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Estimation of Contact Forces and Floating Base

Kinematics of a Humanoid Robot Using Only Inertial

Measurement Units

Alexis Mifsud1,2 , Mehdi Benallegue1,2 and Florent Lamiraux1,2

Abstract— A humanoid robot is underactuated and only relies
on contacts with environment to move in the space. The ability
to measure contact forces and torques enables then to predict
the robot dynamics including balance. In classical cases, a
humanoid robot is considered as a multi-body system with
rigid limbs and joints and interactions with the environment
are modeled as stiff contacts. Forces and torques at contacts
are generally estimated with sensors which are expensive
and sensitive to calibration errors. However, a robot is not
perfectly rigid and contacts may have flexibilities. Therefore,
external forces create geometric deformations of the body or
its environment. These deformations may modify the robot
dynamics and produce unwanted and unbalanced motions.
Nonetheless, if we have a model of contact stiffness and are
able to reconstruct reliably the geometric deformation, we can
reconstruct forces and torques at contact. This study aims at
estimating contact forces and torques and to observe the body
kinematics of the robot with only an Inertial Measurements
Unit (IMU). We show that we are able to reconstruct efficiently
the position of the Center of Pressure (CoP) of the robot with
only the IMU and proprioceptive data from the robot.

I. PROBLEM STATEMENT

The body dynamics of a legged robot depends mostly on the

wrench (forces and moments) applied on contact points. One

important illustration is the problem of maintaining balance for

a humanoid robot. During locomotion and all other standing tasks,

the robot relies entirely on contacts to generate the forces and

torques which compensate for gravity and generate a desired

trajectory [1]. Therefore, most solutions to control and to balance

a humanoid robot generate reference contact forces/torques either

directly [2], [3] or by using a related variable such as the center of

pressure (CoP) [4]).

Usually robots are considered rigid and the interactions with

environment are modeled as stiff contacts. This modeling is con-

venient in numerical point of view and allows simpler develop-

ment and prediction of the dynamics. Beside the fact that the

environment is not always stiff, several robots do have flexible

parts. The flexibility may be in the sole of the feet, but also inside

the kinematics tree. An example is the robot HRP-2 which has a

flexible bush between the foot and the ankle intended to absorb

impacts [5] (see Fig. 1).
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Fig. 1. The foot of HRP-2. Between the ankle joint and the sole of the
robot, there is a rubber bush.

As a foot applies forces and torques on the environment, the

reactive wrench applies on the foot and causes deformation of

the flexible parts. This deformation has two consequences: (i) it

modifies the position of all the robot in the world frame, including

the end effectors, interfering with environment-related tasks, and

(ii) changes the dynamics of the body including the center of mass

(CoM) and therefore affects balance.

Nevertheless HRP-2 is able to walk and maintain balance,

because there is a stabilizer module which compensates for the

flexibility. The current stabilizer uses force/torque sensor mea-

surements and a model of the elasticity of flexibility to track

the reference contact wrench [6], [7]. However, the use of these

sensors requires a fine calibration which may deteriorate during

operation subject to constraints and impacts. Furthermore, these

sensors are expensive and some robots are not equipped with them

such as Aldebaran’s Romeo robot [8].

On the other hand, if we have a model of the elasticity of the

flexible parts of the robot, we are able to link their deformation to

applied forces and torques. This means that if we can reconstruct

accurately the deformation, we may estimate contact forces. This

deformation may be seen as a modification of the kinematics

of the robot which can be reconstructed using only kinematic

sensors such as inertial measurement units (IMUs). These sensors

are cheap, relatively reliable and less sensitive to impacts and

environmental effects. They provide not only the gravitational field

direction, but also measurements on the deviation between the

robot local frame and the inertial frame (acceleration and angular

velocities).

Moreover, we have shown previously that when we couple the

measurements of these sensors to information of contact positions,

we can reconstruct the deformation in real-time and with high

accuracy [9]. Contact information provides observability and im-

proves accuracy of the observation. We show in this paper that



by using only these measurements, and by adding a model of

the elasticity we are able not only to reconstruct accurate second

order kinematics for a humanoid robot, but also to estimate contact

forces and moments.

In Section II we describe our elasticity model and its develop-

ment to dynamics. We show then in Section III that our model

provides observability to floating base kinematics and to contact

wrenches with only IMU measurements and contact information.

This section ends with the description of the estimator before

showing in Section IV experimental setting and results which

validate the model and the observer.

II. MODELING

A. Model of flexibility and state vector

HRP-2 is a joint-position controlled robot, and as many robots,

it has very stiff actuation. Its only non-rigid part is the flexible

bush between the ankle joint and the sole. We may consider that

the mass of the sole is negligible compared to the total mass of

the robot. That means that in a local reference frame, all the limb

positions are perfectly known at each instant, and thus the center of

mass (CoM) also. We denote this local frame, also called control

frame, by Rl. In this paper the subscript l for variables stands

for local frame and means that they are expressed in Rl. The

absence of subscript means that the variable is expressed in the

world reference frame R.

We consider then the robot as a moving but rigid multi-body

system which is connected to its environment through non-stiff

contacts. Each body Bi of mass mi has a position cl,i and

orientation matrix Rl,i in the control frame Rl (see fig. 2). This

position is represented by the homogeneous matrix:

M
Bi

l =

(

Rl,i cl,i
000 1

)

(1)

The robot being stiff in the control frame, the flexibility deforma-

tion applies on the robot a rigid transformation from control frame

Rl to the world reference frame R. It can be then represented by a

homogeneous matrix

Mflex =

(

R t

000 1

)

(2)

Indeed, due to flexibility, the position of each body Bi is modified

and can be represented by an equivalent homogeneous matrix in

the world reference frame R (see fig. 2).

M
Bi =

(

Ri ci
000 1

)

= MflexM
Bi

l (3)

Therefore, the flexibility deformation may be represented by its

rotation matrix R and its translation t. To model our system, we

need to describe the second order dynamics of the flexibility. We

choose then to represent the flexibility state vector as:

x =
(

tT ΩT ṫT ωT ẗT ω̇T
)T

(4)

where Ω is defined in such way that R = exp([Ω]
×
) with [�]

×
the

skew-symmetric operator such that:
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We present in this section a relation between the current state

and the induced contact wrench, and using this wrench we model

R

Rl

M
Bi

l

M
Bi

Mflex

Fig. 2. Definition of the frames used for the modeling of the dynamics of

the flexibility. M
Bi

l
is the position of the body Bi in the rigid-body control

frame Rl. M
Bi is the position of the same body Bi in the world reference

frame R. Mflex is the homogeneous matrix between these two frames.

the dynamics of the state vector. It finally enables us to find

a model of the flexibility state dynamics in order to predict its

evolution using only values expressed in Rl.

B. Model of contact wrenches

The humanoid robot is always in contact with its environment.

These contacts can be detected by simple and robust sensors such

as pressure sensors [10]. They can also be planned by an external

motion planner.

We model the elasticity of each contact as a translational and

rotational 6D damped spring. This gives us a relation between the

contact force Fc, moment Tc, the flexibility state x and the contact

positions in the control frame Rl.

1) Forces: We consider that the contacts are firmly connected

to environment, the forces are then proportional to the distance tci
between the current position pci of the contact and its position

pci,l at rest state of the elasticity (zero deformation and zero

velocity).

Therefore, for the contact i, the relation between the force

Fci generated by the translational spring, with positive definite

matrices for stiffness KFs and damping KFd, is the following:

Fci = −KFstci −KFdṫci (6)

where

tci = Rpci,l + t− pci,l (7)

with

pci = Rpci,l + t (8)

By derivation of (7) and having ṗci,l = 0 we obtain:

ṫci = [ω]
×
Rpci,l + ṫ (9)

We finally sum the forces Fci for the number of contacts nc. We

obtain an expression giving us the total external contact forces:

Fc =

nc
∑

i=1

(

−KFs

(

Rpci,l + t− pci,l

)

−KFd

(

[ω]
×
Rpci,l + ṫ

))

(10)



2) Moments: To simplify computations, all the dynamics of

the robot is expressed at the origin of the world reference frame

R. Therefore the moment generated by a contact i is composed

by the torque of the rotational spring characterized by the stiffness

KTs and damping KTd, also positive definite matrices, summed to

the moment of the contact force Fci. It expression is the following:

Tci = −KTsΩ−KFdω + [pci]×Fci (11)

where pci = Rpci,l+t is the contact position in R and [pci]×Fci

is the moment of the contact force Fci. We finally sum the torques

Tci over the nc contacts and we obtain the total external moments:

Tc =

nc
∑

i=1

(

−KTsΩ−KFdω +
[

Rpci,l + t
]

×
Fci

)

(12)

C. Model of the flexibility state dynamics

We want to model the influence of external contact forces Fc

and torques Tc on the flexibility state. These equations provide

a prediction for the dynamics of the flexibility as soon as we

have reliable informations about internal dynamic variable. These

parameters are all required in the local reference frame and are

namely the mass, the position, velocity and acceleration of the

CoM, the tensor of inertia and its derivative, and the total angular

momentum and its derivative. We describe here how the predictor

expressions are obtained.

Newton-Euler equations give us a relation between external

forces F and torques T and the variation of linear and angular

momenta of the robot.

1) Newton equation: According to previous section nota-

tions, and the multi-body nature of the robot, Newton equation

gives us the following relation:

F =
d

dt

(

n
∑

i=1

miċi

)

(13)

The right side of this equation corresponds to the derivative of the

linear momentum due to the motions of the centers of mass of each

body. This can be simplified using the Newton equation, reducing

it to the center of mass of the robot:

F =
d

dt
(mċ) (14)

By expressing this linear momentum in Rl using (3) for the CoM

position and using two time-derivations, we obtain:

F = m([ω̇]
×
Rcl + [ω]2

×
Rcl + 2[ω]

×
Rċl +Rc̈l + ẗ) (15)

If we distinguish in F the contact forces Fc from the weight

we obtain the following equation giving the flexibility dynamics

induced by contact forces Fc:

Fc =[ω̇]
×
Rmcl + [ω]2

×
Rmcl + 2[ω]

×
Rmċl

+Rmc̈l +mẗ+ gmuz (16)

with uz =
[

0 0 1
]T

the unit vector along the vertical z axis.

2) Euler equation: The sum of external moments is equal to

time-variation of the total angular momentum σ of the body. Each

body Bi which has an inertia tensor Ii, an orientation Ri and an

angular velocity ωi in R has a contribution on the total angular

momentum. These angular momenta are summed in the following

relation:

T = σ̇ =
d

dt

n
∑

i=1

(

RiIiR
T
i ωi +mi[ci]×ċi

)

(17)

For each body Bi in this equation we can distinguish between the

angular momentum due to the angular velocity of the body in R

and the one due to its translational velocity in R. By introducing

(3) in (17) we can also distinguish between σl, σω and σt such

that:

σ = Rσl + σω + σt (18)

with

σl =

n
∑

i=1

(

Rl,iIiR
T
l,iωl,i +mi

[

cl,i
]

×
ċl,i

)

(19)

the angular momentum of the multi-body in Rl containing only

quantities expressed in Rl which have to be expressed in R. We

also have the angular momentum due to the angular velocity of the

flexibility:

σω = RIlR
T
ω (20)

where Il =
∑n

i=1
Rl,iIiR

T
l,i−

∑n
i=1

mi

[

cl,i
]2

×
is the total tensor

of inertia of the multi-body expressed in the local frame Rl.

Finally we have:

σt = m[Rcl]×ṫ+m[t]
×

d

dt
(Rcl + t) (21)

representing the angular momentum due to the linear velocity

of the flexibility. After derivation we obtain the following Euler

equation:

T =[ω]
×
RIlR

T
ω +RİlR

T
ω +RIlR

T
ω̇ + [ω]

×
Rσl

+Rσ̇l + [t]
×
F+m[Rcl]×ẗ (22)

If we distinguish the contact torques Tc from the moment of the

weight we have then:

Tc =[ω]
×
RIlR

T
ω +RİlR

T
ω +RIlR

T
ω̇ + [ω]

×
Rσl

+Rσ̇l + [t]
×
Fc +m[Rcl]×ẗ+ [Rcl]×gmuz (23)

3) Model of the flexibility state dynamics: By decoupling

and inverting the system (16,23) we finally get the following

flexibility dynamics:

ω̇ =R(Il +m[cl]
2

×
)−1

R
T

(Tc −

(

([ω]
×
RIlR

T +RİlR
T )ω +Rσ̇l + [ω]

×
Rσl

)

+ [Rcl]×

(

Rmc̈l + 2m[ω]
×
Rċl +m[ω]2

×
Rcl

)

− [Rcl + t]
×
Fc) (24)

and:

ẗ =
1

m

(

Fc − (Rmc̈l + 2m[ω]
×
Rċl +m[ω]2

×
Rcl

+gmuz)) + [Rcl]×ω̇ (25)

We see in these equations that the flexibility second order

dynamics depends on the current state x which provides contact

forces and torques, and on other constants and variables: m, Il, İl,

cl, ċl, c̈l, σl and σ̇l. All of these latter variables are expressed in the

local frame and are available from the robot embedded controllers.

They are considered then as known inputs to our system and we

will not discuss about the way they are computed. Therefore our

model describes the flexibility dynamics in a way that enables the

prediction of flexibility deformation using available data at each

instant.

It is worth to notice that state positions and velocities are

continuous regardless the modification of the number of contacts

or their positions. This is due the the definition of the flexibility as

a general rigid transformation from Rl to R .



III. FLEXIBILITY STATE ESTIMATION

In this section we show how we use the presented model to

observe both the flexibility state (4) and contact wrenches.

A. Observability

We aim at demonstrating the observability of the model de-

scribed above using only the gyrometer and accelerometer mea-

surements in the IMU and contact position in Rl. Internal dy-

namics variables are directly obtained from the robot internal joint

positions, velocities and accelerations. They are assumed perfectly

known and do not require any additional observer.

The gyrometer measures its angular velocity yg in R but

expressed in the IMU reference frame. Since the kinematics of the

sensor in local reference frame Rl is well known, we know yg,l

the gyrometer measurement expressed in Rl. Its expression is:

yg,l = R
T
ω + ωg,l (26)

where ωg,l is the angular velocity of the gyrometer in Rl. This

expression lead us directly to the observability of RTω, the angular

velocity of the flexibility expressed in Rl. By derivation, the

observability of RT ω̇ is guaranteed.

The accelerometer measures ya, the sum of its own acceler-

ation p̈a in R with the gravitational field both expressed in the

IMU frame. Using the known kinematics of the IMU in Rl, the

accelerometer measurement ya,l expressed in Rl is then:

ya,l = R
T

(

d2

dt2
(Rpa,l + t) + guz

)

(27)

with pa,l and Ra,l known values representing respectively the

position and the orientation of the accelerometer in Rl. By deriva-

tion:

ya,l =
[

R
T
ω̇

]

×

pa,l +
[

R
T
ω

]2

×

pa,l + 2
[

R
T
ω

]

×

ṗa,l

+ p̈a,l +R
T
ẗ+R

T
guz (28)

Using the observability of RTω and RT ω̇ and the known kine-

matic of the IMU we obtain the observability of the following part

of the equation:

R
T
ẗ+R

T
guz (29)

The goal is then to demonstrate that our second order dynamical

model used with given measurements permit to decouple the two

terms of expression (29). We rewrite (16) as:

R
T
Fc =

[

R
T
ω̇

]

×

mcl +
[

R
T
ω

]2

×

mcl + 2m
[

R
T
ω

]

×

ċl

+mc̈l +mR
T
ẗ+ gmR

T
uz , (30)

giving us to the observability of RTFc, the contact forces ex-

pressed in Rl. Similarly we rewrite (23) as:

R
T
Tc =

[

R
T
ω

]

×

IlR
T
ω + İlR

T
ω + IlR

T
ω̇ +

[

R
T
ω

]

×

σl

+ σ̇l +
[

R
T
t

]

×

R
T
Fc

+m[cl]×(RT
ẗ+ gR

T
uz) (31)

which can give us the observability of RTTc, the contact torques

expressed in Rl, but only if RT t is observable.

In order to simplify the study of the the observability of RT t

we consider the case a simplified contact model where the support

contact is reduced to a single isotrope spring contact. We rewrite

(10) as:

R
T
Fc = −R

T
KFst (32)

which gives us directly the observability of RT t leading to the

observability of RTTc. Using the same simplified assumptions we

rewrite (12) as:

R
T
Tc = −R

T
KTsΩ+

[

R
T
t

]

×

R
T
Fc (33)

which gives us that RTΩ is observable leading to the observability

of Ω. By derivation all the rotational dynamics of the flexibility

is observable. Then the observability of RT t from (32) gives us

the observability of t and so by derivation all the translational

dynamics of the flexibility is observable. Consequently all the

flexibility state dynamics is observable. Therefore, the contact

forces and torques are also fully observable.

This development on a simplified model with only one spring

contact can be generalized easily to the general model of (16) and

(23). Since RTFc and RTTc are observable their derivatives are

observable too. By recursive reasoning we can find that a model

with a damping is observable too. Moreover, since the number of

contacts nc does neither add any variable nor remove any equation

the observability is still guaranteed with two or more contacts.

To conclude this study we can say that the observability of

the system is guaranteed by a kinematic coupling similarly to

what was presented in our previous work [9] where the coupling

came from a pendulum model. However, on the contrary of the

former model, our coupling lies between flexibility positions and

accelerations using the contact wrenches model. In addition, the

use of our model gives us the observability of yaw axis orientation

with only one contact, which was not the case in our previous

work.

B. Extended Kalman Filtering

We use the dynamics presented in Eq.(10, 12, 24, 25) as a

state dynamical model for the prediction in an Extended Kalman

Filtering. The input of the system is composed of values expressed

in Rl and are given by the controller of the robot: cl the center

of mass of the robot in the local frame and its derivatives ċl and

c̈l, Ic,l, İc,l, σc,l and σ̇c,l the inertial values of the robot. The

measurement vector corrects the prediction and compensates for

modeling errors.

As we show in the next section, we are able with this observer to

estimate both the flexibility state and the contact wrenches. Then

we use them to reconstruct respectively the floating base kinematic

and the CoP of the robot.

IV. EXPERIMENTS

A. Experiments and demonstrations

For testing the performances of the observer described in III-

B we perform two experiments. (i) The first experiment is the

comparison of the CoP (or ZMP) reconstructed from the con-

tact wrenches estimation with the CoP reconstructed from force

sensors. This enables to validate the CoP estimation from the

wrench model. (ii) The second experiment is to compensate the

hand displacements due to flexibility deformation in order to keep

their position constant in R (Fig. 3). As described in our previous

work [9] this demonstration enables to validates the estimation of



RlRl

Fig. 3. Hands compensation experiment. Left: hands position is constant
in R whereas the floating-base moves. Right: hands position moves in Rl

whereas the floating-base is fix.

the floating-base kinematics: the flexibility is well estimated if the

hands have constant positions and orientations in R despite the

deformations induced by the flexible part of the robot.

Therefore, these two experiments enable to validate the per-

formances of our observer in flexibility position/velocity with the

hands compensation and acceleration with CoP estimation.

B. Experimental settings

The humanoid used for our experiments is HRP-2 controlled

at 200 Hz, and the sensors are the original 10 years old IMUs of

the robot. Our control environment is the Stack of Tasks frame-

work [11] which is a task-based hierarchical inverse kinematics

solver. The stack of tasks gives us inputs of our model described

in III-B. For the wrench model we use isotropic matrices KTs =
ktsI33, KTd = ktdI33, KFs = kfsI33 and KFd = kfdI33 with

the following values: kts = 400 n.m.rad−1, ktd = 10 n.m.s.rad−1,

kfs = 40000 n.m−1 and kfd = 600 n.s.m−1.

kts and ktd are average parameters identified for HRP-2

Promet-10 [12]. kfs and kfd are reasonable values which enable

to simulate stiff contacts (kfs high) but with stable dynamics (kfd
small but non zero).

The tasks tracked by the solver are set to keep both feet on the

ground and the center of mass above the center position of the

support polygon. For the hand compensation experiment a task was

added to maintain constant position of the hands in R [9].

With this experimental settings we test two modes of the ob-

server for both experiments. (i) We use the observer without any

sensor feedback or correction in order to show the quality of

response of our pure model. Since external disturbances cannot

be detected, the perturbations are performed with a step on the ref-

erence position of the center of mass. (ii) The second mode is the

observer with the feedback of sensors to show the performances of

the whole observer. Perturbations are then performed by pushing

the robot to excite flexibility.

C. Results

1) CoP reconstruction without sensors feedback: we give

a forward step of 2cm in the reference position of the center of

mass. Results are shown in figure 4. We can see that even without

feedback sensors which would compensate for modeling errors we

can reconstruct the position of the CoP with a good approximation.

We can notice a bias of 3.7cm between the two steady state on the
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Fig. 4. Without sensors feedback for 2cm forward step reference on the
CoM: in blue the CoP reconstructed from our estimation of contact forces
and in dashed red the real CoP reconstructed from force sensors.
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Fig. 5. With sensors feedback: in blue the CoP reconstructed from our
estimation of contact forces and in dashed red the real CoP reconstructed
from force sensors.

x component. This bias is related to the values giving by the Stack

of Tasks which gathers kinematic and dynamic modeling errors.

2) CoP reconstruction with sensors feedback: we succes-

sively push the robot to excite the flexibility in rotation around

the pitch and roll axis. Results are shown in figure 5. We can see

that the CoP reconstructed during the excitation around the pitch

axis is very close to the one reconstructed from force sensors.

First oscillation is less well estimated because of the not modeled

force of the hand pushing the robot. Contrariwise, the rotations

around roll axis gives a bit poorer results due to the speed of the

real dynamics and the higher stiffness of the contacts since the

perturbation occurs sideways and the robot is standing on both feet.

3) Floating-base kinematic estimation: we made the hands

compensation experiment setting a step reference of center of mass

with and without sensors feedback. A third experiment was done

with sensors feedback and pushing the robot. The performances

are similar to our previous study [9]. The hand position is at 1.1

m distance to the contact point. If it was not compensated it would

then move by about 20 cm. Instead the hand moves by less than

2.0 cm. The experiment is shown in the attached video.



V. DISCUSSION AND CONCLUSION

We have seen how a simple model of the elasticity of the robot

flexible parts enables to deduce the forces applied by the robot

on the ground simply from its kinematics. This can be seen as

transforming the whole robot with its IMU and flexibility into

a giant force-torque sensor. Indeed, most force sensors actually

detect a geometry deformation and convert it into forces and

torques through an elasticity model (e.g. MEMS sensors [13]).

Since no material is perfectly stiff, every robot undergoes defor-

mation when subject to forces and moments. The ability to extract

these forces from the deformation relies on the accuracy of the

kinematic reconstruction. For this reason, we had to take particular

care of the quality of the flexibility observation. We have shown

in our previous work the benefits of taking into account contact

position constraints in the observation of the floating base kinemat-

ics. On the one hand it significantly changes the observability of

the system. On the other hand it dramatically improves estimation

accuracy, especially for velocities and accelerations [9].

To our knowledge the only other work integrating contact posi-

tions in kinematics observation for a humanoid robot is the work

by Rotella et al [14]. They integrate directly the measurements

provided by the IMU, and correct this integration by considering

a model of contact with the floor. Their framework is capable

to produce accurate estimations of the orientation and velocity

of the robot, and their model is suitable for slippery contacts.

However, the fact that they integrate directly IMU signals makes it

difficult to introduce a model of the kinematics as we do by using

Newton/Euler dynamics as a predictor of our observer. Also, the

slippery contact model is not suitable to transform the deformation

into forces and moments as we do with our spring-damper model.

Therefore, this method cannot be used directly to estimate the

forces at contacts. And even if the elasticity model is introduced to

their solution the estimation will still lack second order precision

because the forces are not used in the observer’s prediction.

Indeed, the use of Newton/Euler dynamics increases the accu-

racy of the kinematics prediction. It even gives a direct insight

to clean estimates of linear and angular accelerations which are

poorly provided by accelerometers and gyrometers. Since the

prediction is much more reliable, the sensor corrections are much

finer and the final estimate more precise.

However, the estimation of contact forces depend also on a

good estimation of visco-elastic parameters of contacts. The model

of elasticity or viscosity can be wrong, for example when the

identification is not done properly or when there are compliant

surfaces in addition to flexibility in the robot. In that case, the

estimation of the forces may be wrong. It has to be corrected

using online identification techniques or by using force sensors

if available. Nevertheless, even if the contact forces are wrong the

correction made by the inertial sensors enable to correctly estimate

the state of the flexibility, we have shown in a prior work that the

worst possible model, i.e. a simple acceleration double integrator,

can still be used by a state observer and the kinematic coupling due

to contact forces is sufficient to guarantee a precise estimation.

It is worth to remind that this observer is intended to be used

in a closed-loop whole body control in order to guarantee balance

and compensation for flexibility deformations, similarly to what

we did with a former model-free observer [15]. Therefore, we are

currently investigating the performances of humanoid stabilizer

which can dispense with force sensors and is able to absorb

perturbations and correct deviations of the Center of Mass.

Finally, until now, we suggested to not use the force sensors

because of their sensitivity and expensiveness. However, many

robots do have reliable force sensors which are successfully used to

make robots accomplish many tasks including locomotion. These

sensors may provide precious corrections to forces reconstructed

from our observer. Furthermore, these measurements are very

easy to introduce in our observer and will potentially provide an

even better estimation of the CoP than the force sensors or the

presented observer separately. This will be also a subject for our

next researches.
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