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Introduction 

•Copula models with discrete margins 

•Distribution augmented with latent 
variables 

•Augmented likelihood & some conditional 
posteriors 

•Two MCMC sampling schemes for 
estimation; outline just one. 

•Application to small online retail example 

•Application to D-vine; illustration with 
longitudinal count data 



Discrete-Margined Copula Models 

•Let X be a vector of m discrete-valued 
random variables 

•Many existing multivariate models for 
discrete data can be written in copula form 
with distribution function: 

F(x)=C(F1(x1),…,Fm(xm)) 
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Discrete-Margined Copula Models 

•Let X be a vector of m discrete-valued 
random variables 

•Many existing multivariate models for 
discrete data can be written in copula form 
with distribution function: 

F(x)=C(F1(x1),…,Fm(xm)) 

•For arbitrary F, the copula function C is 
not unique 

•Nevertheless, F is a well-defined 
distribution function when C is a 
parametric copula function 
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•We use the differencing notation: 

 

 

 

•The vk is simply an “index of differencing” 
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•We use the differencing notation: 

 

 

 

•In that case the PMF is given by 

 

 

•where  

 

k

k

b

a 1 k-1 k k+1 m

1 k-1 k k+1 m 1 k-1 k k+1 m

Δ C(u ,...,u ,v ,u ,...,u )=

C(u ,...,u ,b ,u ,...,u ) -C(u ,...,u ,a ,u ,...,u )

1 2 m

1 2 m

b b b

a a a 1 2 mf(x)= Δ Δ ...Δ C(v ,v ,...,v )

j j jb = F (x )
-

j j ja = F (x )

Discrete-Margined Copula Models 



•We use the differencing notation: 

 

 

 

•In that case the PMF is given by 

 

 

•where  

 

k

k

b

a 1 k-1 k k+1 m

1 k-1 k k+1 m 1 k-1 k k+1 m

Δ C(u ,...,u ,v ,u ,...,u )=

C(u ,...,u ,b ,u ,...,u ) -C(u ,...,u ,a ,u ,...,u )

1 2 m

1 2 m

b b b

a a a 1 2 mf(x)= Δ Δ ...Δ C(v ,v ,...,v )

j j jb = F (x )
-

j j ja = F (x )

Discrete-Margined Copula Models 

Left-hand Limit at xj 



•We use the differencing notation: 
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Discrete-Margined Copula Models 

For ordinal data 

= Fj(xj-1) 



Difficulties with Estimation 

•Genest & Nešlehová (07) highlight the 

problems of using rank-based estimators 

•However, in general, it is difficult to 

compute MLE of the copula parameters 

because: 

•evaluation of the PMF (and hence MLE) 

involves O(2m) computations 

•Direct maximization of the likelihood can be 

difficult 



Augmented Distribution 

•To circumnavigate both problems, we 

consider augmenting the distribution of X 

with U=(U1,…,Um) so that 
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•where: 

•I(A)=1 if A is true, and I(A)=0 if A is false 

•c(u)=∂C(u)/∂u is the copula density for C 

•This is a “mixed augmented density” 
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Augmented Distribution 

•To circumnavigate both problems, we 

consider augmenting the distribution of X 

with U=(U1,…,Um) so that 

 

 

•It can be shown that the marginal PMF of 

X is that of the copula model 

•The aim is to construct likelihood-based 

inference using the augmented posterior 

constructed using f(x,u) 
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Latent Variable Distributions 

•In our DA approach we sample the U’s 

explicitly 

•The latent variable U (conditional on X) 

follows a multivariate constrained 

distribution 
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Two MCMC DA Schemes 

•Scheme 1: 

•Generates u as a block using MH with an 

approximation q(u) which is “close to” f(u|x) 

•Need to compute the conditional copula 

CDFs Cj|1,…j-1 a total of 5(m-1) times 

•Scheme 2: 

•Generates uj one-at-a-time 

•Need to compute the conditional copula 

CDFs Cj|k≠j a total of m times 

•Can use at least one scheme for all 

copula models currently being employed 

 



Latent Variable Distributions 

•The development of Scheme 1 relies on 

the derivation of the following conditional 

distribution 
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Latent Variable Distributions 

•The development of Scheme 1 relies on 

the derivation of the following conditional 

distribution 
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j|1,..., j -1 j 1 j -1 j j j j 1 j

f(u | u ,...,u ,x)=

c (u |u ,...,u ) (a u < b ) (u ,...,u )I K

With a O(2m-j) term that 

is a function of u1,…,uj 



Generating u: the MH Proposal 

•The proposal density for u is: 

 

 

 

•Generate sequentially from each gj 
(j=1,…,m) 
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•The proposal density for u is: 
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•The proposal density for u is: 
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•The proposal density for u is: 
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Constrained conditional copula distribution 

Generating u: the MH Proposal 
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•The proposal density for u is: 

 

 

•where: 
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The normalising constants… 

Generating u: the MH Proposal 
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•The proposal density for u is: 

 

 

•where: 

 

 

•and 

 

 
1 i1 i1 i1 i1 1j 1jg (u )= (a u < b ) / (b - a )I

To implement, just need to be able to compute 

Cj|1,…j-1 and its inverse… 3(m-1) times 

Generating u: the MH Proposal 





m

2j

111j1jjj )(u)gu,...,u|(ug(u)g

φ);|(aCφ);|(bC

)bu(aφ);|(uc
)|(ug

j11,...j|jj1j1,...,|j

jjjj1j1,...,|j

jj







 I



•The proposal density for u is: 

 

 

•where: 

 

 

•and 

 

 
1 i1 i1 i1 i1 1j 1jg (u )= (a u < b ) / (b - a )I

As |Fj(xj)-Fj(xj
-)|→0, then g(u)→f(u|ϕ,x), 

So that is a “close” approximation 

Generating u: the MH Proposal 
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•Conditional on u, it is much easier to 
generate any copula parameters φ 

•Posterior is: 

 
𝑓 𝜑 𝑢, Θ, 𝑥 = 𝑓 𝜑 𝑢  

 

Generating φ given u 



•Conditional on u, it is much easier to 
generate any copula parameters φ 

•Posterior is: 

 
𝑓 𝜑 𝑢, Θ, 𝑥 = 𝑓 𝜑 𝑢  

= 𝑐(𝑢𝑖|𝜑)𝜋(𝜑)

𝑛

𝑖

 

 

 

Generating φ given u 



•Conditional on u, it is much easier to 
generate any copula parameters φ 

•Posterior is: 

 
𝑓 𝜑 𝑢, Θ, 𝑥 = 𝑓 𝜑 𝑢  

= 𝑐(𝑢𝑖|𝜑)𝜋(𝜑)

𝑛

𝑖

 

 

 

Generating φ given u 

copula density evaluated at each 

vector ui=(ui1,….,uim)’ 



•Conditional on u, it is much easier to 
generate any copula parameters φ 

•Posterior is: 
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Generating φ given u 

prior structure 



Bayesian Estimation: Advantages 

•Provides likelihood-based inference 
(particularly important for this model) 

•Can compute dependence structure of U, 
and of X, from fitted copula model 

•Allows for shrinkage priors, such as: 

– for correlation matrix (eg Pitt et al. 06; Daniels 
& Pourahmadi 09) 

– model averaging (Smith et al. 10/Czado & 
Min’11) 

– hierarchical models (eg. Almeida & Czado ‘10) 

•Numerically robust 



Illustration: Online Retail 

•n=10,000 randomly selected visits to 
amazon.com collected by ComScore 

•Bivariate example with: 

–X1 ∈ {1,2,3,…} = # of unique page views 

–X2 ∈ {0,1} = sales incidence 

•92% of observations are non-zeros 

•Positive dependence between X1 and X2 

•Three different bivariate copulas with 
positive dependence: 

–Clayton, BB7, Gaussian  



Illustration: Online Retail 
Clayton Copula 

BB7 Copula 

Gaussian Copula 



Illustration: Online Retail 
Clayton Copula 

BB7 Copula 

Gaussian Copula 

Bayes same as 

MLE: reassuring 



Illustration: Online Retail 
Clayton Copula 

BB7 Copula 

Gaussian Copula 

Psuedo MLE is total  

junk 



Illustration: Online Retail 
Clayton Copula 

BB7 Copula 

Gaussian Copula 

Kendall’s tau for 𝑈 ∈ 0,1 𝑚 

differs from Kendall’s 

tau for 𝑋 



Illustration: Online Retail 
Clayton Copula 

BB7 Copula 

Gaussian Copula 

Clayton and BB7 copulas  

identify strong lower tail  

dependence in the 

u-space….. 



Illustration: (Parsimonious) D-

vine for Bicycle Counts 

•Longitudinal count data where: 

Xij = # of bicycles on working day i during 
hour j 

•Collected on an off-road bike path in 
Melbourne used for commuting 

•Counts highly variable due to high variance 
in weather conditions 

•m=16, n=565 

•Use EDFs for the margins, and D-vine for C 
(with selection of independence pair-cops.) 



Counts 



D-vine 

•The vector X=(X1,…,X16) is longitudinal 

•A D-vine is a particularly good choice for 
the dependence structure when the process 
is likely to exhibit Markov structure 

•Note that from Smith et al. (10) in a D-vine: 

Cj|1,…,j-1 (uj|u1,…,uj-1)= hj,1 ◦ hj,2 ◦ … ◦ hj,j-1(uj) 

Cj|1,…,j-1
-1(zj|u1,…,uj-1)=hj,j-1

-1◦hj,j-2
-1 ◦…◦hj,1

-1(zj) 

•The hj,t functions are the conditional CDFs 
of the pair-copulas (see Joe 96; Aas et al. 
09 and others) 



D-vine: Models 

•We use three D-vines with “pair-copula 
selection” and: 

– Gumbel pair-copulas 

– Clayton pair-copulas 

– t pair-copulas (two parameter copula) 

•Some objectives are to see: 

– Whether there is parsimony in the D-vines? 

– Whether choice of pair-copula type makes a 
difference? 

– Can you predict the evening peak (j=12) given 
the morning peak (j=3)? 
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effect 



Spearman Pairwise Dependences 

<- From the Parsimonious 

   D-vine with Gumbel PC’s 

<- From the Parsimonious 

    D-vine with t PC’s 



Bivariate Margins 

•We compute the bivariate margins in: 

– X3: the morning peak hour on the bike path 

– X12: the evening peak hour on the bike path 

 

 

•The dependence parameter is integrated 
out with respect to its posterior distribution 
(ie “fitted” distribution) 

3,12 3 12 3,12 3 3 12 12      F (x ,x )= C (F (x ),F (x ); )f( | x)d



Bivariate Margins 



Mixed Margins 

•The approach can be extended to the case 
where some margins are discrete, others 
continuous 

•Latent variables are only introduced for the 
discrete margins 

•Extending the earlier results to this case is 
non-trivial (see paper) 

•But once done, adjusted versions of 
Sampling Schemes 1 and 2 can be derived 
(see paper) 



Some Features of Approach 

•A general approach applicable to all 

popular parametric copula functions 

•At least one of the two sampling schemes 

can be used for a given copula model 

•Speed depends upon how fast it is to 

compute Cj|1,…j-1 and/or Cj|k≠j  

•It is likelihood-based; see discussion in 

Genest & Nešlehová (07) & Song et al. 

(09/10) for the importance of this 



Some Features of Approach 

•For copulas constructed by inversion of 
distribution G, probably better to augment 
with latents X*~G (cf: Pitt et al. 06; Smith, 
Gan & Kohn 10; Danaher & Smith 11) 

•Not widely appreciated that the Gaussian 
copula is as restrictive for some discrete 
data, just as for continuous data (cf: 
Nikoloulopoulos & Karlis 08; 10) 

•Similarly, with model averaging (eg. in a 

pair-copula model in Smith et al. 10) 


