Estimation of Copula Models with Discrete Margins (via Bayesian Data Augmentation)

> Michael S. Smith Melbourne Business School, University of Melbourne (Joint with Mohamad Khaled, University of Queensland)

Introduction

- •Copula models with discrete margins
- Distribution augmented with latent variables
- Augmented likelihood & some conditional posteriors
- •Two MCMC sampling schemes for estimation; outline just one.
- •Application to small online retail example
- Application to D-vine; illustration with longitudinal count data

•Let X be a vector of m discrete-valued random variables

•Many existing multivariate models for discrete data can be written in copula form with distribution function:

 $F(x)=C(F_1(x_1),...,F_m(x_m))$

•Let X be a vector of m discrete-valued random variables

 Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x) = C(F_1(x_1), ..., F_m(x_m))$$

Joint CDF of $X = (X_1, ..., X_m)$

•Let X be a vector of m discrete-valued random variables

 Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x)=C(F_1(x_1),\ldots,F_m(x_m))$$

Univariate CDFs of $X_1, ..., X_m$

•Let X be a vector of m discrete-valued random variables

•Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x) = C(F_1(x_1), ..., F_m(x_m))$$

Copula Function on [0,1]^m

•Let X be a vector of m discrete-valued random variables

 Many existing multivariate models for discrete data can be written in copula form with distribution function:

 $F(x) = C(F_1(x_1), ..., F_m(x_m))$

•For arbitrary *F*, the copula function *C* is not unique

•Nevertheless, *F* is a well-defined distribution function when *C* is a parametric copula function

 $\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) =$

 $C(u_1,...,u_{k-1},b_k,u_{k+1},...,u_m) - C(u_1,...,u_{k-1},a_k,u_{k+1},...,u_m)$

$$\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k})u_{k+1},...,u_{m}) =$$

 $C(u_1,...,u_{k-1},b_k,u_{k+1},...,u_m) - C(u_1,...,u_{k-1},a_k,u_{k+1},...,u_m)$

•The v_k is simply an "index of differencing"

 $\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$

•In that case the PMF is given by

$$f(x) = \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} \dots \Delta_{a_m}^{b_m} C(v_1, v_2, \dots, v_m)$$

•where

$$b_j = F_j(x_j) \qquad a_j = F_j(x_j)$$

 $\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$

•In that case the PMF is given by

$$f(x) = \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} \dots \Delta_{a_m}^{b_m} C(v_1, v_2, \dots, v_m)$$

•where Left-hand Limit at x_i

 $a_i = (F_i)$

$$\boldsymbol{b}_{j}=\boldsymbol{F}_{j}(\boldsymbol{x}_{j})$$

 $\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$

•In that case the PMF is given by

$$f(x) = \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} \dots \Delta_{a_m}^{b_m} C(v_1, v_2, \dots, v_m)$$

•where

For ordinal data

 $b_j = F_j(x_j)$ $a_j = F_j(x_j) = F_j(x_j-1)$

Difficulties with Estimation

- •Genest & Nešlehová (07) highlight the problems of using rank-based estimators
- •However, in general, it is difficult to compute MLE of the copula parameters because:
 - •evaluation of the PMF (and hence MLE) involves $O(2^m)$ computations
 - •Direct maximization of the likelihood can be difficult

•To circumnavigate both problems, we consider augmenting the distribution of X with $U=(U_1,...,U_m)$ so that

$$f(x_j|u_j) = I(F_j(x_j) \le u_j < F_j(x_j^-))$$

•where:

• $\mathcal{I}(A)=1$ if A is true, and $\mathcal{I}(A)=0$ if A is false

•To circumnavigate both problems, we consider augmenting the distribution of X with $U=(U_1,...,U_m)$ so that

$$f(x,u) = f(x|u)f(u)$$

•where:

• $\mathcal{I}(A)=1$ if A is true, and $\mathcal{I}(A)=0$ if A is false

•To circumnavigate both problems, we consider augmenting the distribution of X with $U=(U_1,...,U_m)$ so that

$$f(x,u) = f(x | u)c(u) = \prod_{j=1}^{m} \mathcal{J}(F_{j}(x_{j}) \le u_{j} < F_{j}(x_{j}))c(u)$$

•where:

- • $\mathcal{I}(A)=1$ if A is true, and $\mathcal{I}(A)=0$ if A is false • $c(u)=\partial C(u)/\partial u$ is the copula density for C
- •This is a "mixed augmented density"

•To circumnavigate both problems, we consider augmenting the distribution of X with $U=(U_1,...,U_m)$ so that

$$f(x,u) = f(x | u)c(u) = \prod_{j=1}^{m} \mathscr{I}(F_j(x_j) \le u_j < F_j(x_j))c(u)$$

It can be shown that the <u>marginal PMF of</u>
 X is that of the copula model

•The aim is to construct <u>likelihood-based</u> inference using the <u>augmented posterior</u> constructed using f(x,u)

•In our DA approach we sample the *U*'s explicitly

•The latent variable *U* (conditional on *X*) follows a multivariate constrained distribution

$$f(u \mid x) = \frac{c(u)}{f(x)} \prod_{j=1}^{m} \mathcal{J}(a_j \le u_j < b_j)$$

Two MCMC DA Schemes

•<u>Scheme 1:</u>

- •Generates u as a block using MH with an approximation q(u) which is "close to" f(u|x)
- •Need to compute the conditional copula CDFs $C_{j|1,...j-1}$ a total of 5(m-1) times

•<u>Scheme 2:</u>

- •Generates *u_i* one-at-a-time
- •Need to compute the conditional copula CDFs $C_{j|k\neq j}$ a total of *m* times

•Can use at least one scheme for all copula models currently being employed

•The development of Scheme 1 relies on the derivation of the following <u>conditional</u> <u>distribution</u>

 $f(u_j | u_1, ..., u_{j-1}, x) =$ $C_{j|1,...,j-1}(u_j | u_1,...,u_{j-1}) \mathcal{F}(a_j \le u_j < b_j) \mathcal{K}_i(u_1,...,u_j)$ Conditional copula density

•The development of Scheme 1 relies on the derivation of the following <u>conditional</u> <u>distribution</u>

 $f(u_{j} | u_{1}, ..., u_{j-1}, x) = c_{j|1,...,j-1}(u_{j} | u_{1}, ..., u_{j-1}) \mathcal{J}(a_{j} \le u_{j} < b_{j}) \mathcal{K}_{j}(u_{1}, ..., u_{j})$ $f(u_{j} | u_{1}, ..., u_{j-1}) \mathcal{J}(a_{j} \le u_{j} < b_{j}) \mathcal{K}_{j}(u_{1}, ..., u_{j})$ $f(u_{j} | u_{1}, ..., u_{j-1}) \mathcal{J}(a_{j} \le u_{j} < b_{j}) \mathcal{K}_{j}(u_{1}, ..., u_{j})$ $f(u_{j} | u_{1}, ..., u_{j-1}) \mathcal{J}(a_{j} \le u_{j} < b_{j}) \mathcal{K}_{j}(u_{1}, ..., u_{j})$ $f(u_{j} | u_{1}, ..., u_{j-1}) \mathcal{J}(a_{j} \le u_{j} < b_{j}) \mathcal{K}_{j}(u_{1}, ..., u_{j})$

•The development of Scheme 1 relies on the derivation of the following <u>conditional</u> <u>distribution</u>

 $f(u_i | u_1, ..., u_{i-1}, x) =$ $C_{j|1,...,j-1}(u_j | u_1,...,u_{j-1}) \mathcal{J}(a_j \le u_j < b_j) \mathcal{K}_j(u_1,...,u_j)$

With a O(2^{m-j}) term that is a function of u_1, \dots, u_j

$$g_{j}(u) = \prod_{j=2}^{m} g_{j}(u_{j} | u_{1}, ..., u_{j-1}) g_{1}(u_{1})$$

•Generate sequentially from each g_j (j=1,...,m)

$$g_{j}(u) = \prod_{j=2}^{m} g_{j}(u_{j} | u_{1}, ..., u_{j-1})g_{1}(u_{1})$$

•where:

$$g_{j}(u_{j} | ---) = \frac{C_{j|1,...,j-1}(u_{j} | ---; \varphi) \mathcal{J}(a_{j} \le u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j} | ---; \varphi) - C_{j|1,...,j-1}(a_{j} | ---; \varphi)}$$
•and

$$g_1(u_{i1}) = \mathcal{I}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

Generating *u*: the MH Proposal •The proposal density for *u* is:

$$g_1(u_{i1}) = \mathcal{T}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

Just saving space with this notation!

$$g_{j}(u) = \prod_{j=2}^{m} g_{j}(u_{j} | u_{1}, ..., u_{j-1})g_{1}(u_{1})$$

•where:

$$g_{j}(u_{j}|--) = \frac{C_{j|1,...,j-1}(u_{j}|--;\varphi)\mathcal{J}(a_{j} \le u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j}|--;\varphi) - C_{j|1,...,j-1}(a_{j}|--;\varphi)}$$

•and
$$g_{1}(u_{i1}) = \mathcal{J}(a_{i1} \le u_{i1} < b_{i1})\mathcal{J}(b_{1j} - a_{1j})$$

Constrained conditional copula distribution

$$g_{j}(u) = \prod_{j=2}^{m} g_{j}(u_{j} | u_{1}, ..., u_{j-1})g_{1}(u_{1})$$

•where:

$$g_{j}(u_{j} | --) = \frac{C_{j|1,...,j-1}(u_{j} | ---; \varphi) \mathcal{I}(a_{j} \le u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j} | ---; \varphi) - C_{j|1,...,j-1}(a_{j} | ---; \varphi)}$$
•and

$$g_1(u_{i1}) = \mathcal{I}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

The normalising constants...

$$g_{j}(u) = \prod_{j=2}^{m} g_{j}(u_{j} | u_{1}, ..., u_{j-1})g_{1}(u_{1})$$

•where:

$$g_{j}(u_{j} | ---) = \frac{C_{j|1,...,j-1}(u_{j} | ---; \varphi) \mathcal{J}(a_{j} \le u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j} | ---; \varphi) - C_{j|1,...,j-1}(a_{j} | ---; \varphi)}$$
•and

$$g_1(u_{i1}) = \mathcal{I}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

To implement, just need to be able to compute $C_{j|1,...j-1}$ and its inverse... 3(m-1) times

$$g_{j}(u) = \prod_{j=2}^{m} g_{j}(u_{j} | u_{1}, ..., u_{j-1})g_{1}(u_{1})$$

•where:

$$g_{j}(u_{j} | ---) = \frac{C_{j|1,...,j-1}(u_{j} | ---;\varphi)\mathcal{J}(a_{j} \le u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j} | ---;\varphi) - C_{j|1,...,j-1}(a_{j} | ---;\varphi)}$$
•and

$$g_{1}(u_{i1}) = \mathcal{I}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

As $|F_{j}(x_{j}) - F_{j}(x_{j})| \to 0$, then $g(u) \to f(u|\phi, x)$,

So that is a "close" approximation

 $f(\varphi|u,\Theta,x) = f(\varphi|u)$

$$f(\varphi|\underset{n}{u},\Theta,x) = f(\varphi|u)$$
$$= \prod_{i} c(u_{i}|\varphi)\pi(\varphi)$$

$$f(\varphi|\underset{n}{u},\Theta,x) = f(\varphi|u)$$
$$= \prod_{i} c(u_{i}|\varphi)\pi(\varphi)$$

copula density evaluated at each vector $u_i = (u_{i1}, ..., u_{im})'$

$$f(\varphi|u, \Theta, x) = f(\varphi|u)$$
$$= \prod_{i} c(u_{i}|\varphi)\pi(\varphi)$$

prior structure

Bayesian Estimation: Advantages

- •Provides likelihood-based inference (particularly important for this model)
- •Can compute dependence structure of *U*, and of *X*, from fitted copula model
- •Allows for shrinkage priors, such as:
 - for correlation matrix (eg Pitt et al. 06; Daniels & Pourahmadi 09)
 - model averaging (Smith et al. 10/Czado & Min'11)
 - hierarchical models (eg. Almeida & Czado '10)
- •Numerically robust

Illustration: Online Retail

- •*n*=10,000 randomly selected visits to amazon.com collected by ComScore
- •Bivariate example with:
 - $-X_1 \in \{1, 2, 3, ...\} = #$ of unique page views
 - $-X_2 \in \{0, 1\}$ = sales incidence
- •92% of observations are non-zeros
- •Positive dependence between X_1 and X_2
- •Three different bivariate copulas with positive dependence:

-Clayton, BB7, Gaussian

Illustration: Online Retail

	Bayes	MLE	PMLE
-		Clayton Copula	
$\hat{\phi}$	4.960	5.099	0.838
Ψ	(4.616, 5.309)	(0.182)	(0.020)
î	0.713	0.718	0.293
	(0.698, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.869	0.873	0.437
~	(0.861, 0.878)	(0.004)	(0.009)
$\hat{\tau}^F$	0.1056	0.1055	_
	(0.1037, 0.1072)	(0.0010)	_
		<u>BB7 Copula</u>	
$\hat{\phi}_1$	1.008	1.000	1.000
ΨI	(1.000, 1.026)	(0.030)	(0.001)
$\hat{\phi}_2$	4.972	5.095	0.837
¥2	(4.589, 5.308)	(0.183)	(0.020)
î	0.713	0.718	0.295
-	(0.696, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.870	0.873	0.440
	(0.860, 0.878)	(0.004)	(0.009)
λU	0.011	0.000	0.000
	(0.000, 0.034)	(0.041)	(0.001)
$\hat{\tau}^F$	0.1048	0.1055	_
-	(0.1042, 0.1055)	(0.0013)	_
		Gaussian Copula	
$\hat{\phi}$	0.635	0.637	0.128
7	(0.506, 0.738)	(0.068)	(0.027)
î	0.440	0.440	0.081
	(0.337, 0.528)	(0.056)	(0.017)
$\hat{\tau}^F$	0.0983	0.0990	_
	(0.0806, 0.1128)	(0.0096)	-

	Bayes		MLE	PMLE
		C	layton Copula	
$\hat{\phi}$	4.960		5.099	0.838
Ψ	(4.616, 5.309)		(0.182)	(0.020)
î	0.713		0.718	0.293
-	(0.698, 0.726)		(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.869		0.873	0.437
~	(0.861, 0.878)		(0.004)	(0.009)
$\hat{\tau}^F$	0.1056		0.1055	-
	(0.1037, 0.1072)		(0.0010)	-
		B	<u>B7 Copula</u>	
$\hat{\phi}_1$	1.008		1.000	1.000
Ψ1	(1.000, 1.026)		(0.030)	(0.001)
$\hat{\phi}_2$	4.972		5.095	0.837
72	(4.589, 5.308)		(0.183)	(0.020)
î	0.713		0.718	0.295
-	(0.696, 0.726)		(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.870		0.873	0.440
	(0.860, 0.878)		(0.004)	(0.009)
λU	0.011		0.000	0.000
	(0.000, 0.034)		(0.041)	(0.001)
$\hat{\tau}^F$	0.1048		0.1055	-
-	(0.1042, 0.1055)		(0.0013)	-
		<u>G</u>	aussian Copula	
$\hat{\phi}$	0.635		0.637	0.128
Ŧ	(0.506, 0.738)		(0.068)	(0.027)
î	0.440		0.440	0.081
	(0.337, 0.528)		(0.056)	(0.017)
$\hat{\tau}^F$	0.0983		0.0990	-
	(0.0806, 0.1128)		(0.0096)	-
				•

Bayes same as MLE: reassuring

	Bayes		MLE		PMLE	
-	Clayton Copula					
$\hat{\phi}$	4.960		5.099		0.838	
Ψ	(4.616, 5.309)		(0.182)		(0.020)	
î	0.713		0.718		0.293	
-	(0.698, 0.726)		(0.007)		(0.005)	
$\hat{\lambda}^L$	0.869		0.873		0.437	
~	(0.861, 0.878)		(0.004)		(0.009)	
$\hat{\tau}^F$	0.1056		0.1055		-	
-	(0.1037, 0.1072)		(0.0010)		-	
		B	<u>B7 Copula</u>			
$\hat{\phi}_1$	1.008		1.000		1.000	
71	(1.000, 1.026)		(0.030)		(0.001)	
$\hat{\phi}_2$	4.972		5.095		0.837	
72	(4.589, 5.308)		(0.183)		(0.020)	
î	0.713		0.718		0.295	
	(0.696, 0.726)		(0.007)		(0.005)	
$\hat{\lambda}^{L}$	0.870		0.873		0.440	
	(0.860, 0.878)		(0.004)		(0.009)	
λ ^U	0.011		0.000		0.000	
	(0.000, 0.034)		(0.041)		(0.001)	
$\hat{\tau}^F$	0.1048		0.1055		-	
	(0.1042, 0.1055)	\sim	(0.0013)		-	
<u>Gaussian Copula</u>						
$\hat{\phi}$	0.635		0.637		0.128	
7	(0.506, 0.738)		(0.068)		(0.027)	
î	0.440		0.440		0.081	
	(0.337, 0.528)		(0.056)		(0.017)	
$\hat{\tau}^F$	0.0983		0.0990		-	
	(0.0806, 0.1128)		(0.0096)		-	

Psuedo MLE is total junk

	Bayes	MLE	PMLE
	<u>(</u>	Clayton Copula	
$\hat{\phi}$	4.960	5.099	0.838
Ψ	(4.616, 5.309)	(0.182)	(0.020)
î	0.713	0.718	0.293
č	(0.698, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.869	0.873	0.437
	(0.861, 0.878)	(0.004)	(0.009)
$\hat{\tau}^F$	0.1056	0.1055	_
	(0.1037, 0.1072)	(0.0010)	_
	E	<u>3B7 Copula</u>	
$\hat{\phi}_1$	1.008	1.000	1.000
Ψ1	(1.000, 1.026)	(0.030)	(0.001)
$\hat{\phi}_2$	4.972	5.095	0.837
Ψ2	(4.589, 5.308)	(0.183)	(0.020)
î	0.713	0.718	0.295
č	(0.696, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.870	0.873	0.440
~	(0.860, 0.878)	(0.004)	(0.009)
$\hat{\lambda}^U$	0.011	0.000	0.000
A	(0.000, 0.034)	(0.041)	(0.001)
$\hat{\tau}^F$	0.1048	0.1055	_
	(0.1042, 0.1055)	(0.0013)	_
	G	aussian Copula	
$\hat{\phi}$	0.635	0.637	0.128
Ŷ	(0.506, 0.738)	(0.068)	(0.027)
î	0.440	0.440	0.081
	(0.337, 0.528)	(0.056)	(0.017)
τ^F	0.0983	0.0990	_
	(0.0806, 0.1128)	(0.0096)	_

Kendall's tau for $U \in [0,1]^m$ differs from Kendall's tau for X

	Bayes	MLE	PMLE
	<u>Cla</u>	ayton Copula	
$\hat{\phi}$	4.960	5.099	0.838
Ψ	(4.616, 5.309)	(0.182)	(0.020)
î	0.713	0.718	0.293
·	(0.698, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.869	0.873	0.437
~	(0.861, 0.878)	(0.004)	(0.009)
$\hat{\tau}^F$	0.1056	0.1055	_
	(0.1037, 0.1072)	(0.0010)	_
	BB	7 Copula	
$\hat{\phi}_1$	1.008	1.000	1.000
ΨI	(1.000, 1.026)	(0.030)	(0.001)
$\hat{\phi}_2$	4.972	5.095	0.837
ψ_2	(4.589, 5.308)	(0.183)	(0.020)
î	0.713	0.718	0.295
·	(0.696, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^{L}$	0.870	0.873	0.440
~	(0.860, 0.878)	(0.004)	(0.009)
$\hat{\lambda}^U$	0.011	0.000	0.000
~	(0.000, 0.034)	(0.041)	(0.001)
$\hat{\tau}^F$	0.1048	0.1055	_
	(0.1042, 0.1055)	(0.0013)	_
	Gai	<u>ussian Copula</u>	
$\hat{\phi}$	0.635	0.637	0.128
Ý	(0.506, 0.738)	(0.068)	(0.027)
î	0.440	0.440	0.081
2	(0.337, 0.528)	(0.056)	(0.017)
$\hat{\tau}^F$	0.0983	0.0990	_
2	(0.0806, 0.1128)	(0.0096)	_

Clayton and BB7 copulas identify strong lower tail dependence in the u-space.....

Illustration: (Parsimonious) Dvine for Bicycle Counts

• Longitudinal count data where:

X_{ij} = # of bicycles on working day *i* during hour *j*

- •Collected on an off-road bike path in Melbourne used for commuting
- •Counts highly variable due to high variance in weather conditions
- •*m*=16, *n*=565
- •Use EDFs for the margins, and D-vine for C (with selection of independence pair-cops.)

Counts

D-vine

- •The vector $X = (X_1, \dots, X_{16})$ is longitudinal
- •A D-vine is a particularly good choice for the dependence structure when the process is likely to exhibit *Markov structure*
- •Note that from Smith et al. (10) in a D-vine:

 $C_{j|1,...,j-1} (u_{j}|u_{1},...,u_{j-1}) = h_{j,1} \circ h_{j,2} \circ ... \circ h_{j,j-1} (u_{j})$ $C_{j|1,...,j-1}^{-1} (z_{j}|u_{1},...,u_{j-1}) = h_{j,j-1}^{-1} \circ h_{j,j-2}^{-1} \circ ... \circ h_{j,1}^{-1} (z_{j})$ •The $h_{j,t}$ functions are the conditional CDFs of the pair-copulas (see Joe 96; Aas et al. 09 and others)

D-vine: Models

•We use three D-vines with "pair-copula selection" and:

- Gumbel pair-copulas
- Clayton pair-copulas
- t pair-copulas (two parameter copula)
- •Some objectives are to see:
 - Whether there is parsimony in the D-vines?
 - Whether choice of pair-copula type makes a difference?
 - Can you predict the evening peak (j=12) given the morning peak (j=3)?

S -

5

Spearman Pairwise Dependences

i

<- From the Parsimonious D-vine with *Gumbel* PC's

<- From the Parsimonious D-vine with *t* PC's

Bivariate Margins

•We compute the bivariate margins in:

 $-X_3$: the morning peak hour on the bike path $-X_{12}$: the evening peak hour on the bike path

$$F_{3,12}(x'_{3}, x'_{12}) = \int C_{3,12}(F_{3}(x'_{3}), F_{12}(x'_{12}); \phi) f(\phi \mid x) d\phi$$

•The dependence parameter is integrated out with respect to its posterior distribution (ie "fitted" distribution)

Bivariate Margins

(b) t-copula

Mixed Margins

- •The approach can be extended to the case where some margins are discrete, others continuous
- •Latent variables are only introduced for the discrete margins
- •Extending the earlier results to this case is *non-trivial* (see paper)

•But once done, adjusted versions of Sampling Schemes 1 and 2 can be derived (see paper)

Some Features of Approach

- •A general approach applicable to all popular parametric copula functions
- •At least one of the two sampling schemes can be used for a given copula model
- •Speed depends upon how fast it is to compute $C_{j|1,...j-1}$ and/or $C_{j|k\neq j}$
- It is likelihood-based; see discussion in Genest & Nešlehová (07) & Song et al. (09/10) for the importance of this

Some Features of Approach

•For copulas constructed by <u>inversion</u> of distribution G, probably better to augment with latents $X^* \sim G$ (cf: Pitt et al. 06; Smith, Gan & Kohn 10; Danaher & Smith 11)

•Not widely appreciated that the Gaussian copula is as restrictive for some discrete data, just as for continuous data (cf: Nikoloulopoulos & Karlis 08; 10)

•Similarly, with model averaging (eg. in a pair-copula model in Smith et al. 10)