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SUMMARY

In standard regression analyses of clustered data, one typically assumes that the expected value
of the response is independent of cluster size. However, this is often false. For example, in studies
of surgical interventions, investigators have frequently found surgery volume and outcomes to
be related to the skill level of the surgeons. This paper examines the effect of ignoring response-
dependent, informative, cluster sizes on standard analytical methods such as mixed-effects mod-
els and conditional likelihood methods using analytic calculations, simulation studies and an
example from a study of periodontal disease. We consider the case in which cluster sizes and
responses share random effects which we assume to be independent of the covariates. Our focus
is on maximum likelihood methods that ignore informative cluster sizes, and we show that they
exhibit little bias in estimating covariate effects that are uncorrelated with the random effects
associated with cluster sizes. However, estimation of covariate effects that are associated with
the random effects can be biased. In particular, for models with random intercepts only, ignoring
informative cluster sizes can yield biased estimators of the intercept but little bias in estimation
of all covariate effects.

Some key words: Conditional likelihood; Generalized linear mixed model; Misspecified mixing distribution; Random
slope.

1. INTRODUCTION

In the regression analysis of clustered data using methods such as generalized linear mixed
models (McCulloch et al., 2008) and generalized estimating equations (Diggle et al., 2002), data
analysts typically assume that the expected value of the response is independent of cluster size,
although this is frequently not the case in practice. For example, Gansky et al. (1999) conducted
a study of periodontal disease where investigators gathered indicators of disease and covariate
information at multiple tooth sites within each subject’s mouth. In this analysis, the prevalence
of diseased sites within mouths was associated with the number of teeth in the mouth, perhaps
reflecting an association of each variable with the overall health status of the mouth. We will
analyse these data further below. As another example, several studies have demonstrated inverse
associations between the annual number of coronary artery bypass graft surgeries a hospital per-
forms and its mortality rate (Dudley et al., 2002). As a final example, longitudinal studies typi-
cally plan to measure all subjects the same number of times but frequently end up with differing
numbers of responses per subject. If the probability of missingness depends on the responses,
either observed or unobserved, then there will be an association between the expected value of
the response and the number of repeated measures for a subject. We call cluster sizes that are
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related to components of the model for the response, for example, the expected value of the
response or the random effects, informative cluster sizes.

In longitudinal studies where the probability of missingness depends on unobserved responses,
ignoring the association of cluster size with the expected value of the response may lead to bias.
Little & Rubin (2002) classify such settings as exhibiting informative missingness and show that
approaches that fail to address it can yield biased estimates of the associations of covariates with
responses.

Previous work (Hoffman et al., 2001; Williamson et al., 2003) has examined the effects of
response-cluster size correlations on marginal analyses of clustered data such as those based on
generalized estimating equations. These papers generally show that ignoring these correlations
can yield highly biased estimates of means and intercept terms of regression models but also
make statements that imply that there are important effects on regression coefficients as well,
e.g., ‘. . . the usual generalized estimating equation approach resulted in severely biased estimates
of both the marginal regression and association parameters’ (Williamson et al., 2003, p. 39).
However, a closer examination of their results shows that the effect on covariate coefficients is
much weaker; ignoring response-cluster size correlations leads to little bias in covariate effects.
For example, while the simulation results in Table 4 of Hoffman et al. (2001) indicate relative
biases of up to 37% in estimates of the intercept using marginal model approaches that ignore
response-dependent clusters sizes, the table also indicates essentially no bias in estimates of
the slope coefficient: marginal model working independence and exchangeable approaches that
ignored response-dependent clusters sizes yielded average slope parameter estimates of 0·4991
and 0·4796, respectively, compared with the true value 0·4796. The simulation results in Table 1
of Williamson et al. (2003) indicate similar results.

Like Hoffman et al. (2001) and Williamson et al. (2003), Dunson et al. (2003) claimed that
ignoring informative cluster sizes can lead to biased estimates of regression coefficients but
provide no direct evidence that this is so. Indeed, the careful reanalysis of the data of Dunson et al.
(2003) by Gueorguieva (2005) showed that ignoring informative cluster sizes leads to essentially
no bias in regression coefficient estimates.

This paper evaluates the performance of standard cluster-specific methods such as generalized
linear mixed models and conditional maximum likelihood estimation for analysing clustered data
in cases where the distribution of the response is associated with cluster sizes. Cluster-specific
approaches provide more meaningful covariate effect estimates than marginal or population-
averaged ones when scientific interest focuses on the associations of covariates that vary within
clusters with the response (Neuhaus et al., 1991; Neuhaus, 2001; McCulloch & Neuhaus, 2005).
We focus on the case where random effects are uncorrelated with the distribution of the covari-
ates, since papers such as Neuhaus & McCulloch (2006) show that ignoring such correlations
can produce biased estimates of regression coefficients.

We show that the problem of assessing the effects of ignoring response-dependent cluster sizes
with cluster-specific methods is a form of misspecification of the shape of the random effects
distribution, and results from that area apply here. In particular, we give theoretical arguments
that explain why ignoring response-dependent, informative cluster sizes can yield highly biased
estimates of intercept parameters but very little bias in estimates of regression/slope parameters.
We also provide simulation results for cluster-specific methods that corroborate the previous
results for marginal approaches. This work indicates little bias in covariate effect estimates, but
we acknowledge that misspecifications involving the covariates such as ignoring correlations
of covariates and random effects (Neuhaus & McCulloch, 2006) or ignoring the dependence of
random effects variances on covariates (Heagerty & Kurland, 2001) can produce substantial bias
in regression coefficient estimates. However, we also note that Neuhaus & McCulloch (2006)
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showed that conditional likelihood methods and analogous covariate partitioning methods pro-
vide consistent estimates of regression parameters in settings with correlations between covari-
ates and random effects.

2. CLUSTER-SPECIFIC MODELS

2·1. Model specification

This paper assumes that we have clustered or longitudinal responses Yi j with p-dimensional
covariates Xi j , where i indexes clusters and j units within clusters, and that we want to fit a
generalized linear mixed model to assess the association of within-cluster changes in X with a
known function of E(Y ). That is, given a vector bi of parameters specific to the i th cluster, for
the j th unit, the conditional density of Yi j is of the form

fY (yi j | bi , xi j ) = exp[{yi jθi j − c(θi j )}φ + d(yi j , φ)] (1)

where c and d are functions of known form, φ is a scale parameter and θi j depends on covariates
Xi j . In addition, one assumes that

μi j = E(Yi j | bi , zi j , xi j ) = g−1(zT
i j bi + xT

i jβ), (2)

where xT
i j and zT

i j are the specified covariate row vectors relating the fixed and random effects,
respectively, to the observations, g is a link function and μi j is a function of θi j . Without loss of
generality, we assume that E(X) = 0. Given bi , we assume that the responses Yi1, . . . , Yini are
independent.

We consider two popular approaches for estimating the parameters β of (2). The first assumes
a distribution for the bi , with parameter �b, and maximizes the likelihood obtained by integrating
over bi . The second treats the bi as fixed constants and eliminates them from the likelihood using
conditioning methods.

2·2. Maximum likelihood estimation

Maximum likelihood approaches assume that the random effects b follow a distribution Fb.

Integrating over b, the likelihood for generalized linear mixed models fited to m independent
clusters, with the i th cluster containing ni units, is

L(β, Fb) =
m∏

i=1

∫ ni∏
j=1

fY (yi j | b, xi j ) d Fb(b) (3)

where Yi j | b follows a generalized linear model as in (1). This approach estimates the model
parameters by maximizing (3).

2·3. Conditional likelihood methods

With canonical link models whose only random effects are random intercepts, we can estimate
the effects of within-cluster covariates of (2) using a conditional likelihood that eliminates the
random effects from the model. Rather than integrating the random effects out of the model
as in (3), the approach works with the response distribution conditional on sufficient statistics
for the cluster-specific intercepts. For example, for canonical link models such as identity and
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logistic link models and random intercepts only, the sufficient statistics are si =∑ni
j=1 yi j and

the conditional likelihood has terms

fY

⎛
⎝yi | xi , ni , bi ,

ni∑
j=1

yi j

⎞
⎠ (4)

where yi = (yi1, . . . , yini ) and xi = (xi1, . . . , xini ). Conditional likelihood methods are difficult
to develop for models featuring more complicated random effects structures such as random
slopes. This paper considers only the case of fitting conditional likelihood methods that assume
random intercepts.

2·4. Associations of cluster size with the response

When the cluster size is associated with the outcome, we can view the observed data for the
i th cluster as yi1, . . . , yini , ni , xi1, . . . , xini . The corresponding joint likelihood is the product,
over i , of terms

fY,N ,X (yi , ni , xi ) =
∫

b

ni∏
j=1

fY (yi j | ni , xi j , b) fN (ni | xi j , b) fX (xi j | b) d Fb(b) (5)

=
∫

b

ni∏
j=1

fY (yi j | ni , xi j , b) fN (ni | xi j , b) fX (xi j ) d Fb(b) (6)

=
∫

b

ni∏
j=1

fY (yi j | xi j , b) fN (ni | xi j , b) fX (xi j ) d Fb(b). (7)

Note that b may be a vector to accommodate, for example, random intercepts and slopes. The
equality (6) follows because we are assuming that Xi j is independent of bi . The equality (7)
follows because we assume that once the cluster size is determined, which is a function of x, β

and/or b, e.g. through the conditional mean, the data-generating mechanism for each observation
does not depend on ni .

2·5. Cluster size associations are misspecified mixing distributions

We assume that the parameters in the joint distribution of Ni and Xi j are not functionally
related to the parameters of interest, namely those in the distribution of outcomes or random
effects. By Bayes’ theorem

fb(bi | ni , xi ) ∝ fN (ni | xi , bi ) fX (xi ) fb(b). (8)

Then using (8) in (7), as a function of β, we have

fY,N ,X (yi , ni , xi ) ∝
∫

b

⎧⎨
⎩

ni∏
j=1

fY (yi j | ni , xi j , b)

⎫⎬
⎭ d Fb|n,x (b | ni , xi j ), (9)

= fY (yi | ni , xi ).

This is a useful representation of (7) since analysts would typically model the distribution of
the responses conditional on covariates and sample size. In particular, ignoring the association of
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cluster size with response, one would base inference on the incorrect likelihood built up of terms

f ∗
Y (yi1, . . . , yini | xi1, . . . , xini , ni ) =

∫
b

ni∏
j=1

fY (yi j | xi j , b) d F∗
b (b), (10)

where the asterisk denotes a fitted distribution.
Comparing equations (10) and (9), we see that (10) is the same as (9) but with a misspecified

random effects distribution, namely the conditional distribution of b given ni and xi is incorrectly
specified as f ∗

b (b). This is important because of the extensive literature on misspecification
of the shape of the mixing distribution and its generally inconsequential effects. For example,
Neuhaus et al. (1992) examined shape misspecification for mixed-effects logistic models and
found that it led to bias in the intercept and random effects variance but little bias in the esti-
mates of regression coefficients. Thus, these results indicate that we should find similar effects
of ignoring associations of cluster sizes and responses.

3. ASYMPTOTIC VALUES OF ESTIMATORS UNDER A CLUSTER SIZE ASSOCIATION

3·1. Inference under misspecification

Given models for the cluster sizes and covariates as functions of b, as well as a specification for
d Fb(b), one could maximize the likelihood built up of terms (7) to obtain maximum likelihood
estimates for all model parameters of interest.

Following Akaike (1973) and White (1982), we evaluate the asymptotic expectation of the
maximum likelihood estimator, ξ̂∗, of ξ∗ obtained from the model that ignores the association
of cluster sizes and random effects. These authors show that ξ̂∗ converges to the value ξ∗ which
minimizes the Kullback–Leibler divergence (Kullback, 1959) between the true and misspecified
models. That is, ξ∗ minimizes

EX
(

EY,N |X
[
log{ f (Y | ξ, X)/ f ∗(Y | ξ∗, X)}]), (11)

where ξ is the true parameter, f and f ∗ denote the true and fitted response densities, respectively,
and we calculate the expectation with respect to the true model.

3·2. Minimizing Kullback–Leibler equations for generalized linear mixed models

Consistent with §2·4, we assume that the association between the response and cluster sizes
arises through the random effect b. Specifically, we assume that cluster sizes are random variables
that depend on b and denote these random variables by Ni (bi ).

We display the derivatives of (11) with respect to the intercept, β∗
0 , and regression parameters,

β∗
l (l = 1, . . . , p), and exploit the fact that the fitted conditional densities are from generalized

linear models to yield the simultaneous equations

EX

⎛
⎝EY,N |X

⎡
⎣ m∑

i=1

∫
u

{∑Ni (bi )
j=1 r∗

i j

}{∏Ni (bi )
j=1 f ∗

Y (Yi j | Xi j , u)
}

d F∗
b (u)∫

u

∏Ni (bi )
j=1 f ∗

Y (Yi j | Xi j , u)
}

d F∗
b (u)

⎤
⎦
⎞
⎠= 0, (12)
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EX

⎛
⎝EY,N |X

⎡
⎣ m∑

i=1

∫
u

{∑Ni (bi )
j=1 Xi jl r∗

i j

}{∏Ni (bi )
j=1 f ∗

Y (Yi j | Xi j , u)
}

d F∗
b (u)∫

u

∏Ni (bi )
j=1 f ∗

Y (Yi j | Xi j , u)
}

d F∗
b (u)

⎤
⎦
⎞
⎠= 0 (13)

(l = 1, . . . , p),

where r∗
i j = {(Yi j − μ∗

i j ) of φV (μ∗
i j )g

′(μ∗
i j )}, V (·) and f ∗(·) are the variance function and con-

ditional density (1), respectively, of the generalized linear model of interest and u is the variable
of integration representing the fitted random effect. Note that r∗

i j = (Yi j − μ∗
i j )/φ for canonical

link generalized linear models. Solving the system (12)–(13), along with analogous equations
from derivatives with respect to �∗

b , yields the limiting values (β∗
0 , β∗

1 , . . . , β∗
p) of the estimator

(β̂∗
0 , β̂∗

1 , . . . , β̂∗
p) based on a likelihood that ignores informative cluster sizes. Thus, minimizing

the Kullback–Leibler divergence is equivalent to calculating the expected scores obtained from
the misspecified likelihood with respect to the true model and determining (β∗

0 , β∗
1 , , . . . , β∗

p) so
that the expected scores are exactly zero.

We examine several special cases below.

3·3. Linear mixed models with random intercepts

We first consider fitting the linear mixed effects model

Yi j = β∗
0 + b∗

i + β∗
1 Xi j + e∗

i j , (14)

with Xi j ∼ (0, σ ∗2
x ), b∗

i ∼ N (0, σ ∗2
b ), e∗

i j ∼ N (0, σ ∗2
e ), b∗

i ⊥⊥ e∗
i j , and Xi j ⊥⊥ e∗

i j , (i = 1, . . . , m;
j = 1, . . . , Ni (bi )). Under this canonical link model, the scale factor φ = σ 2

e and the link function
g is the identity, so that μi j = β0 + bi + β1 Xi j . Under the true model

Yi j = β0 + bi + β1 Xi j + ei j ,

so that r∗
i j = {(β0 − β∗

0 ) + (β1 − β∗
1 )Xi j + (bi − b∗

i ) + ei j }/σ ∗2
e and

f ∗
Y (yi j | xi j , bi ) = {(2π)1/2 σ ∗

e }−1 e−(yi j −μ∗
i j )

2/(2σ ∗2
e ) = {(2π)1/2 σ ∗

e }−1 e−r∗2
i j σ ∗2

e /2
.

When β∗
1 = β1, both r∗

i j and f ∗
Y (yi j | xi j , bi ) are free of xi j so that the left-hand side of (13) is a

linear function of Xi j . Since E(X) = 0, it follows that the left-hand side of (13) is zero so that
β∗

1 = β1 solves (13) for all values of β∗
0 , σ ∗2

b and σ ∗2
e . This result of consistent estimation extends

to the case of multiple covariates. Thus, for the linear mixed effects model with random intercepts,
ignoring informative cluster sizes, as in (10), yields consistent estimates of slope parameters.

Using the fact that β∗
1 = β1, we next argue that β̂∗

0 , does not consistently estimate β0, because
the left-hand side of (12) is not a linear function of Xi j , unlike (13). Using (12) and focussing
on the i th term, and dropping the subscript i , we see that the densities in the numerator and
denominator form

fY (y | x, b) f ∗
b (b)∫

b fY (y | x, b) f ∗
b (b)

= f ∗
Y (y, b | x)

f ∗
Y (y | x)

= f ∗
b (b | y, x).

Therefore, the integral in the numerator of (12) is the expectation with respect to b∗ conditional
on y and x . Denote that expectation by E∗.
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The left-hand side of (12), the equation associated with the intercept, therefore becomes

EX

[
EN ,Y |X

{∑
i

N (bi )∑
j=1

E∗(r∗
i j | Y, X)

}]

= EX EN ,Y |X
∑

i

N (bi )∑
j=1

{
Yi j − E∗(b∗

i | Y, X) − β∗
0 − β∗

1 Xi j
}

/σ ∗2
e . (15)

For model (14)

E∗(b∗
i | Y, X) = σ ∗2

b

σ ∗2
b + σ ∗2

e /N (bi )
(Ȳi · − β∗

0 − β∗
1 X̄i ·) ≡ λ(bi )(Ȳi · − β∗

0 − β∗
1 X̄i ·).

Thus, (15) implies

σ ∗2
e

∂ log L

∂β0
= EX

(
EN ,Y |X

[∑
i

N (bi ){1 − λ(bi )}
(
Ȳi · − β∗

0 − β∗
1 X̄i ·

)])
.

Under the situation in which β∗
j = β j , this simplifies to

EX

(
EN ,Y |X

[∑
i

N (bi ){1 − λ(bi )} (bi + ēi ·)

])
.

This is basically a covariance term between bi and N (bi ), which will not be zero under an infor-
mative cluster size model. That is, β̂∗

0 does not consistently estimate β0 when one ignores infor-
mative cluster sizes and this work indicates why intercept estimators behave differently than
covariate effect estimators. Benhin et al. (2005) obtained equivalent results for intercept and slope
estimators using a different approach.

3·4. Linear mixed models with random intercepts and slopes

We next consider fitting a linear mixed effects model with both random intercepts and slopes,
with cluster sizes associated with both the random intercepts and slopes. As is common in prac-
tice, the model includes both a between-cluster covariate, X B , and a within-cluster covariate,
XW 1. We will see that consistency results depend on whether or not a model covariate Xl is cor-
related with a covariate Zk from (2) where the corresponding random effect bk is associated with
cluster size. Therefore, we also include a second within-cluster covariate, XW 2, with no random
slope term, in the model. We construct XW 2 so that it is orthogonal to XW 1 and X B . Thus, we
consider fitting the model

Yi j = β∗
0 + b∗

0i + (β∗
W 1 + b∗

1i )XW 1i j + β∗
W 2 XW 2i j + β∗

B X Bi + e∗
i j , (16)

with XW 1i j ∼ (0, σ ∗2
X W 1), XW 2i j ∼ (0, σ ∗2

X W 2), X Bi ∼ (0, σ ∗2
X B),

(
b∗

0i
b∗

1i

)
ind∼ N

{(
0
0

) (
σ ∗2

b0 σ ∗
12

σ ∗
12 σ ∗2

b1

)}
,
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e∗
i j ∼ N (0, σ ∗2

e ), and the covariates (XW 1i j , XW 2i j , X Bi ) and random effects (b∗
0i , b∗

1i ) are

independent of e∗
i j . In addition, without loss of generality, we assume that

∑N (bi )
j=1 xW 1i j =∑N (bi )

j=1 xW 2i j = 0, so that XW 1i j and XW 2i j are orthogonal to X Bi . We can achieve this struc-
ture with standard decompositions of covariates into between- and within-cluster components
(Neuhaus & McCulloch, 2006). As in §3·3, we have μi j = β0 + b0i + (βW 1 + b1i )XW 1i j +
βW 2 XW 2i j + βB X Bi . Under the true model

Yi j = β0 + b0i + (βW 1 + b1i )XW 1i j + βW 2 XW 2i j + βB X Bi + ei j ,

so that

r∗
i j = σ ∗−2

e

{
(β0 − β∗

0 ) + (b0i − b∗
0i ) + (βW 1 − β∗

W 1 + b1i − b∗
1i )XW 1i j

+ (βW 2 − β∗
W 2)XW 2i j + (βB − β∗

B)X Bi + ei j
}

and f ∗
Y (yi j | xi j , bi ) = {

(2π)1/2 σ ∗
e

}−1
e−(yi j −μ∗

i j )
2/(2σ ∗2

e ) = {(2π)1/2 σ ∗
e }−1e−r∗2

i j σ ∗2
e /2.

Again following §3·3, the integrals in the numerators of (12) and (13) are the expectations
with respect to b∗ = (b∗

0, b∗
1) conditional on y and x . The left-hand sides of (12) and (13), the

equations associated with the intercept and βl, l = B, W 1, W 2, respectively, therefore become

EX EN ,Y |X
∑

i

N (bi )∑
j=1

Xli j E∗(r∗
i j | Y, X)

= EX EN ,Y |X
∑

i

N (bi )∑
j=1

Xli j
[
Yi j − E∗(b∗

0i | Y, X) − β∗
0 − {

β∗
W 1 + E∗(b∗

1i | Y, X)
}

XW 1i j

− β∗
W 2 XW 2i j − β∗

B X Bi j
]
/σ ∗2

e . (17)

The equation associated with β0 is just (17) with Xli j ≡ 1. Use b̃∗
0i = E∗(b∗

0i | Y, X) and b̃∗
1i =

E∗(b∗
1i | Y, X) to denote the best linear unbiased predictors under the assumed conditional density

f ∗
b (b | y, x).

Using the fact that (XW 1i j , XW 2i j , X Bi ) are mutually orthogonal within clusters, the following
argument shows that β̂∗

W 2 and β̂∗
B consistently estimate βW 2 and βB , respectively, when one

ignores informative cluster sizes. Consider (17) with respect to β∗
W 2. By orthogonality, all terms

involving XW 2i j XW 1i j and XW 2i j X Bi drop out of (17). When β∗
W 2 = βW 2, both r∗

i j and f ∗
Y (yi j |

xi j , bi ) are free of xW 2i j so that the left-hand side of (13) is a linear function of XW 2i j and no
other Xs. Since E(XW 2) = 0, it follows that β∗

W 2 = βW 2 solves (13) for all values of β∗
0 , β∗

W 1, β∗
B ,

σ ∗2
b0 , σ ∗2

b1 , σ ∗
12 and σ ∗2

e . An analogous argument shows that β̂∗
B consistently estimates βB when

one ignores informative cluster sizes.
However, the above result on consistent estimation does not extend to β̂∗

W 1, the estimator asso-
ciated with the covariate involved with the random slope. Even when β∗

W 1 = βW 1, r∗
i j depends on

XW 1i j , unless b∗
1i = b1i , so that the left-hand side of (13) will not be a linear function of XW 1i j .

By orthogonality of the covariates, (17) with l = W 1 is

EX

(
EN ,Y |X

[∑
i

N (bi )∑
j=1

XW 1i j

{
Yi j − b̃∗

0i − β∗
0 − (β∗

W 1 + b̃∗
1i )XW 1i j

}
/σ ∗2

e

])
. (18)
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When β∗
W 1 = βW 1, (18) reduces to

EX

(
EN ,Y |X

[∑
i

(
b1i − b̃∗

1i

) N (bi )∑
j=1

X2
W 1i j/σ

∗2
e

])
, (19)

which will typically not be zero. For example, we evaluate (19) using the covariate XW 1 of the
simulation studies of §4 to further study the magnitude of bias in β̂∗

W 1. In these simulations,
XW 1 takes on equally spaced values between −1 and 1 within clusters. For such a covariate, it is
easy to show that

∑ni
j=1 x2

W 1i j = (ni + 1)ni/{3(ni − 1)} ∼ ni/3. The prediction b̃∗
1i is a shrunken

prediction of b1i under the model ignoring informative cluster size and, as such, is a function of
b1i . Thus, (19) is essentially a covariance between N (bi ) and a function of bi , which is not zero.

An analogous argument shows that β̂∗
0 will not consistently estimate β0 even when the regres-

sion coefficients are consistently estimated. Again, this is true because the left-hand side of (12)
is not a linear function of Xli j for l = B, W 1, W 2.

3·5. Generalized linear mixed models with random intercepts at β = 0

We first develop theory for the case where all covariates are uncorrelated with the outcome,
that is, the case where βl = 0 (l = 1, . . . , p). Consistency results at βl = 0 are useful since they are
a prerequisite for tests of the hypothesis H0 : βl = 0 using estimators β̂∗

l and based on likelihoods
that ignore informative cluster sizes to have the correct type I error rate. Focusing on single
covariate models, when β1 = 0, the canonical parameter θi j of (1) and the conditional mean μi j

of (2) are both free of Xi j so that both r∗
i j and the f ∗

Y (yi j | xi j , bi ) in (12) and (13) are also free of
xi j . That is, when β1 = 0, (13) is a linear function of Xi j and since E(X) = 0, it follows that the
left-hand side of (13) is zero. Thus, when β1 = 0, estimates β̂∗

1 based on a likelihood that ignores
informative cluster sizes consistently estimate zero and this result extends naturally to the case
of multiple covariates. The above results hold for all generalized linear mixed models and thus
for the mixed effects logistic and Poisson models we investigate further below.

As in §3·3, β∗
0 = β0, β∗

1 = β1 = 0 does not solve (12) so that β̂∗
0 does not consistently estimate

β0. When β∗
0 = β0 and β∗

1 = β1 = 0, the left-hand side of (12) is not a linear function of Xi j and
following an argument similar to that of §3·3 will not have expectation zero. Thus, β̂∗

0 does not
consistently estimate β0 when one ignores informative cluster sizes even when β1 = 0.

For β1 |= 0, analytical evaluation of the expectations of (12) and (13) is typically intractable.
As an alternative, §4 presents the results of simulation studies that examine the performance of
estimators from mixed effects binary and Poisson models that ignore associations between cluster
sizes and outcomes.

3·6. Generalized linear mixed models with random intercepts and slopes

As in §3·4, we consider fitting generalized linear mixed models with random intercepts and
slopes in settings where cluster sizes are associated with both the random intercepts and slopes.
We assume the same covariate structure as in §3·4 with two within-cluster covariates, XW 1 and
XW 2, a single between-cluster covariate X B and (XW 1, XW 2, X B) mutually orthogonal. As in
§3·5, we focus on the case where all covariates are unrelated to the response, βW 1 = βW 2 = βB =
0. In this case, the canonical parameter θi j of (1) and the conditional mean μi j of (2) are both
free of XW 2i j and X Bi but not free of XW 1i j because of the random slope term b1i XW 1i j . Thus,
the consistency results for the random intercept case in §3·5 do not carry over to the case where
cluster sizes are associated with both random slopes and intercepts.
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However, we can obtain approximate results using Taylor expansions about XW 1i j = 0, its
average value. For example, consider fitting canonical link generalized linear mixed models. For
such models, r∗

i j = (yi j − μ∗
i j )/φ, where μ∗

i j = g−1(η∗
i j ), g is a link function and η∗

i j is the linear
predictor as in (16). Expanding r∗

i j in a Taylor series about XW 1i j = 0 yields the approximation

r∗
i j (XW 1i j ) ≈ r∗

i j (0) + XW 1i j r
∗′
i j (0). (20)

Consider (13) with respect to β∗
W 2, replacing r∗

i j by its Taylor approximation (20). By orthogonal-
ity, all terms involving XW 2i j XW 1i j and XW 2i j X Bi drop out of this approximation to (13). When
β∗

W 2 = βW 2 = 0, both r∗
i j and f ∗

Y (yi j | xi j , bi ) are free of xW 2i j so that the left-hand side of (13)
is a linear function of XW 2i j and no other Xs. Since E(XW 2) = 0, it follows that β∗

W 2 = βW 2 = 0
solves the approximation to (13) for all values of β∗

0 , β∗
W 1, β∗

B , σ ∗2
b0 , σ ∗2

b1 , σ ∗
12 and σ ∗2

e . An anal-
ogous argument shows that β∗

B = βB = 0 solves the approximation to (13) with respect to β∗
B .

These approximations suggest that β̂∗
W 2 and β̂∗

B will exhibit little bias when one ignores infor-
mative cluster sizes.

Like the results of §3·5, the above results on consistent estimation do not extend to β̂∗
W 1, the

estimator associated with the covariate involved with the random slope. Even when βW 1 = 0 and
using the Taylor approximation in (20), both θi j and μi j depend on XW 1i j through the random
slope term b1i XW 1i j . Thus, r∗

i j depends on XW 1i j , unless b∗
1i = b1i , so that the left-hand side of

(13) will not be a linear function of XW 1i j .
As in §3·3, β∗

0 = β0, β∗
1 = β1 = 0 does not solve (12) so that β̂∗

0 does not consistently estimate
β0. When β∗

0 = β0 and β∗
1 = β1 = 0, the left-hand side of (12) is not a linear function of Xi j and

following an argument similar to that of §3·3 will not have expectation zero. Thus, β̂∗
0 does not

consistently estimate β0 when one ignores informative cluster sizes even when β1 = 0.
For βl |= 0, analytical evaluation of the expections of (12)–(13) is typically intractable. As an

alternative, §4 presents the results of simulation studies that examine the performance of estima-
tors from mixed effects binary and Poisson models that ignore associations between cluster sizes
and outcomes.

3·7. Conditional likelihood methods

For canonical link generalized linear mixed models with only random intercepts, a conditional
likelihood approach would treat the cluster-specific intercepts bi in (2) as fixed constants and
eliminate them from the likelihood by conditioning on their sufficient statistics

∑ni
j=1 yi j . That

is, one would compute

fY,N ,X

(
yi1, . . . , yini , ni , xi1, . . . , xini | bi ,

ni∑
j=1

yi j

)
.

From (9), we see that it is equivalent to compute

fY

(
yi1, . . . , yini | ni , xi1, . . . , xini , bi ,

ni∑
j=1

yi j

)
. (21)

However, (21) is just the standard conditional likelihood one would compute from a general-
ized linear mixed model where there are no correlations between the cluster sizes and covariates,
i.e., (4). Thus, the conditional likelihoods corresponding to (9) and to (10) will coincide and the
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approach will provide consistent estimates of the effects of within-cluster covariates when clus-
ter sizes are associated with the covariates. The consistency of conditional likelihood estimates
makes sense intuitively. The densities of cluster sizes of (9) given the cluster-specific intercept bi ,
do not vary within clusters and the conditional likelihood approach eliminates such terms from
the likelihood. The simulations studies in §4 illustrate the performance of the conditional likeli-
hood approach for models with only random intercepts. Standard conditional likelihood methods
will perform poorly in settings with subject-specific slopes as well as intercepts since condition-
ing on sufficient statistics for the intercepts will not appropriately accommodate the slopes.

4. SIMULATIONS

We carried out two sets of simulations to examine the effects of ignoring associations of cluster
sizes with the distribution of the responses on the standard cluster-specific methods of mixed-
effects models and conditional likelihood approaches. The simulations generated clustered binary
or Poisson responses from generalized linear mixed models where the random effects b were
correlated with cluster size:

yi j | bi , ni , xi j
ind∼ fy|b,n,x (i = 1, . . . , m; j = 1, . . . , ni ), (22)

g{E(yi j |bi , zi j , xi j )} = zT
i j bi + xT

i jβ, (23)

Ni | bi ∼ Po
(

eγ0+γ1b0i +γ2b1i

)
+ Nmin, (24)

bi
ind∼ N (0, �B), (25)

and Nmin is an offset to avoid cluster sizes that are too small for estimating within-cluster covariate
effects. Specifically, the first set of simulations included a single covariate, xi j , a Bernoulli (0·5)
within-cluster covariate, a random intercept, zi j ≡ 1, and no random slope terms. The second set
of simulations followed the work of §3·4 and §3·6 and generated responses with both random
intercepts and slopes and three mutually orthogonal covariates: a within-cluster covariate, xW 1i j

that was equally spaced values between −1 and 1 within clusters; xW 2i j , a within-cluster covariate
constructed to be orthogonal to xW 1i j ; and a between-cluster covariate, xBi , distributed Bernoulli
(0·5). The random slope was associated with xW 1i j and the model used zT

i j = (1, xW 1i j )
T. Simu-

lation 1 set Nmin = 2 in equation (24) to preclude cluster sizes of 0 or 1, whereas simulation 2 set
Nmin = 4. The simulation set 1 used γ0 = γ1 = 1·0, whereas simulation set 2 used γ0 = 1, γ1 =
γ2 = 3−1/2. Calculations show that the expected cluster size is E(N ) = exp(γ0 + 0·5 σ 2

b γ 2
1 ) + 2

for simulation 1 and E(N ) = exp{γ0 + 0·5(σ 2
b0γ

2
1 + 2σ12γ1γ2 + σ 2

b1γ
2
2 )} + 4 for simulation 2.

The simulations generated responses from three different binary mixed-effects models using
the logistic, probit and complementary log-log link functions, as well as from a mixed-effects
Poisson model with a log link, for both settings described above. Each simulation generated 1000
datasets, each with 100 clusters. The mixed-effects model parameter values for the first set of
simulations were β0 = −2·5, β1 = 1·0 and var(bi ) = 1·0, while they were β0 = −2·5, βW 1 = 1·0,
βW 2 = 1·0, βB = 1·0, var(b0i ) = var(b1i ) = 1·0 and cov(b0i , b1i ) = 0·5 for simulation set 2. For
the given inputs, the average cluster size was E(N ) = 6·48 for the first set of simulations and
E(N ) = 8·48 for the second set.

We fit two approaches to each dataset: the joint model based on (22)–(25) that used correct
specifications of fY (y | x, n, b) and fN (n | b); and a standard binary mixed-effects or Poisson
model that ignored cluster size associations, based on (22), (23) and (25), but not (24). For
the first set of simulations involving mixed-effects logistic and Poisson models, we also fit the
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Table 1. Observed means and standard deviations, in parentheses, of the regression coefficients of
several methods for fitting generalized linear mixed models with random intercepts to simulated

clustered data where the random intercepts were associated with cluster sizes

Distribution Link Model β0 β1 σb

Binary logit Ignore ni −2·16 (0·23) 1·01 (0·14) 0·94 (0·20)
CML 1·01 (0·15)
Joint −2·52 (0·24) 1·01 (0·13) 1·00 (0·17)

Binary probit Ignore ni −2·16 (0·24) 1·00 (0·13) 0·89 (0·18)
Joint −2·53 (0·25) 1·01 (0·12) 1·00 (0·16)

Binary comp log-log Ignore ni −2·20 (0·21) 1·02 (0·11) 0·93 (0·16)
Joint −2·51 (0·22) 1·01 (0·11) 0·98 (0·17)

Poisson log Ignore ni −2·19 (0·19) 1·01 (0·07) 0·89 (0·14)
CML 1·00 (0·07)
Joint −2·50 (0·20) 1·00 (0·07) 0·98 (0·14)

Ignore ni , standard generalized linear mixed models that ignored cluster size associations, based on (22), (23) and (25);
Joint, joint models using (22)–(25) that used correct specifications of fY (y | x, n, b) and fN (n | b); and for mixed-
effects logistic and Poisson models, CML, conditional likelihood approaches (4). True values: β0 = −2·5, β1 = 1·0,
σb = 1·0.

conditional likelihood approach of (4). A conditional likelihood approach is not available for the
mixed-effects probit or complementary log-log models since these are not canonical link mod-
els. We fit the mixed-effects and joint models using Proc NLMIXED in SAS and the conditional
likelihood methods for the logistic link using Proc PHREG in SAS. Lancaster (2002) showed that
one can obtain conditional maximum likelihood estimates for Poisson responses using a standard
Poisson model that includes a fixed parameter bi for each cluster. We fit the conditional likeli-
hood methods for Poisson responses following such a fixed effects Poisson approach using Proc
GENMOD in SAS.

Table 1 displays the average values of the parameter estimates along with standard deviations
of these estimates from the first set of simulations that generated data from and fit random inter-
cept models. The simulation findings in Table 1 closely correspond to the results of §3. Ignoring
the correlation between cluster sizes and random effects produced no detectable bias in estimates
of the regression coefficient β1. However, the estimates of the intercept β0 were biased. Also,
there were small biases in estimating the variance component σb. The conditional likelihood
approach yielded consistent estimates of β1, but they were slightly less efficient than the mixed-
effects model estimates. All parameter estimates from the correctly specified joint model, (22)–
(25), closely corresponded to the true values and their simulation standard errors were slightly
smaller than those of the other approaches. Thus, correctly modelling the association of random
effects with cluster sizes when the covariates were independent of the random effects did not
produce large efficiency gains.

The simulation results in Table 1 for the probit, complementary log–log and Poisson models
paralleled those for the logistic model. When the random effects were associated with cluster
sizes, Table 1 shows that ignoring cluster size associations produces no bias in estimates of the
regression coefficient β1. As with the logistic model, Table 1 shows that all parameter estimates
from the correctly specified joint probit, complementary log-log and Poisson models (22)–(25)
closely corresponded to the true values and their simulation standard errors were slightly smaller
than those of the other approaches. Again, however, correctly modelling the association of ran-
dom intercepts with cluster sizes did not produce large efficiency gains. As with the logistic
model, Table 1 shows that the conditional likelihood approach for Poisson responses yielded
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Table 2. Observed means and standard deviations, in parentheses, of the regression coefficients
of several methods for fitting generalized linear mixed models with random intercepts and slopes
to simulated clustered data where the random intercepts and slopes were associated with cluster

sizes
Distribution Link Model β0 βW 1 βW 2 βB

Binary logit Ignore ni −2·38(0·27) 1·10 (0·23) 0·97 (0·20) 1·01 (0·32)
Joint −2·55 (0·25) 1·01 (0·24) 1·01 (0·21) 1·02 (0·25)

Binary probit Ignore ni −2·42 (0·31) 1·03 (0·23) 0·96 (0·17) 1·00 (0·32)
Joint −2·55 (0·28) 1·00 (0·24) 1·01 (0·17) 1·02 (0·22)

Binary comp log-log Ignore ni −2·44 (0·26) 1·07 (0·21) 0·99 (0·16) 1·01 (0·30)
Joint −2·54 (0·23) 1·02 (0·21) 1·01 (0·16) 1·03 (0·21)

Poisson log Ignore ni −2·35 (0·21) 1·06 (0·18) 0·93 (0·11) 0·95 (0·25)
Joint −2·51 (0·17) 1·01 (0·18) 1·00 (0·11) 1·00 (0·10)

Distribution Link Model log σb0 log σb1 σ12

Binary logit Ignore ni −0·02 (0·19) 0·01 (0·28) 0·63 (0·29)
Joint −0·01 (0·18) 0·02 (0·05) 0·56 (0·29)

Binary probit Ignore ni −0·05 (0·19) 0·02 (0·23) 0·62 (0·23)
Joint −0·01 (0·17) 0·01 (0·20) 0·55 (0·24)

Binary comp log-log Ignore ni −0·01 (0·16) 0·07 (0·24) 0·62 (0·23)
Joint −0·01 (0·16) 0·00 (0·21) 0·55 (0·24)

Poisson log Ignore ni −0·09 (0·14) −0·06 (0·15) 0·52 (0·18)
Joint −0·01 (0·12) −0·02 (0·13) 0·52 (0·17)

Ignore ni , standard generalized linear mixed models that ignored cluster size associations, based on (22), (23) and
(25); Joint, joint models using (22)–(25) that used correct specifications of fY (y | x, n, b) and fN (n | b). True values:
β0 = −2·5, βW 1 = βW 2 = βB = 1·0, log σb0 = log σb1 = 0 and σ12 = 0·5.

consistent estimates of β1 but they were slightly less efficient than the mixed-effects model esti-
mates. The convergence rates for the simulations of Table 1 were very high, exceeding 99.8% for
most models. However, with the complementary log-log link the joint model, (22)–(25) failed
to converge for 21 of 1000 datasets. Table 1 reports the results for the 979 datasets where both
methods converged.

Table 2 displays the results from the second set of simulations that generated data from and
fit models that included both random intercepts and slopes, as well as both within- and between-
cluster covariates. The results in Table 2 closely follow the findings of §3·4 and §3·6. For all three
binary link models, as well as for the Poisson, ignoring the associations of the random intercept
and random slope for xW 1i j with cluster sizes produced no substantial bias in estimates of the
regression coefficients βW 2 or βB . As in Table 1, correctly modelling the association of random
intercepts and slopes with cluster sizes did not produce large efficiency gains in estimates of βW 2
or βB . Following the theory of §3·4 and §3·6 and analogous to the results of Table 1 for intercepts,
ignoring the association of the random slope for xW 1i j with cluster sizes yielded biased estimates
of βW 1. As in the simulations involving random intercept models, ignoring informative cluster
sizes in settings with both random intercepts and slopes yielded biased estimates of the intercept,
typically not the parameter of central interest. As in Table 1, convergence rates for the simulations
of Table 1 were very high, exceeding 98% for all models.

We also conducted limited simulation studies not reported here which followed the design of
the second set of simulations but generated cluster sizes dependent only on the random intercepts.
Consistent with the work of §3, maximum likelihood methods ignoring informative cluster sizes
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Table 3. Parameter and standard error estimates, in
parentheses, from three methods for fitting mixed-
effects logistic models to the periodontal data

(Gansky et al., 1999).

Ignore ni CML Joint

β0 −1·30 −1·09
(0·15) (0·16)

Molar (β1) 0·77 0·83 0·82
(0·09) (0·09) (0·09)

σb 2·67 2·77
(0·16) (0·16)

Ignore ni , standard mixed-effects logistic models that ignored
cluster size associations, based on (22), (23) and (25); CML,
conditional likelihood approaches (4); Joint, joint models using
(22)–(25) that used correct specifications of fY (y | x, n, b) and
fN (n | b).

yielded little bias in estimated covariate effects. However, standard conditional likelihood meth-
ods, assuming random intercepts only, yielded biased covariate effects.

5. EXAMPLE: PERIODONTAL DISEASE

Data from a study of periodontal disease (Gansky et al., 1999) motivated our investigations
of the effects of informative cluster sizes. The dataset consists of tooth-specific observations on
407 subjects. Analyses of periodontal disease data often focus on pre-molar and molar teeth since
the front teeth are less susceptible to gum disease. We thus restrict the analysis to the molar and
pre-molar teeth so that a subject can provide a maximum of 16 observations. The outcome, Y ,
is a binary, tooth-specific indicator of periodontal disease and the single fitted covariate, x , is a
binary indicator of whether the tooth is a molar versus pre-molar. The number of teeth per subject
varied from 1 to 16 with an average of 11·6.

A logistic regression of presence of periodontal disease on the number of teeth using the gener-
alized estimating equations method and independence working correlation (Diggle et al., 2002)
yielded an estimated regression coefficient of −0·15 for the number of teeth along with a robust
standard error of 0·015, indicating a highly statistically significant association of cluster size and
the expected value of the response.

Table 3 presents the results of three methods for fitting mixed-effects logistic models to the
clustered periodontal disease data to assess the association of tooth-specific disease prevalence
with tooth type. The three methods are the same as those in Table 1 and we used the same SAS

procedures to implement them. That is, we fit the joint model (22)–(25), a standard mixed-effects
logistic model that ignored cluster size associations (22), (23) and (25) and the conditional like-
lihood approach, (4). The joint model used a similar specification of fN (n | b) as in Table 1
simulations namely N ∼ Po{exp(γ0 + γ1b)} + 1.

The results in Table 3 closely correspond to the findings in §4. In §1, we noted that the num-
ber of teeth per subject was associated with the distribution of the response, the binary indicator
of periodontal disease. The estimates of the parameters of fN (n | b) were γ̂0 = 2·424, se(γ̂0) =
0·019 and γ̂1 = −0·244, se(γ̂1) = 0·019. Thus, there is a highly statistically significant relation-
ship between N and b. To put the value of γ̂1 in context, for each standard deviation increase in
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b, across a reasonable range of values for b, this is about a 40% decrease in the mean value of
N . Table 3 also indicates that the conditional likelihood estimate and standard error are nearly
identical to the estimated coefficient and standard error of the joint model approach. The esti-
mate from the fit that ignored cluster size associations is also similar. Estimates of the intercept,
β0, are more discrepant.

6. DISCUSSION

We studied linear mixed effects and generalized linear mixed models in cases where cluster
sizes are associated with one or more random effects and focus on the performance of maxi-
mum likelihood methods when ignoring informative cluster sizes. In the case of linear mixed
effects models, ignoring informative cluster sizes yields consistent estimation for the effects of
covariates uncorrelated with the random effects that are associated with cluster size. However,
estimation of covariate effects that are associated with the random effects can be biased. In partic-
ular, for models with random intercepts only, ignoring informative cluster sizes can yield biased
estimators of the intercept but yields consistent estimators of all covariate effects.

Our theoretical results for the case of generalized linear mixed models are less comprehensive
than for linear mixed effects models. For the random intercepts case, we show that ignoring
informative cluster sizes yields consistent estimators of covariate effects when they are zero. For
models that also include random slopes, approximations and simulation studies suggest little bias
in estimating the effects of covariates uncorrelated with the random effects that are associated
with cluster size, but bias otherwise.

Standard conditional maximum likelihood methods, which assume random intercepts only,
give consistent estimates of covariate effects when the true model contains only random intercepts
and the cluster size depends on those random intercepts. However, in the presence of random
slopes, conditional maximum likelihood methods give biased estimation of covariate effects,
even when the cluster size depends only on the random intercepts.

While we have assumed throughout the paper that cluster sizes do not depend on covariates,
in practice they may. If this dependence arises through shared random effects as in (5), then the
results of Neuhaus & McCulloch (2006) indicate that ignoring informative cluster sizes in this
case can produce biased covariate effect estimators. However, Neuhaus & McCulloch (2006) also
suggest that approaches that partition covariates into between- and within-cluster components, as
well as conditional likelihood methods, provide consistent estimation in settings with covariate-
dependent cluster sizes.
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