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SUMMARY. When regression models adjust for mediators on the causal path

from exposure to outcome, the regression coefficient of exposure is commonly

viewed as a measure of the direct exposure effect. This interpretation can be

misleading, even with a randomly assigned exposure. This is because adjustment

for post-exposure measurements introduces bias whenever their association with

outcome is confounded by more than just the exposure. By the same token, adjust-

ment for such confounders stays problematic when these are themselves affected by

the exposure. Robins (1999) accommodated this by introducing structural nested

direct-effect models with direct effect parameters that can be estimated using in-

verse probability weighting by a conditional distribution of the mediator. The

resulting estimators are consistent, but inefficient and can be extremely unstable

when the intermediate variable is absolutely continuous. In this paper, we de-

velop direct effect estimators which are not only more efficient, but also consistent

under a less demanding model for a conditional expectation of the outcome. We

find the one estimator which avoids inverse probability weighting altoghether to

perform best. This estimator is intuitive, computationally straightforward and, as
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demonstrated by simulation, competes extremely well with ordinary least squares

estimators in settings where standard regression is valid.

KEY WORDS: Direct effect; Indirect effect; Instability; Inverse probability

weighting; Pathway; Structural nested model; Surrogate marker.

1 Introduction

Once researchers have established that an exposure affects an outcome, the

attention typically turns to understanding the biologic/mechanistic pathways that

contribute to this effect. Empirically, this is most naturally approached by disen-

tangling the part of the exposure effect that is explained by intermediate effects of

exposure on outcome through given mediators, and by the remaining direct effect.

The following examples illustrate this.

Example 1 (Surrogate biomarkers). The pressure of accelerated evaluation

of new AIDS therapies has led to the use of CD4 blood count and viral load as

endpoints that replace time to clinical events and overall survival. This raises the

question whether an effect of treatment on the biomarker provides evidence for a

clinical effect (Molenberghs et al., 2004). While a good biomarker need not lie on

the causal path from treatment to clinical event, a biomarker which does, is often

more trustworthy. For that reason, a number of approaches have been developed

to infer whether the effect of treatment on the outcome is entirely mediated by its

effect on the biomarker (Frangakis and Rubin, 2002; Taylor et al., 2005). These

approaches are particularly of interest in settings where data from a single study

are available and prediction-based approaches (Molenberghs et al., 2004) are thus

not applicable.

Example 2 (Gender discrimination). Bickel, Hammel and O’Connell (1975)

examine data from the University of Berkeley on sex bias in graduate admissions.

Noting that study choices are on average different between male and female appli-

cants, the investigation of gender discrimination may be approached by evaluating
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whether there is a direct gender effect on admission rates, which is not mediated

by study choice.

Example 3 (Zygosity in reproductive epidemiology). Verstraelen et al. (2005)

estimate that the odds of preterm birth is 38% (95%CI: 15%-66%) higher in twins

conceived after in vitro fertilization versus naturally conceived twins, after control-

ling for maternal age and parity. Since 95% of all twins conceived after subfertility

treatment are dizygotic versus 54% in naturally conceived twins, and since peri-

natal outcomes tend to be better for dizygous than for monozygous twins, part

of this odds ratio is explained by the effect of subfertility treatment on zygosity.

Verstraelen et al. (2005) thus infer the effect which subfertility treatment has

on preterm birth risk, other than through modifying the dizogytic/monozygotic

twinning rate.

Standard regression approaches for direct effects estimate the residual expo-

sure effect that remains on the outcome after adjusting for the given mediator.

These approaches tend to be biased by the same token that adjustment for post-

randomization measurements may introduce bias in the analysis of randomized

experiments (Rosenbaum, 1984). This is so whenever there exist common causes

of the mediator and outcome, other than the considered exposure (Cole and Her-

nan, 2002; Pearl, 2000; Robins, 1986). In some cases, the absence of such common

causes is a plausible assumption based on biological grounds. For instance, Ver-

straelen et al. (2005) used standard adjustment for zygosity to estimate the direct

effect of subfertility treatment on preterm birth because it is reasonable to assume

that zygosity is not affected by risk factors of preterm birth other than subfertility

treatment (and parental fertility) itself. When the presence of common causes of

mediator and outcome cannot be precluded, as in most cases of interest, untestable

assumptions must be made. In this article, as in Robins (1999) and Petersen,

Sinisi and van der Laan (2006), we proceed under the assumption of no unmea-

sured confounders for the association between mediator and outcome. Intuitively,

this assumption is sufficient because the size of the direct effect depends on how
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strongly the mediator affects the outcome and inferring the latter requires knowing

all common causes of both mediator and outcome. Ten Have et al. (2007) avoid

this assumption but assume instead that exposure and mediator do not interact in

their effect on the outcome, and that the effect of exposure on the mediator varies

by baseline covariates.

Even when all confounders for the association between mediator and outcome

have been measured, standard regression techniques are not applicable for estimat-

ing the direct of exposure on outcome. They are prone to bias whenever some of

these confounders are themselves affected by the treatment. This happens for the

same reason that stratifying by the mediator may induce selection bias. van der

Laan and Petersen (2005) and Robins (1999) accommodate this via inverse prob-

ability of treatment weighting estimators for the parameters indexing marginal

structural (MS) models and structural nested direct-effect (SNDE) models, re-

spectively. Both classes of estimators involve inverse probability weighting by a

conditional distribution of the mediator. As demonstrated by extensive simulation

studies in Section 3, these estimators can be extremely inefficient and unstable

when there are strong predictors of the mediators, or when the mediator is abso-

lutely continuous; in the latter case, they are also likely biased by the fact that

models for a conditional density are difficult to postulate.

In this paper, we mitigate these problems by developing estimators for direct

effect parameters indexing SNDE models, which are asymptotically unbiased as

soon as a less demanding model for the conditional expectation of the outcome

holds. One of the estimators avoids inverse probability weighting altoghether by

using sequential G-estimation. This estimator is intuitive and computationally

straightforward. As demonstrated by extensive simulation studies, it competes

extremely well with standard ordinary least squares estimators in settings where

standard regression is valid, but in contrast, remains valid when some of the con-

sidered confounders are themselves affected by the exposure. Our methods also

provide insights on how to stabilize estimators based on inverse probability weight-
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ing in the presence of extreme weights.

2 Structural nested direct-effect models

2.1 Controlled direct effects

Let Yxk be the potential outcome which a given subject would have experienced

under exposure X = x and a fixed value k for the intermediate variable K. Then,

as in Robins (1999), we formally define the direct effect on outcome Y of setting

exposure X = x (versus X = 0), when holding K fixed, as the contrast Yxk − Y0k

between the two potential outcomes Yxk and Y0k for the same subject. This is

termed a controlled direct effect. In this article, we develop inference for direct

effect SNMs (Robins, 1999) which parameterize average controlled direct effects

conditionally on pre-exposure covariates S and among subjects with X = x:

E(Yxk − Y0k|X = x, S) = m(x, k, S;ψ∗) (1)

where m(x, k, S;ψ) is a known function, smooth in ψ, satisfying m(0, k, S;ψ) = 0

and where ψ∗ is an unknown finite-dimensional parameter. For example, assuming

that the direct effect of exposure x (versus 0) is linear in x and the same regardless

of k and S, we may choose m(x, k, S;ψ) = ψx.

A number of alternative definitions for direct effects have been proposed in

the literature. Principal stratification direct effects (Rubin, 2004) measure the

average causal effect of setting exposure X = x (versus X = 0) among subjects

for whom the mediator was not affected by X; that is, E(Yx − Y0|Kx = K0),

where Kx is the counterfactual value of the mediator K corresponding to setting

X = x. These are more suitable when the potential outcomes Yxk are ill defined

(e.g. due to the mediator not being manipulatable), but have the drawback that

inference typically relies on a small subsample of the population (Robins, Rot-

nitzky and Vansteelandt, 2007). Standardized direct effects (Didelez, Dawid and

Geneletti, 2006) are obtained by averaging controlled direct effects over a chosen
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distribution function for the mediator, which does not depend on the exposure;

that is,
∫
E(Yxk − Y0k)f

∗(K = k)dk for a chosen density function f ∗(K). These

are more suitable in settings where it is not realistic to fix the mediator at the

same value for all subjects. Natural or pure direct effects (Pearl, 2001, Robins

and Greenland, 1992, Petersen, Sinisi and van der Laan, 2006; Didelez, Dawid and

Geneletti, 2006) form a special case obtained by setting f ∗(K) = f{K(0)}; that

is, E(YxK(0) − Y0K(0)). Because the exposure-free level forms a natural reference

level for each subject, there exist studies in which natural direct effects may be

regarded as well-defined even when the controlled direct effect is not for some k

(Petersen, Sinisi and van der Laan, 2006). In most cases, however, it is difficult to

conceive of interventions that capture the notion of natural direct effects (Didelez,

Dawid and Geneletti, 2006), so that controlled and standardized direct effects may

be the more useful for practical use. See Didelez, Dawid and Geneletti (2006) and

Robins, Rotnitzky and Vansteelandt (2007) for further discussions.

2.2 Inverse Probability of Intermediate Weighted estima-

tors

Inference for ψ∗ in model (1) is developed by Robins (1999) and briefly re-

viewed here from a different perspective. Suppose first that the potential outcome

Yk ≡ YXk following setting K = k is observed for every subject and every value k

on the support of K. Further, assume that, as expressed by the causal diagram of

Figure 1, S contains all confounders for the association between X and Yk so that

Yxk ∐X|S ∀(x, k) (2)

Then, for each k, model (1) is a structural nested mean model (Robins, 1994) which

can be fitted by G-estimation (Robins, Mark and Newey, 1992). That is, ψ∗ can be

estimated as the value ψ such that, after subtracting the direct effect m(X, k, S;ψ)

from Yk, no dependence on X remains, conditionally on S. Specifically, for given
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k, all unbiased estimating functions for ψ∗ in the model given by restrictions (1)

and (2) for the given k, with Yk observed, are of the form

∆{dk(X,S)|S} {Yk −m(X, k, S;ψ) − qk(S)} (3)

where dk(X,S) is an arbitrary vector function of the dimension of ψ, qk(S) is an

arbitrary scalar function and where for any 2 random variables A and B, we define

∆{A|B} ≡ A − E(A|B). For example, we may choose dk(X,S) = X, which, as

we will show later, corresponds to the optimal choice for dk(X,S) when model (1)

is linear in x and independent of k and S (i.e. m(X, k, S;ψ) = ψX). That (3) is

unbiased at ψ = ψ∗ follows because E(Yk −m(X, k, S;ψ)|X,S) = E(Y0k|X,S) =

E(Y0k|S) under the model given by restrictions (1) and (2). It then follows that all

unbiased estimating functions for ψ∗ in model (1)-(2) (for all k) with Yk observed

are of the form

∫
∆{dk(X,S)|S} {Yk −m(X, k, S;ψ) − qk(S)} dk (4)

Estimating equations based on (4) yield no feasible estimators for ψ∗ because

Yk is unknown for each k except the observed realization of K. Multiplying each

term in (4) with I(K = k) yields an observed data estimating function, which

in general no longer has mean zero because subjects with K = k may form a

selective subgroup. To correct for this, we make the additional assumption, which

is expressed by the diagram of Figure 1, that (X,L, S) contains all confounders

for the association between K and Y so that

Yxk ∐K|X = x, L, S ∀x, k (5)

This assumption allows for inversely weighting each term in the estimating function

(4) by the conditional distribution f(K|L, S,X) of K given X, L and S, as in
∫

I(K = k)

f(K = k|L, S,X)
∆{dk(X,S)|S} {Yk −m(X, k, S;ψ) − qk(S)} dk

=
∆{dK(X,S)|S}
f(K|L, S,X)

{Y −m(X,K, S;ψ) − qK(S)} (6)
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Estimating function (6) has mean zero at ψ = ψ∗ under model (1) because the

conditional mean of I(K=k)
f(K=k|L,S,X)

, given (L, S,X, Yk) equals 1 under assumption (5).

The solution to the estimating equation

0 =
n∑

i=1

∆{dKi
(Xi, Si)|Si}

f(Ki|Li, Si, Xi)
{Yi −m(Xi, Ki, Si;ψ) − qKi

(Si)} (7)

is therefore a consistent and asymptotically normal (CAN) estimator of ψ∗, pro-

vided that f(K = k|L, S,X) > 0 with probability 1 for all k in the support of K

(and that similar, weak regularity conditions hold as in Robins, Mark and Newey

(1992, Theorem 1A)).

Solving (7) requires that we specify parametric models

f(K|L, S,X) = f(K|L, S,X;α∗) (8)

E(dK(X,S)|S) = E(dK(X,S)|S; β∗) (9)

where f(K|L, S,X;α) is a conditional density function, smooth in α, E(dK(X,S)|S; β)

is a function of S, smooth in β, and (α∗, β∗) is an unknown finite-dimensional pa-

rameter. For example, we may assume that the conditional distribution of K given

(L, S,X) is normal with mean α0 + α1L + α2S + α3X and constant standard de-

viation σK and, with dK(X,S) = X, that E(X|S; β) = β0 + β1S. Consistent

estimators α̂ for α∗ and β̂ for β∗ can be obtained via standard regression.

Throughout we let A be the model for the observed data defined by the model

restrictions (1), (8) and (9), and the no unmeasured confounders assumptions (2)

and (5). It follows from the previous discussion that a CAN estimator ψ̂IPIW for

the direct effect parameter ψ∗ under model A can be obtained by solving

0 =
n∑

i=1

Ui,IPIW (d, q;ψ, α̂, β̂) (10)

where

Ui,IPIW (d, q;ψ, α, β) =
∆{dKi

(Xi, Si)|Si; β}
f(Ki|Li, Si, Xi;α)

{Yi −m(Xi, Ki, Si;ψ) − qKi
(Si)} (11)

For given k, optimal choices for dk(X,S) and qk(S) which lead to a semi-parametric

efficient estimator of ψ∗ in the model given by restrictions (1) and (2) (for the given
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k) and with Yk observed, have been derived by Robins (1994). When the potential

outcome variance Var(Yk|X,S) is constant in (X,S), these choices equal

dk(X,S) =
∂m(X, k, S;ψ)

∂ψ

qk(S) = E(Yk −m(X, k, S;ψ)|S)

where the latter can be calculated using the law of iterated expectations

E(Yk −m(X, k, S;ψ)|S) = E [E(Y |K = k,X, L, S) −m(X, k, S;ψ)|S)]

The same choices may not lead to a semi-parametric efficient estimator of ψ∗ under

model A, in which Yk is not observed for each subject. However, we recommend

using the above choices for practical use because we conjecture that they will

generally yield reasonable efficiency, while calculating the semi-parametric efficient

estimator under model A is much more tedious as it requires solving integral

equations.

When the intermediate variable is absolutely continuous, the above method

requires inverse weighting by a density. The inverse weighting estimator ψ̂IPIW

is then likely to have serious finite sample bias because statistical models for a

density are difficult to postulate and small misspecifications in the tails of the

density can have a large effect on the direct-effects estimates through their influence

on the inverse weights. Furthermore, the large variability of the inverse weights

may then seriously distort the precision of the estimate. An ad hoc approach to

stabilize the inverse weights is to multiply the estimating function (6) by f(K|S),

because observations with extreme values for f(K|L, S,X) are likely also extreme

in terms of f(K|S) and may therefore have a more stable ratio of both. The

resulting estimating function remains unbiased because dK(X,S) is an arbitrary

function of K,X and S, and the conditional expectation in E(dK(X,S)|S) is only

w.r.t. X. Therefore, from now on, we will replace the weights 1/f(K|L, S,X) by

the stabilized weights f(K|S)/f(K|L, S,X). However, as we will show in several

simulation studies in Section 3, this ad hoc stabilization will often not suffice

9
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to obtain well-behaved estimators in moderate sample sizes. Alternatively, one

could truncate the weights. However, one may argue that truncated weights are

deliberately misspecified weights and, as such, may impact the consistency of the

direct-effects estimator. In the next sections, we will therefore develop estimators

which allow misspecification (and thus truncation) of the weights.

2.3 Doubly-robust estimators

To obtain estimators with better performance in the presence of unstable

weights, note (using similar arguments as in van der Laan and Robins, 2003)

that, up to asymptotic equivalence, all CAN estimators for ψ∗ under model A can

be obtained by solving estimating equations of the form

0 =
n∑

i=1

Ui,IPIW (d, q;ψ, α, β) − ∆ {φ(Ki, Li, Xi, Si)|Li, Xi, Si} (12)

where φ(Ki, Li, Xi, Si) is an arbitrary vector function of the dimension of ψ. Part 1

of Theorem 1 below shows that for given dK(X,S) and qK(S), the optimal choice of

φ(Ki, Li, Xi, Si) that leads to estimators of ψ∗ with minimum asymptotic variance,

equals

φopt(Ki, Li, Xi, Si) ≡ E(Ui,IPIW (d, q;ψ, α, β)|Ki, Li, Xi, Si) (13)

In the proof of Theorem 1, we further show that this yields the following estimating

function for ψ

∆{dK(X,S)|S; β}W (α)∆ {Y |K,L,X, S} (14)

+

∫
∆{dK(X,S)|S; β} {E(Y |K,L,X, S) −m(X,K, S;ψ) − qK(S)} f(K|S)dK

where W (α) = f(K|S)/f(K|L, S,X;α) and where the conditional density f(K|S)

may be replaced by an estimate. Using this estimating function requires that we

specify a parametric model

E(Y |K,L,X, S) = E(Y |K,L,X, S; γ∗) (15)
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where E(Y |K,L,X, S; γ) is a function of (K,L,X, S), smooth in γ, and γ∗ is an

unknown finite-dimensional parameter. A consistent estimator γ̂ for γ∗ can be

obtained using standard regression techniques. For example, for the linear model

E(Y |K,L,X, S; γ) = γ0 + γ1K + γ2L+ γ3X + γ3S (16)

and with m(X,S,K;ψ) = ψX, dK(X,S) = d(X,S) and qK(S) = 0, the estimating

function (14) has the relatively simple form

∆{d(X,S)|S; β} [W (α)∆{Y |K,L,X, S; γ} + E(Y |K = E(K|S), L,X, S; γ) − ψX]

Part 2 of Theorem 1 shows that the solution ψ̂DR to an estimating equation based

on (14) has the interesting feature of being a consistent estimator of ψ∗ when either

model (8) holds or model (15), but not necessarily both. We therefore call ψ̂DR a

doubly-robust estimator of ψ∗.

Theorem 1. 1. The solution ψ̂DR to equation

0 =
n∑

i=1

Ui,DR(d, q;ψ, α̂, β̂, γ̂) (17)

where

Ui,DR(d, q;ψ, α, β, γ) = ∆{dKi
(Xi, Si)|Si; β}Wi(α)∆ {Yi|Ki, Li, Xi, Si; γ}

+

∫
∆{dKi

(Xi, Si)|Si; β} {E(Yi|Ki, Li, Xi, Si; γ) −m(Xi, Ki, Si;ψ)

−qKi
(Si)} f(Ki|Si)dKi (18)

is locally efficient among all CAN estimators under model A that use the given

choice of dK(X,S) and qK(S), in the sense that it is efficient in this class when

model (15) is correctly specified.

2. ψ̂DR is a consistent estimator of ψ∗ under model A ∪ B, where B is the

model for the observed data defined by the model restrictions (1), (15) and (9),

and the no unmeasured confounders assumptions (2) and (5).
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2.4 Unweighted estimators

The attractiveness of the doubly-robust estimator ψ̂DR lies not only in it (typ-

ically) being more efficient than the simpler inverse weighting estimator ψ̂IPIW .

Its main attraction lies in the fact that it avoids reliance on a difficult-to-postulate

model for the density of the mediator when a simpler model for a conditional ex-

pectation of the outcome holds. In this section, we completely avoid reliance on

the model for the density of the mediator by setting f(K|L, S,X) equal to f(K|S)

in the estimating function (17) of the doubly-robust estimator. The implication

of this is to set all weights equal to 1, which leads to an unweighted estimating

equation. The corresponding estimators ψ̂UW solve

0 =
n∑

i=1

Ui,UW (d, q;ψ, β̂, γ̂) (19)

where Ui,UW (d, q;ψ, β, γ) is defined as Ui,DR(d, q;ψ, α, β, γ), but with Wi(α) re-

placed by 1. For example, when choosing a linear conditional mean model for Y

as in (16), m(X,K, S;ψ) = ψX, dK(X,S) = X, qK(S) = γ1E(K|S), we obtain

the simple form

0 =
n∑

i=1

∆{Xi|Si; β} (Yi − γ1Ki − ψXi) (20)

Note that this estimating equation is very intuitive as it expresses that, after

subtracting the effect γ1Ki of the mediator and the direct effect ψXi of the exposure

from the outcome, no association with Xi should remain after adjustment for the

confounder Si. As such, the solution β̂ for β to equation (20) with γ1 replaced

by a consistent estimate γ̂1, can be viewed as a sequential G-estimator (i.e., it is

obtained by G-estimation applied to the residual outcome Yi − γ̂1Ki that remains

after removing the effect of the mediator from the outcome). The solution to (19)

generalizes such sequential G-estimators by allowing for nonlinear models (15) for

the outcome.

By the fact that the solutions to (17) are consistent estimators for ψ∗ under

model A ∪ B, solving (19) gives a consistent estimator for ψ∗ under model B. In
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the simulation study of Section 3, we will show that the resulting estimator has

the desirable property of being very stable and efficient as a result of avoiding the

inverse weighting, but is no longer doubly-robust. In the following sections, we

briefly introduce alternative estimators which are designed to perform well in the

presence of extreme weights and protect the double robustness property.

2.5 Stabilized doubly-robust estimators

Using arguments similar to Robins et al. (2007), we will stabilize the doubly-

robust direct effects estimator by substituting ψ in expression (13) by an estimator

ψ̃ which is consistent under model B. We denote the resulting estimator with

ψ̂SDR. When considering closed-form estimators for ψ∗ obtained from expression

(17), it can be seen that the impact of this is that the weights Wi(α) appear

both in the numerator and denominator. For example, with m(X,K, S;ψ) = ψX,

dK(X,S) = X, qK(S) = 0 and a linear conditional mean model for Y as in (16),

we then obtain

ψ̂SDR =

∑n
i=1 ∆ {Xi|Si; β}

[
Wi(α)

{
∆ {Yi|Ki, Li, Xi, Si; γ} + ψ̃Xi

}]

∑n
i=1Wi(α)Xi∆ {Xi|Si; β}

+

∑n
i=1

{
ψ̃Xi − E(Yi|Ki = E(Ki|Si), Li, Si, Xi; γ)

}

∑n
i=1Wi(α)Xi∆ {Xi|Si; β}

(21)

The resulting estimator is generally more stable than the doubly-robust estimator
∑n

i=1 ∆ {Xi|Si; β} [Wi(α)∆ {Yi|Ki, Li, Xi, Si; γ} + E(Yi|Ki = E(Ki|Si), Li, Si, Xi; γ)]∑n
i=1Xi∆ {Xi|Si; β}

of Section 2.3 by the fact that subjects with extreme weights Wi(α) in the nu-

merator of (21) will also make the denominator of (21) extreme. The stabilized

doubly-robust estimator ψ̂SDR is a consistent estimator of ψ∗ under model A, even

when model (15) is misspecified and thus even when ψ̃ is an inconsistent esti-

mator, because estimating equation (12) is unbiased under model A regardless

of φ(Ki, Li, Xi, Si) (and thus in particular when the unknown parameters index-

ing φ(Ki, Li, Xi, Si) are replaced by inconsistent estimators). Likewise, ψ̂SDR is a
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consistent estimator of ψ∗ under model B, even when model (8) is misspecified,

because estimating equation (17) is unbiased under model B and because ψ̃ is a

consistent estimator of ψ∗ under model B. It follows that ψ̂SDR is a doubly-robust

estimator of ψ∗.

Alternatively, we may improve the finite-sample behavior of ψ̂DR by adapting

ideas in Tan (2006) for inverse weighting estimators to inverse weighting estimating

functions. Specifically, we modify the doubly-robust estimating equation for ψ∗ as

0 =
n∑

i=1

Ui,IPIW (d, q;ψ, α, β) − κ∆ {φopt(Ki, Li, Xi, Si)|Li, Xi, Si} (22)

and determine an ‘optimal’ choice of κ that leads to improved efficiency. Note that

the choice κ = 1 yields the estimator ψ̂DR, which may be an inefficient doubly-

robust estimator whenever model (15) is incorrectly specified.

Let for notational convenience ξ ≡ ∆ {φopt(Ki, Li, Xi, Si)|Li, Xi, Si} and η ≡
Ui,IPIW (d, q;ψ, α, β). For arbitrary random variable A, define Ê(A) as the sample

average
∑n

i=1Ai/n. Then choosing κ equal to κopt = Ê−1(ξξ′)Ê(ξη′) yields an

estimator ψ̂(κopt) with minimal variance among all estimators ψ̂(κ) that solve (22)

for given κ. This can be seen from the following 2 arguments. First, the variance

E(η2−2κηξ+κ2ξ2) of the estimating function η−κξ is minimized at κopt. Second,

the estimator obtained by solving the corresponding estimating equation itself has

minimal variance among all estimators ψ̂(κ) because

V ar(ψ̂(κ)) ≈ 1

n
E

(
∂η

∂ψ

)−1

V ar (η − κξ)E

(
∂η

∂ψ

)−1′

and thus the variance of these estimators is proportional to the variance of their

estimating function. The estimator ψ̂(κopt) is however not doubly-robust because

κopt may not converge to 1 under a correctly specified model for (15).

Choosing κ to equal

κdr ≡ Ê−1(ξχ′)Ê(ξη′)

with

χ ≡ ∆{dKi
(Xi, Si)|Si; β}Wi(α) [E {Yi −m(Xi, Ki, Si;ψ)|Xi, Ki, Li, Si} − qKi

(Si)]
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accommodates this. Indeed, κdr converges to 1 when the model for (15) is correctly

specified, because χ = E(η|X,K,L, S) and thus E−1(ξχ′)E(ξη′) = 1 under such

correctly specified model. It follows that the estimator ψ̂(κdr) is a doubly-robust

estimator. Further,

E(ξχ′) = E
[
ξ {ξ + E(η|X,L, S)}′

]
= E(ξξ′)

if model (8) is correctly specified, because ξ has conditional mean zero, given

(X,L, S), under that model. It follows that κdr − κopt converges to zero under

model (8), suggesting that ψ̂(κdr) has minimal variance among all estimators ψ̂(κ)

under that model. Throughout this paper, we will refer to ψ̂(κdr) ≡ ψ̂IDR as an

improved doubly-robust estimator.

Finally, combining the ideas leading to the estimators ψ̂SDR and ψ̂IDR leads to

yet a final estimator that we will refer to as the stabilized, improved doubly-robust

estimator. The resulting estimator is obtained by substituting κ with κdr in (22)

and ψ in expression (13) by an estimator ψ̃ which is consistent under model B.

We will denote it as ψ̂SIDR.

3 Simulation study

We generate 1000 datasets of size 1500 according to the data generating

mechanism of Figure 1, but without confounder S. In a first simulation exper-

iment, we postulate linear models for all variables in the diagram: X = 1 + ǫX ,

L = 1+λX+0.8U+ǫL, K = 0.5L−0.5X+ǫK and Y = δ(−1+2X+0.5K+U+ǫY )

for mutually independent, normally distributed variates U , ǫX , ǫL, ǫK and ǫY with

mean zero and standard deviations 1, 0.5, 1, 0.3 and 0.5, respectively and with

δ = 1. A characteristic feature of this simulation experiment is that there is a

strong association between X and Y along the path X − L − U − Y . We con-

sidered both the cases λ = 1.5 and λ = 0 to represent settings where L is/is

not affected by X. As such, we represent both settings where standard regression
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methods are/are not applicable for estimating the direct effect (i.e. 2δ) of X on Y

(which is not mediated by K). Assuming a correctly specified structural nested

direct-effects model with m(X,K;ψ) = ψX, the following estimators were calcu-

lated in each simulation, corresponding to the choices dK(X) = X and qK = 0:

the Inverse Probability of Intermediate Weighting (IPIW) estimator of Section

2.2, the doubly-robust (DR) estimator of Section 2.3, the unweighted (UW) esti-

mator of Section 2.4, the stabilized doubly-robust (SDR) estimator, the improved

doubly-robust (IDR) estimator and the stabilized, improved doubly-robust (SIDR)

estimator of Section 2.5. Finally, we also reported the estimated coefficient for X

in a linear regression model for Y , given X,K and L. We chose the following

correctly specified working models: a normal conditional distribution for K given

L and X with mean linear in L and X and constant residual standard deviation,

and a linear regression model for Y with mean linear in X, K and L.

Because of outlying values for a number of estimators, Table 1 reports both the

average and median bias, the average and median bootstrap standard error, the

empirical standard deviation of the estimates and corresponding (robust) MCD-

estimator, the p-value of the Wilcoxon rank test whether the median direct effect

estimate differs from zero, and the coverage of standard 95% bootstrap confidence

intervals. Here, bootstrap estimates are based on 1000 bootstrap samples.

We find that the standard linear regression analysis (LM) yields severely biased

estimates when the confounder L is affected by X, while all other estimators are

approximately unbiased. The IPIW estimator is unstable in the sense that it

suffers from many outlying values. The DR estimator is considerably more stable

and more efficient. Slightly higher efficiency is observed for the improved doubly-

robust estimator, but the best results are obtained using the unweighted estimator.

The simulation experiment where L is not affected by X reveal that the latter

estimator competes very well with the standard regression analysis. Indeed, it is

only slightly less efficient, but has the advantage of remaining unbiased when L is

affected by X.
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In a second simulation experiment (see Table 2), we investigate the impact

of model misspecification by generating K as exp(0.5L− 0.5X + ǫK), with all re-

maining variables generated as before. Estimators were obtained using the same

working models that were previously used. We now obtain extremely unstable

IPIW and DR estimates as a result of the estimated density of the intermediate

taking extremely small values for some subjects (due to the skewness of the data).

The improved doubly-robust estimators perform considerably better, with the sta-

bilized improved DR estimator having the best performance. However, as a result

of remaining instability, bootstrap standard errors could not be obtained in all

simulated datasets. Overall, the most efficient estimates are again obtained via

the unweighted estimator.

In a third simulation experiment (see Table 3), we misspecified working model

(15) by generating Y as Y = δ(−1 + 2X + 0.5(K − E(K)) − 3(K − E(K))2 +

U + ǫY ), with δ = 0.7 to obtain the same variability in Y as in the first simulation

expiriment. Results are now similar to those of the first simulation experiment.

Curiously, also the unweighted estimator, while fully relying on the misspecified

working model (15), remains unbiased. When L is not affected by X, this can be

understood from the following arguments. Fitting the outcome model (16) (with

S empty) then yields valid estimates for the direct effect ψ∗ of X on Y , even when

the association between K and Y is misspecified, because the conditional mean of

X is linear in K and L under the considered data-generating mechanism (see e.g.

Robins, Mark and Newey, 1992). From the form of the normal equations for the

parameters indexing model (16), it thus follows that ∆(X)(Y −γ∗0 −γ∗1K−ψ∗X−
γ∗2L), with γ∗0 , γ

∗
1 and γ∗3 the limiting values of the ordinary least squares estimators

for γ0, γ1 and γ3 under model (16), has mean zero. In particular, because L is not

affected by X and thus independent of X under our model, we have that the

estimating function of the unweighted estimator,

∆(X)(Y − γ∗1K − ψ∗X),
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is unbiased, even when the association between K and Y is misspecified. It can

be seen with some algebra that this result continues to hold when L is affected by

X and (X,K,L) is multivariate normal.

In a fourth simulation experiment (see Table 4), we misspecified both work-

ing models by generating K and Y as in the previous 2 simulation experiments,

respectively, but with δ = 0.04. As expected, all estimators are now biased. Note

that, while the additional misspecification of the working model (8) has no imme-

diate impact on the unweighted estimator (because this estimator avoids inverse

probability weighting), it also becomes biased because the robustness property of

this estimator (see previous paragraph) only holds for linear models. Note how-

ever, that the unweighted estimator is still outperforming the other estimators

both in terms of precision and bias. With a correctly specified working model (8)

for the intermediate, but a misspecified outcome model (see Table 5, simulation

experiment 5), as expected, the unweighted estimator continues to behave poorly

as it does not make use of the working model for the intermediate. However, the

(stabilized) improved doubly-robust estimators now outperform the others, both

in terms of bias and precision (but the bootstrap confidence intervals are poor

in terms of coverage). The usefulness of the latter estimators is most apparent

when the intermediate is non-normal and, additionally, this is acknowledged via

the working model (8). We conjecture that these stabilized doubly-robust estima-

tors will be more competitive with the unweighted estimator in settings where the

weights are more stable, such as may happen when the mediator is binary.

4 Data analysis

De Sutter et al. (2006) estimate the effect of single versus double embryo

transfer (SET versus DET) on birth weight using a survey of 557 SET and 396 DET

patients who entered the subfertility program at the Ghent University hospital and

who delivered a singleton child of at least 500 grams after fresh embryo transfer
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in a first, second or third cycle between January 2003 and May 2007. The mean

gestational age (GA) of singleton babies is 273.9 days (SD 12.4). The mean birth

weight (BW) is 3231.8 grams (SD 565.4). De Sutter et al. (2006) observed birth

weights to be 120 grams (95% confidence interval 44 - 197) lower on average in

babies born after double than single enmbryo transfer. In response to criticism

that the analysis was not adjusted for gestational age, Delbaere et al.(2007) argue

that such adjustment would remove a possible indirect effect of SET/DET on birth

weight through gestational age, and would introduce bias because gestational age

may be affected by SET/DET and is associated with birth weight. At the same

time, the debate raises the question whether the effect of SET/DET on birth weight

is entirely mediated through gestational age.

To address this question, we assume that the causal diagram of Figure 1 rep-

resents the data generating mechanism, with S representing measured baseline

confounders (embryo quality, duration of infertility, maternal age, female and male

pathology, gravida and type of conception (IVF/ICSI)) for the association between

SET/DET and pregnancy outcomes, and L representing measured confounders

(complications during pregnancy, vaginal blood loss, preterm contractions, preterm

rupture of the membranes and growth retardation) for the association between ges-

tational age and birth weight. The diagram allows for the presence of unmeasured

confounders U for the association between these confounders and outcome Y . Note

that the analysis is restricted to women who deliver a singleton baby and that an

implicit assumption in the analysis is thus that the loss of an embryo (in early

pregnancy) in women with DET treatment is not associated with gestational age

and birth weight.

Of all variables listed above as potential baseline confounders for the assocation

between embryo transfer (SET/DET) and the outcome BW, only maternal age,

embryo quality, duration of infertility and IVF/ICSI treatment showed a significant

association with SET/DET and/or BW. Thus, only these variables are included

as confounders S. For similar reasons, only preterm contractions, preterm rupture
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of the membranes and growth retardation are included as confounders L. Due

to the many missing values for duration of infertility (33.6%), we first performed

the analyses assuming that infertility duration does not confound the association

between GA and BW. This leaves us with 895 complete observations.

To estimate the direct effect of SET/DET on BW, which is not mediated by

GA, we use the approaches proposed in Section 2. Based on the results of the

simulation experiments in the previous section, we use the sequential G-estimator

(i.e. the unweighted estimator with a linear conditional model for Y ) as the pri-

mary estimator in the analysis. Since GA is skewly distributed to the left, we

transformed it via a Box-Cox transformation so that we could assume a normal

distribution for model (8), with mean α0 + α1L+ α2S + α3X and constant resid-

ual standard deviation σK . Further, we postulated m(X,K, S;ψ) = ψX, chose

dK(X,S) = X and qK(S) = 0 and we specified linear models E(X|S; β) = β0 +βS

and E(Y |K,L,X, S) = γ0+γ1K+γ2L+γ3X+γ4S for the conditional expectations

of the exposure SET/DET (X) and the outcome BW (Y ). Table 6 summarizes

the estimates obtained from the different estimation methods, along with boot-

strap standard errors and confidence intervals based on 1000 bootstrap samples.

As expected, after removing the indirect effect through GA, we now estimate the

average birth weight to be merely 60 grams (95% confidence interval 14 - 136) lower

on average in babies born after double than single enmbryo transfer. While the

difference in birth weight is no longer significant after controlling for GA, the con-

fidence interval does not exclude the possibility of important differences exceeding

100 grams.

5 Discussion

Estimating the direct effect of an exposure on an outcome, which is not me-

diated by some given variable, requires adjustment not only for prognostic factors

of the outcome that are associated with the exposure, but additionally for those
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associated with the mediator. In practice, several of these prognostic factors may

only arise after the exposure was administered and thus possibly be affected by it.

In such settings, standard regression methods may yield biased estimates of the

direct exposure effect.

While methods based on inverse probability weighting have been proposed to

accommodate this problem, they require inverse weighting by a density when the

mediator is discrete with many levels or absolutely continuous. Inefficient effect

estimators with large bias are then typically obtained. In this article, we have

proposed an estimation approach which avoids the inverse weighting altogether.

This estimator competes remarkably well with ordinary least squares estimators

in settings where these are valid (i.e. in settings where prognostic factors of the

outcome which are predictive of the mediator, are not themselves affected by the

exposure), but remains valid in settings where the ordinary least squares estima-

tor fails. The proposed estimator requires postulating a working model for the

expected outcome in function of exposure, mediator and prognostic factors. It is

robust against misspecification of this working model when the exposure, medi-

ator and its prognostic factors have a multivariate normal distribution, but not

otherwise. In view of this, we have derived doubly-robust estimators which allow

for misspecification, provided that a working model for a conditional density of

the mediator is correctly specified. On the basis of the simulation studies, we

recommend the unweighted estimator and the (stabilized) improved doubly-robust

estimator when the mediator is absolutely continuous. For a dichotomous media-

tor, less variable inverse weights are expected, and thus a relatively much better

performance of the (stabilized) improved doubly-robust estimator.

A number of restrictions are implicit in our approach. First, we have implicitly

assumed that the mediator may affect the outcome, but is not itself affected by

it. In many practical studies, mediator and outcome may mutually affect each

other over time. We plan to accommodate this in future work by allowing for

repeated measurements on mediator and outcome. Second, we have implicitly
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assumed that controlled direct effects are well defined. Standardized direct effects

(Didelez, Dawid and Geneletti, 2006) are more broadly useful and can be obtained

by averaging the controlled direct-effect estimates in this article over a chosen

mediator density.
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APPENDIX: PROOF OF THEOREM 1

Part 1 of Theorem 1 is immediate upon applying Theorem 1.2 in van der Laan

and Robins (2003). With F ≡ f(K|L, S,X;α), M ≡ m(X,S,K;ψ), Q ≡ qK(S)

and D ≡ dK(X,S), this yields estimating function

∆ {D|S; β}W (α) (Y −M −Q)

− [E (∆ {D|S; β}W (α) (Y −M −Q) |K,L,X, S)

−E {E (∆ {D|S; β}W (α) (Y −M −Q) |K,L,X, S) |L,X, S}]

The first two terms can be rewriten as

n∑

i=1

∆ {D|S; β}W (α) (Y − E(Y |K,L,X, S))

The third term equals

E [∆ {D|S; β}W (α) {E(Y |K,L,X, S) −M −Q} |X,L, S]

which can be calculated as

∫
∆ {D|S; β} {E(Y |K,L,X, S) −M −Q} f(K|S)dK

To prove Part 2 of Theorem 1, we assume that the regularity conditions of Theorem

1A in Robins, Mark and Newey (1992) hold for Ui,DR(d, q;ψ, α, β, γ), the estimating

function Gi(γ) for γ and Ai(α) for α. By standard Taylor expansion arguments,
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we have that

0 = n−1/2

n∑

i=1

Ui,DR(d, q;ψ∗, α̃, β, γ̃) + E

{
∂

∂ψ
Ui,DR(d, q;ψ = ψ∗, α̃, β, γ̃)

}√
n(ψ̂ − ψ∗)

−E
{
∂

∂γ
Ui,DR(d, q;ψ∗, α̃, β, γ = γ̃)

}
E−1

{
∂

∂γ
Gi(γ = γ̃)

}
Gi(γ̃)

−E
{
∂

∂γ
Ui,DR(d, q;ψ∗, α = α̃, β, γ̃)

}
E−1

{
∂

∂α
Ai(α = α̃)

}
Ai(α̃) + op (1) (23)

where op(1) denotes a random variable converging to 0 in probability, and where

γ̃ and α̃ are the probability limits of the estimators for γ∗ and α∗.

First note that Ui,DR(d, q;ψ, α̃, β, γ̃) has mean zero at ψ = ψ∗ under model A,

even when model (15) for the conditional expectation of the outcome is misspec-

ified. This is because the first term in (12) has mean zero at ψ∗ under model A
by construction and the second term is a mean zero function under model A for

each choice of φ(Ki, Li, Xi, Si) and thus in particular for φopt(Ki, Li, Xi, Si). We

now show that Ui,DR(d, q;ψ, α̃, β, γ̃) has mean zero at ψ = ψ∗ under model B, even

when model (8) for the conditional density of the mediator is misspecified. Using

the potential outcomes framework, we may rewrite the estimating function in (17)

as

UDR =

∫
I(K = k)

F
∆{D|S}(Yk −M −Q)dk

−E
(∫

I(K = k)

F
∆{D|S}(Yk −M −Q)dk|X,K,L, S

)

+E

[
E

(∫
I(K = k)

F
∆{D|S}(Yk −M −Q)dk|X,K,L, S

)
|X,L, S

]

We rewrite the first term as

∫ [
(Yk −M −Q)∆{D|S} +

{
I(K = k)

F
− 1

}
(Yk −M −Q)∆{D|S}

]

The second term equals

∫
I(K = k)

F
E(Yk −M −Q|K = k,X, L, S)∆{D|S}dk
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and the third term can be further simplified to

E

[∫
I(K = k)

F
E(Yk −M −Q|K = k,X, L, S)∆{D|S}dk|X,L, S

]

=

∫
E(Yk −M −Q|K = k,X, L, S)∆{D|S}E

(
I(K = k)

F
|X,L, S

)
dk

=

∫
E(Yk −M −Q|K = k,X, L, S)∆{D|S}dk

Adding these 3 terms yields

∫ [
(Yk −M −Q)∆{D|S} +

{
I(K = k)

F
− 1

}
(Yk −M −Q)∆{D|S}

−
{
I(K = k)

F
− 1

}
E(Yk −M −Q|K = k,X, L, S)∆{D|S}

]
dk

=

∫
(Yk −M −Q)∆{D|S}dk

+

∫ {
I(K = k)

F
− 1

}
(Yk − E(Yk|K = k,X, L, S))∆{D|S}dk

The first term was shown to have mean zero at ψ∗ in Section 2.2. The second term

has mean zero when, as in model B, the conditional expectation of Y is correctly

specified, since Yk is independent of K conditionally on X, L and S provided

that, as model B postulates, L represents all common causes of K and Y . We

conclude that Ui,DR(d, q;ψ, α̃, β, γ̃) has mean zero at ψ = ψ∗ under model A ∪ B.

Further, note that γ̃ = γ∗, and thus that E {∂Ui,DR(d, q;ψ∗, α = α̃, β, γ̃)/∂α} = 0

and E{Gi(γ̃)} = 0 when model (15) is correctly specified. Likewise, α̃ = α∗, and

thus E {∂Ui,DR(d, q;ψ∗, α̃, β, γ = γ̃)/∂γ} = 0 and E{Ai(α̃)} = 0 when model (8) is

correctly specified. Under the regularity conditions of Theorem 1A in Robins, Mark

and Newey (1992), it now follows from the asymptotic unbiasedness of
√
n(ψ̂−ψ∗)

under model A ∪ B that ψ̂ is a consistent estimator of ψ∗ under model A ∪ B.
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Confounder S

SET/DET X Birth weight Y
Gestational age K

Confounder L

U

Figure 1: Causal Diagram

28

http://biostats.bepress.com/harvardbiostat/paper75



Table 1: Simulation Experiment 1

with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.49/-0.024 44.98/0.20 13.59/0.28 0.01 92.3

DR 0.029/-0.001 1.36/0.12 1.37/0.17 0.73 96.1

UW -0.001/-0.001 0.061/0.061 0.061/0.061 0.51 95.0

SDR -0.055/0.00 26.53/0.15 1.91/0.21 0.51 94.1

IDR -0.011/-0.010 0.16/0.10 0.21/0.13 0.11 93.9

SIDR -0.016/-0.006 1.013/0.12 0.40/0.15 0.43 95.3

LM -0.73/-0.73 0.068/0.068 0.071/0.072 0.00 0

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 0.18/0.032 49.33/0.26 1.79/0.37 0.00 94.4

DR 0.009/0.005 1.23/0.12 1.25/0.18 0.60 95.5

UW 0.004/0.007 0.07/0.07 0.071/0.071 0.059 95.3

SDR 0.034/0.002 18.92/0.16 2.59/0.23 0.71 94.0

IDR 0.005/0.002 0.15/0.10 0.17/0.13 0.19 94.7

SIDR -0.003/0.006 1.88/0.13 0.24/0.16 0.28 95.3

LM 0.003/0.003 0.062/0.062 0.063/0.064 0.078 95.3
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Table 2: Simulation Experiment 2

with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 10.82/9.1 437/10.0 23.8/5.3 0.00 60.0

DR 8.3 1050/-0.13 1.4 1064/1.8 109 2.7 1051/1.9 0.59 100.0

UW -0.001/-0.001 0.059/0.059 0.059/0.059 0.78 95.1

SDR 0.00/0.018 41.3/0.97 2.1/0.77 0.80 94.2

IDR 17.1/0.037 -/- 520/1.8 0.00 -

SIDR -0.022/-0.002 -/- 0.58/0.088 0.86 -

LM -0.73/-0.73 0.061/0.061 0.063/0.063 0.00 0

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -15.0/10.2 4153/39.0 936.4/16.2 0 84.8

DR −3.3/1050/-4.4 2.5 1065/8.9 1011 1.1 1053/- 0.012 100.0

UW 0.002/0.000 0.062/0.062 0.062/0.062 0.23 96

SDR -6.7/0.022 594/4.9 151.8/2.4 0.88 96.6

IDR 3.6/0.033 -/- 353.62/2.60 0.001 -

SIDR -0.074/0.005 -/- 3.13/0.12 0.17 -

LM 0.002/0.001 0.053/0.053 0.053/0.053 0.41 95.3
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Table 3: Simulation Experiment 3

with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.63/-0.027 84.1/0.33 20.8/0.43 0.9 91.7

DR -0.017/-0.010 1.9/0.17 2.0/0.25 0.94 96.1

UW -0.002/-0.004 0.096/0.095 0.099/0.098 0.35 93.0

SDR 0.11/-0.008 44.6/0.21 3.7/0.31 0.55 94.7

IDR -0.004/-0.007 0.23/0.13 0.26/0.16 0.45 95.1

SIDR 0.059/-0.008 0.53/0.15 1.8/0.20 0.95 95.2

LM -0.51/-0.52 0.12/0.12 0.12/0.12 0.00 1.2

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 0.068/-0.004 106/0.35 7.5/0.51 0.01 92.9

DR -0.035/-0.005 2.4/0.18 2.4/0.26 0.66 95.1

UW 0.001/0.003 0.12/0.12 0.12/0.12 0.63 95.6

SDR -0.17/-0.014 56.9/0.23 3.02/0.35 0.22 94.5

IDR -0.008/0.001 0.23/0.14 0.29/0.18 0.83 94.6

SIDR -0.008/-0.007 0.65/0.17 0.50/0.22 0.97 95.3

LM 0.000/0.002 0.12/0.12 0.12/0.12 0.80 95.5
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Table 4: Simulation Experiment 4

with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -92.87/-37.12 8590.71/51.34 405.46/63.32 0.00 53.2

DR −8.21052 / −42581 1.3 1066 / 3.5 1043 2.0 1054/- 0.0 100.0

UW 1.85/0.58 0.067/0.066 0.067/0.066 0.00 0.0

SDR -1.65/-20.01 493.06/2.70 40.03/1.96 0.00 95.7

IDR -16.75/0.52 224.65/113.73 319.29/0.11 0.57 96.7

SIDR 1.83/0.55 3.49/0.14 0.44/0.083 0.00 93.1

LM 1.78/-1.16 0.054/0.055 0.065/0.064 0.00 0

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 16.6/-19.9 7999/65.6 1507/39.5 0 79.6

DR 4.2 1052/2211408 3.0 1067/ 1.2 1013 1.2 1051 / 2.37 0.00 100.0

UW -0.34/-0.33 0.11/0.097 0.15/0.095 0.00 0

SDR 9.4/-11.2 3514/0.097 826/21.9 0.00 76.2

IDR 6.6/0.52 -/- 107/1.78 0.00 -

SIDR -0.24/0.55 -/- 1.3/0.12 0.00 -

LM -0.34/-0.30 0.16/0.14 0.15/0.089 0.00 27.3
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Table 5: Simulation Experiment 5

with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.30/-0.035 13.68/0.091 5.79/0.092 0.00 92.7

DR 0.43/0.46 1.13/0.35 5.04/0.36 0.00 61.5

UW 0.64/0.57 0.18/0.14 0.29/0.15 0.00 0

SDR 201/0.41 137.52/0.43 49.38/0.47 0.00 70.3

IDR 0.042/0.0014 0.13/0.097 0.22/0.11 0.57 74.7

SIDR 0.039/-0.00097 0.14/0.084 0.22/0.088 0.00 77.8

LM -1.30/-1.16 0.097/0.085 0.55/0.056 0.00 44.4

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.008/0.022 2.78/0.033 1.25/0.035 0.00 39.6

DR -0.17/-0.24 0.39/0.11 2.34/0.12 0.00 58.8

UW -0.34/-0.30 0.084/0.060 0.15/0.072 0.00 0.30

SDR -0.17/-0.22 7.2/0.14 3.10/0.15 0.00 73.3

IDR 0.0003/-0.008 0.069/0.056 0.10/0.049 0.037 64.9

SIDR 0.009/0.009 0.081/0.053 0.096/0.055 0.00 54.5

LM -0.34/-0.30 0.024/0.021 0.14/0.063 0.00 21.3
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Table 6: Data Analysis Results

Without infertility duration With infertility duration

ψ̂ boot SE 95% CI ψ̂ boot SE 95% CI

IPIW 78.20 100.16 [-143.41;304.21] 91.90 144.41 [-224,78;338.44]

DR -67.77 40.44 [-141.19;14.42] -84.11 53.75 [-190.64;14.79]

UW -59.64 36.70 [-136.49;13.97] -70.76 47.92 [-156.37;14.98]

SDR -67.69 40.38 [-141.22;14.38] -83.82 53.54 [-189.42;15.37]

IDR -69.52 42.46 [-154.40;18.41] -86.07 54.87 [-181.93;15.03]

SIDR -69.45 42.33 [-153.08;18.18] -85.77 54.59 [-181.63;14.70]

LM -44.59 33.49 [-115.06;28.88] -71.14 45.18 [-148.02;6.27]
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