1√

2
(‖RΓ 1α|Γ 2α(ρ)‖ − 1), α = 1, . . . , d

}
. (22)

From (18) and (22), we see that the lower bound for the class of mixed states with decom-
positions on the generalized GHZ states is better than the one for the class of mixed states
with decompositions on the generalized W states, in the sense that in (18) the realignment is
associated with two arbitrary subsystems Θ1 and Θ2 such that Θ1

⋂
Θ2 = ∅, but not neces-

sary Θ1
⋃
Θ2 = {1, 2, . . . ,M}. While in (22) we simply treat the realignment associated with

bipartite separations, so that the two subsystems Γ 1α and Γ
2
α satisfy both Γ

1
α

⋂
Γ 2α = ∅ and

Γ 1α
⋃
Γ 2α = {1, 2, . . . ,M}.
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For general multipartite systems, we can still consider a general M -partite pure state as
bipartite separations, which give rise to, respectively

1− Tr((ρΓ 1α)
2) ≥ 1

Dα(Dα − 1)
max

{
(‖ρTΓ1α ‖ − 1)2, (‖RΓ 1α|Γ 2α(ρ)‖ − 1)

2
}
, α = 1, . . . , d,

whereDα = min(dim(Γ
1
α), dim(Γ

2
α)), dim(Γ

1
α) (resp. dim(Γ

2
α)) is the dimension associated with

the subsystems contained in Γ 1α (resp. Γ
2
α).

Therefore from the definition of C(ρ), we have:
For any N1⊗N2⊗· · ·⊗NM M -partite mixed quantum state ρ, the concurrence C(ρ) satisfies

C(ρ) ≥ max
{
K
(
‖ρTΓ1α ‖ − 1

)
, K

(
‖RΓ 1α|Γ 2α(ρ)‖ − 1

)
, α = 1, . . . , d

}
, (23)

where K = 1/
√
Dα(Dα − 1).

Here for general mixed states, it is difficult to find the relation between the concurrence
of a pure state and the corresponding norm of the partial transposed state with respect to
certain subsystems, like the one between (20) and (21). The bound (23) is obtained by bipartite
separations of the system, and there is an extra factor K, which makes this bound weaker
than (22), when it is applied to the special class of mixed states with decompositions on the
generalized W states.

4 Summary and conclusions

By making a novel connection with the generalized partial transpositions, we have provided
an entirely analytical formula for lower bound of concurrence for bipartite, tripartite and
multipartite systems. One only needs to calculate the trace norm of certain matrices, which
avoids complicated optimization procedure over a large number of free parameters in numerical
approaches. The results could be used to indicate possible quantum phase transitions in
condensed matter systems, and to analyze finite size or scaling behavior of entanglement in
various interacting quantum many-body systems.
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