Estimation of Copula Models with
 Discrete Margins (via Bayesian Data Augmentation)

Michael S. Smith Melbourne Business School, University of Melbourne (Joint with Mohamad Khaled, University of Queensland)

Introduction

-Copula models with discrete margins
-Distribution augmented with latent variables
-Augmented likelihood \& some conditional posteriors
-Two MCMC sampling schemes for estimation; outline just one.
-Application to small online retail example -Application to D-vine; illustration with longitudinal count data

Discrete-Margined Copula Models

-Let X be a vector of m discrete-valued random variables

- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$
F(x)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{m}\left(x_{m}\right)\right)
$$

Discrete-Margined Copula Models

-Let X be a vector of m discrete-valued random variables

- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$
F(x)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{m}\left(x_{m}\right)\right)
$$

$$
\text { Joint CDF of } X=\left(X_{1}, \ldots, X_{m}\right)
$$

Discrete-Margined Copula Models

-Let X be a vector of m discrete-valued random variables

- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$
F(x)=C\left(F_{1}\left(x_{1}\right), \ldots F_{m}\left(x_{m}\right)\right.
$$

$$
\text { Univariate CDFs of } X_{1}, \ldots, X_{m}
$$

Discrete-Margined Copula Models

-Let X be a vector of m discrete-valued random variables

- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$
F(x)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{m}\left(x_{m}\right)\right)
$$

Copula Function on $[0,1]^{m}$

Discrete-Margined Copula Models

-Let X be a vector of m discrete-valued random variables
-Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$
F(x)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{m}\left(x_{m}\right)\right)
$$

-For arbitrary F, the copula function C is not unique

- Nevertheless, F is a well-defined distribution function when C is a parametric copula function

Discrete-Margined Copula Models

-We use the differencing notation:

$$
\begin{gathered}
\Delta_{a_{k}}^{b_{k}} C\left(u_{1}, \ldots, u_{k-1}, v_{k}, u_{k+1}, \ldots, u_{m}\right)= \\
C\left(u_{1}, \ldots, u_{k-1}, b_{k}, u_{k+1}, \ldots, u_{m}\right)-C\left(u_{1}, \ldots, u_{k-1}, a_{k}, u_{k+1}, \ldots, u_{m}\right)
\end{gathered}
$$

Discrete-Margined Copula Models
 -We use the differencing notation:

$$
\begin{gathered}
\Delta_{a_{k}^{k}}^{b_{k}} C\left(u_{1}, \ldots, u_{\left.k-\sqrt{*} v_{k}\right)} u_{k+1}, \ldots, u_{m}\right)= \\
C\left(u_{1}, \ldots, u_{k-1}, b_{k}, u_{k+1}, \ldots, u_{m}\right)-C\left(u_{1}, \ldots, u_{k-1}, a_{k}, u_{k+1}, \ldots, u_{m}\right)
\end{gathered}
$$

-The v_{k} is simply an "index of differencing"

Discrete-Margined Copula Models
 -We use the differencing notation:

$$
\Delta_{a_{k}}^{b_{k}} C\left(u_{1}, \ldots, u_{k-1}, v_{k}, u_{k+1}, \ldots, u_{m}\right)=
$$

$C\left(u_{1}, \ldots, u_{k-1}, b_{k}, u_{k+1}, \ldots, u_{m}\right)-C\left(u_{1}, \ldots, u_{k-1}, a_{k}, u_{k+1}, \ldots, u_{m}\right)$
-In that case the PMF is given by

$$
f(x)=\Delta_{a_{1}}^{b_{1}} \Delta_{a_{2}}^{b_{2}} \ldots \Delta_{a_{m}}^{b_{m}} C\left(v_{1}, v_{2}, \ldots, v_{m}\right)
$$

-where

$$
b_{j}=F_{j}\left(x_{j}\right) \quad a_{j}=F_{j}\left(x_{j}^{-}\right)
$$

Discrete-Margined Copula Models -We use the differencing notation:

$$
\Delta_{a_{k} k}^{b_{k}} C\left(u_{1}, \ldots, u_{k-1}, v_{k}, u_{k+1}, \ldots, u_{m}\right)=
$$

$C\left(u_{1}, \ldots, u_{k-1}, b_{k}, u_{k+1}, \ldots, u_{m}\right)-C\left(u_{1}, \ldots, u_{k-1}, a_{k}, u_{k+1}, \ldots, u_{m}\right)$
-In that case the PMF is given by

$$
f(x)=\Delta_{a_{1}}^{b_{1}} \Delta_{a_{2}}^{b_{2}} \ldots \Delta_{a_{m}}^{b_{m}} C\left(v_{1}, v_{2}, \ldots, v_{m}\right)
$$

- where

$$
\text { Left-hand Limit at } x_{j}
$$

$$
b_{j}=F_{j}\left(x_{j}\right) \quad a_{j}=F_{j}\left(x_{j}\right)
$$

Discrete-Margined Copula Models -We use the differencing notation:

$$
\Delta_{a_{k} k}^{b_{k}} C\left(u_{1}, \ldots, u_{k-1}, v_{k}, u_{k+1}, \ldots, u_{m}\right)=
$$

$C\left(u_{1}, \ldots, u_{k-1}, b_{k}, u_{k+1}, \ldots, u_{m}\right)-C\left(u_{1}, \ldots, u_{k-1}, a_{k}, u_{k+1}, \ldots, u_{m}\right)$
-In that case the PMF is given by

$$
f(x)=\Delta_{a_{1}}^{b_{1}} \Delta_{a_{2}}^{b_{2}} \ldots \Delta_{a_{m}}^{b_{m}} C\left(v_{1}, v_{2}, \ldots, v_{m}\right)
$$

-where
For ordinal data

$$
b_{j}=F_{j}\left(x_{j}\right) \quad a_{j}=F_{j}\left(x_{j}^{-}\right)=F_{j}\left(x_{j}-1\right)
$$

Difficulties with Estimation

-Genest \& Nešlehová (07) highlight the problems of using rank-based estimators
-However, in general, it is difficult to compute MLE of the copula parameters because:
-evaluation of the PMF (and hence MLE) involves $O\left(2^{m}\right)$ computations
-Direct maximization of the likelihood can be difficult

Augmented Distribution

-To circumnavigate both problems, we consider augmenting the distribution of X with $U=\left(U_{1}, \ldots, U_{m}\right)$ so that

$$
f\left(x_{j} \mid u_{j}\right)=I\left(F_{j}\left(x_{j}\right) \leq u_{j}<F_{j}\left(x_{j}^{-}\right)\right)
$$

-where:

- $\mathscr{I}(A)=1$ if A is true, and $\mathscr{I}(A)=0$ if A is false

Augmented Distribution

-To circumnavigate both problems, we consider augmenting the distribution of X with $U=\left(U_{1}, \ldots, U_{m}\right)$ so that

$$
f(x, u)=f(x \mid u) f(u)
$$

-where:

- $\mathcal{I}(A)=1$ if A is true, and $\mathscr{I}(A)=0$ if A is false

Augmented Distribution

-To circumnavigate both problems, we consider augmenting the distribution of X with $U=\left(U_{1}, \ldots, U_{m}\right)$ so that

$$
f(x, u)=f(x \mid u) c(u)=\prod_{j=1}^{m} \mathscr{J}\left(F_{j}\left(x_{j}\right) \leq u_{j}<F_{j}\left(x_{j}\right)\right) c(u)
$$

-where:

- $\mathcal{I}(A)=1$ if A is true, and $\mathscr{J}(A)=0$ if A is false
$\cdot c(u)=\partial C(u) / \partial u$ is the copula density for C
-This is a "mixed augmented density"

Augmented Distribution

-To circumnavigate both problems, we consider augmenting the distribution of X with $U=\left(U_{1}, \ldots, U_{m}\right)$ so that

$$
f(x, u)=f(x \mid u) c(u)=\prod_{j=1}^{m} \mathscr{J}\left(F_{j}\left(x_{j}\right) \leq u_{j}<F_{j}\left(x_{j}\right)\right) c(u)
$$

-It can be shown that the marginal PMF of \underline{X} is that of the copula model
-The aim is to construct likelihood-based inference using the augmented posterior constructed using $f(x, u)$

Latent Variable Distributions

-In our DA approach we sample the U's explicitly
-The latent variable U (conditional on X) follows a multivariate constrained distribution

$$
f(u \mid x)=\frac{c(u)}{f(x)} \prod_{j=1}^{m} \mathscr{I}\left(a_{j} \leq u_{j}<b_{j}\right)
$$

Two MCMC DA Schemes

- Scheme 1:

-Generates u as a block using MH with an approximation $q(u)$ which is "close to" $f(u \mid x)$
-Need to compute the conditional copula
CDFs $C_{j 11, \ldots j-1}$ a total of $5(m-1)$ times

- Scheme 2:
-Generates u_{j} one-at-a-time
- Need to compute the conditional copula

CDFs $C_{j \mid k \neq j}$ a total of m times
-Can use at least one scheme for all copula models currently being employed

Latent Variable Distributions

-The development of Scheme 1 relies on the derivation of the following conditional distribution

Conditional copula density

Latent Variable Distributions

-The development of Scheme 1 relies on the derivation of the following conditional distribution

$$
\begin{gathered}
f\left(u_{j} \mid u_{1}, \ldots, u_{j}, x\right)= \\
c_{j \mid t, \ldots,-1}\left(u_{j} \mid u_{1}, \ldots, u_{j}\right) \underbrace{\mathcal{J}\left(a_{j} \leq u_{j}<b_{j}\right)}_{\uparrow}) \mathscr{\varepsilon}_{j}\left(u_{1}, \ldots, u_{j}\right) \\
\text { Constrained to }\left[\mathrm{a}_{\mathrm{j}}, \mathrm{~b}_{\mathrm{j}}\right)
\end{gathered}
$$

Latent Variable Distributions

-The development of Scheme 1 relies on the derivation of the following conditional distribution

$$
\begin{gathered}
f\left(u_{j} \mid u_{i}, \ldots, u_{j-1}, x\right)= \\
c_{j \mid 1, \ldots j-1}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) \mathcal{J}(a_{j} \leq u_{j}<b \underbrace{}_{\uparrow} \underbrace{\uparrow}_{\mathcal{K}_{j}\left(u_{1}, \ldots, u_{j}\right)})
\end{gathered}
$$

With a $\mathrm{O}\left(2^{\mathrm{m}-\mathrm{j}}\right)$ term that is a function of u_{1}, \ldots, u_{j}

Generating u : the MH Proposal

-The proposal density for u is:

$$
g_{j}(u)=\prod_{j=2}^{m} g_{j}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) g_{1}\left(u_{1}\right)
$$

-Generate sequentially from each g_{j} (j=1, .., m)

Generating u : the MH Proposal

-The proposal density for u is:

$$
g_{j}(u)=\prod_{j=2}^{m} g_{j}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) g_{1}\left(u_{1}\right)
$$

-where:

$$
g_{j}\left(u_{j} /--\right)=\frac{c_{j \mid, \ldots, j-1}\left(u_{j} /--; \varphi\right) \mathcal{J}\left(a_{j} \leq u_{j}<b_{j}\right)}{C_{j \mid t, \ldots, j-1}\left(b_{j} /--; \varphi\right)-C_{j \mid t, \ldots,-1}\left(a_{j} /--; \varphi\right)}
$$

-and

$$
g_{1}\left(u_{i 1}\right)=\mathscr{J}\left(a_{i 1} \leq u_{i 1}<b_{i 1}\right) /\left(b_{1 j}-a_{1 j}\right)
$$

Generating u : the MH Proposal

-The proposal density for u is:
-where:
-and

$$
g_{1}\left(u_{i 1}\right)=\mathscr{J}\left(a_{i 1} \leq u_{i 1}<b_{i 1}\right) /\left(b_{1 j}-a_{i j}\right)
$$

Just saving space with this notation!

Generating u : the MH Proposal

-The proposal density for u is:

$$
g_{j}(u)=\prod_{j=2}^{m} g_{j}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) g_{1}\left(u_{1}\right)
$$

-where:

$$
g_{j}\left(u_{j} /--\right)=\frac{c_{j 1, \ldots, j-1}\left(u_{j} /--; \varphi\right) \mathscr{I}\left(a_{j} \leq u_{j}<b_{j}\right)}{C_{j j 1, \ldots, j-1}\left(b_{j} \mid--; \varphi\right)-C_{j \mid 1, \ldots j-1}\left(a_{j} \mid--; \varphi\right)}
$$

- and

$$
\left.g_{1}\left(u_{i 1}\right)=\mathscr{J}\left(a_{i 1} \leq u_{i 1}<b_{i 1}\right)\right)\left(b_{1 j}-a_{1 j}\right)
$$

Constrained conditional copula distribution

Generating u : the MH Proposal

-The proposal density for u is:

$$
g_{j}(u)=\prod_{j=2}^{m} g_{j}\left(u_{j} / u_{1}, \ldots, u_{j-1}\right) g_{1}\left(u_{1}\right)
$$

-where:

$$
g_{j}\left(u_{j} \mid--\right)=\frac{c_{j \mid 1 \ldots j-1}\left(u_{j} /--; \varphi\right) \mathcal{J}\left(a_{j} \leq u_{j}<b_{j}\right)}{C_{j 11, \ldots, j-1}\left(b_{j} /--; \varphi\right)-C_{j 11, \ldots j-1}\left(a_{j} /--; \varphi\right)}
$$

-and

$$
g_{1}\left(u_{i 1}\right)=\mathscr{J}\left(a_{i 1} \leq u_{i 1}<b_{i 1}\right)\left(b_{1 j}-a_{1 j}\right)
$$

The normalising constants...

Generating u : the MH Proposal

-The proposal density for u is:

$$
g_{j}(u)=\prod_{j=2}^{m} g_{j}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right) g_{1}\left(u_{1}\right)
$$

-where:

$$
g_{j}\left(u_{j} /--\right)=\frac{c_{j \mid 1, \ldots j-1}\left(u_{j} /--; \varphi\right) \mathcal{I}\left(a_{j} \leq u_{j}<b_{j}\right)}{C_{j \mid 1, \ldots, j-1}\left(b_{j} /--; \varphi\right)-C_{j 1 t, \ldots j-1}\left(a_{j} /--; \varphi\right)}
$$

-and

$$
g_{1}\left(u_{i 1}\right)=\mathscr{J}\left(a_{i 1} \leq u_{i 1}<b_{i 1}\right) /\left(b_{1 j}-a_{1 j}\right)
$$

To implement, just need to be able to compute $C_{j \mid 1, \ldots j-1}$ and its inverse... 3(m-1) times

Generating u : the MH Proposal

-The proposal density for u is:

$$
g_{j}(u)=\prod_{j=2}^{m} g_{j}\left(u_{j} / u_{1}, \ldots, u_{j-1}\right) g_{1}\left(u_{1}\right)
$$

-where:

$$
g_{j}\left(u_{j} /--\right)=\frac{c_{j \mid 1, \ldots,-1}\left(u_{j} /--; \varphi\right) \mathcal{I}\left(a_{j} \leq u_{j}<b_{j}\right)}{C_{j \mid 1, \ldots, j-1}\left(b_{j} /--; \varphi\right)-C_{j \mid 1, \ldots j-1}\left(a_{j} /--; \varphi\right)}
$$

-and

$$
g_{1}\left(u_{i 1}\right)=\mathscr{J}\left(a_{i 1} \leq u_{i 1}<b_{i 1}\right) /\left(b_{1 j}-a_{1 j}\right)
$$

As $\left|F_{j}\left(x_{j}\right)-F_{j}\left(x_{j}^{-}\right)\right| \rightarrow 0$, then $g(u) \rightarrow f(u \mid \phi, x)$, So that is a "close" approximation

Generating φ given u

-Conditional on u, it is much easier to generate any copula parameters φ -Posterior is:

$$
f(\varphi \mid u, \Theta, x)=f(\varphi \mid u)
$$

Generating φ given u

-Conditional on u, it is much easier to generate any copula parameters φ -Posterior is:

$$
\begin{gathered}
f\left(\varphi \mid u_{n}, \Theta, x\right)=f(\varphi \mid u) \\
=\prod_{i} c\left(u_{i} \mid \varphi\right) \pi(\varphi)
\end{gathered}
$$

Generating φ given u

-Conditional on u, it is much easier to generate any copula parameters φ -Posterior is:

$$
\begin{aligned}
& f\left(\varphi \mid u_{n}, \Theta, x\right)=f(\varphi \mid u) \\
& =\prod_{i} c\left(u_{i} \mid \varphi\right) \tau(\varphi)
\end{aligned}
$$

copula density evaluated at each vector $u_{i}=\left(u_{i 1}, \ldots, u_{i m}\right)^{\prime}$

Generating φ given u

-Conditional on u, it is much easier to generate any copula parameters φ -Posterior is:

$$
\begin{gathered}
f\left(\varphi \mid u_{n}, \Theta, x\right)=f(\varphi \mid u) \\
=\prod_{i} c\left(u_{i} \mid \varphi \pi(\varphi)\right.
\end{gathered}
$$

prior structure

Bayesian Estimation: Advantages

-Provides likelihood-based inference
(particularly important for this model)
-Can compute dependence structure of U,
and of X, from fitted copula model
-Allows for shrinkage priors, such as:

- for correlation matrix (eg Pitt et al. 06; Daniels \& Pourahmadi 09)
- model averaging (Smith et al. 10/Czado \& Min'11)
- hierarchical models (eg. Almeida \& Czado ‘10)
-Numerically robust

Illustration: Online Retail

- $n=10,000$ randomly selected visits to amazon.com collected by ComScore -Bivariate example with:
$-X_{1} \in\{1,2,3, \ldots\}=$ \# of unique page views
$-X_{2} \in\{0,1\}=$ sales incidence
-92\% of observations are non-zeros
-Positive dependence between X_{1} and X_{2}
-Three different bivariate copulas with positive dependence:
-Clayton, BB7, Gaussian

Illustration: Online Retail

Illustration: Online Retail

Illustration: Online Retail

Illustration: (Parsimonious) Dvine for Bicycle Counts
-Longitudinal count data where:
$X_{i j}=\#$ of bicycles on working day i during hour j
-Collected on an off-road bike path in Melbourne used for commuting
-Counts highly variable due to high variance in weather conditions

- $m=16, n=565$
- Use EDFs for the margins, and D-vine for C (with selection of independence pair-cops.)

Counts

(a)

D-vine

-The vector $X=\left(X_{1}, \ldots, X_{16}\right)$ is longitudinal -A D-vine is a particularly good choice for the dependence structure when the process is likely to exhibit Markov structure
-Note that from Smith et al. (10) in a D-vine: $C_{j \mid 1, \ldots, j-1}\left(u_{j} \mid u_{1}, \ldots, u_{j-1}\right)=h_{j, 1} \circ h_{j, 2} \circ \ldots \circ h_{j, j-1}\left(u_{j}\right)$
$C_{j \mid 1, \ldots, j-1}^{-1}\left(z_{j} \mid u_{1}, \ldots, u_{j-1}\right)=h_{j, j-1}{ }^{-1} \circ h_{j, j-2}-1 \circ \ldots \circ h_{j, 1}^{-1}\left(z_{j}\right)$
-The $h_{j, t}$ functions are the conditional CDFs of the pair-copulas (see Joe 96; Aas et al. 09 and others)

D-vine: Models

-We use three D-vines with "pair-copula selection" and:

- Gumbel pair-copulas
- Clayton pair-copulas
- t pair-copulas (two parameter copula)
-Some objectives are to see:
- Whether there is parsimony in the D-vines?
- Whether choice of pair-copula type makes a difference?
- Can you predict the evening peak ($j=12$) given the morning peak ($j=3$)?

(m(m-1)/2) Pair-Copula Estimates

(d) $\operatorname{Pr}\left(\mathrm{y}_{\mathrm{t}, \mathrm{s}}=1 \mid \mathrm{x}\right)$

(b) $E\left(\tau_{t, s}\right)$

(e) $E\left(\tau_{t, s}\right)$

(m(m-1)/2) Pair-Copula Estimates

(m(m-1)/2) Pair-Copula Estimates

(m(m-1)/2) Pair-Copula Estimates

Spearman Pairwise Dependences

0.4 <- From the Parsimonious D-vine with Gumbel PC's

<- From the Parsimonious D-vine with t PC's

Bivariate Margins

-We compute the bivariate margins in:
$-X_{3}$: the morning peak hour on the bike path

- X_{12} : the evening peak hour on the bike path
$F_{3,12}\left(x_{3}^{\prime}, x_{12}^{\prime}\right)=\int C_{3,12}\left(F_{3}\left(x_{3}^{\prime}\right), F_{12}\left(x_{12}^{\prime}\right) ; \phi\right) f(\phi \mid x) d \phi$
-The dependence parameter is integrated out with respect to its posterior distribution (ie "fitted" distribution)

Bivariate Margins

(b) t-copula

(c) Bivariate Data Histogram

Mixed Margins

-The approach can be extended to the case where some margins are discrete, others continuous
-Latent variables are only introduced for the discrete margins

- Extending the earlier results to this case is non-trivial (see paper)
-But once done, adjusted versions of Sampling Schemes 1 and 2 can be derived (see paper)

Some Features of Approach

-A general approach applicable to all popular parametric copula functions
-At least one of the two sampling schemes can be used for a given copula model

- Speed depends upon how fast it is to compute $C_{j 11, \ldots j-1}$ and/or $C_{j k \neq j}$
-It is likelihood-based; see discussion in
Genest \& Nešlehová (07) \& Song et al.
(09/10) for the importance of this

Some Features of Approach

-For copulas constructed by inversion of distribution G, probably better to augment with latents $X^{*} \sim G$ (cf: Pitt et al. 06; Smith, Gan \& Kohn 10; Danaher \& Smith 11)
-Not widely appreciated that the Gaussian copula is as restrictive for some discrete data, just as for continuous data (cf: Nikoloulopoulos \& Karlis 08; 10)

- Similarly, with model averaging (eg. in a pair-copula model in Smith et al. 10)

