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2Instituto Nacional de Investigaciones Agŕıcolas, Forestales y Pecuarias (INIFAP), Blvd. Prof. José Santos Valdez,
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Irrigation water is limited and scarce in many areas of the world, including Comarca Lagunera, Mexico. 	us better estimations
of irrigation water requirements are essential to conserve water. 	e general objective was to estimate crop water demands or
crop evapotranspiration (ETc) at di
erent scales using satellite remote sensing-based vegetation index. 	e study was carried out
in northern Mexico (Comarca Lagunera) during four growing seasons. Six, eleven, three, and seven clear Landsat images were
acquired for 2013, 2014, 2015, and 2016, respectively, for the analysis. 	e results showed that ETc was low at initial and early
development stages, while ETc was high during mid-season and harvest stages. 	ese results are not new but give us condence in
the rest of our ETc results. Daily ETc maps helped to explain the variability of crop water use during the growing season. Based on
the results we can conclude that ETc maps developed from remotely sensed multispectral vegetation indices are a useful tool for
quantifying crop water consumption at regional and eld scales. Using ETc maps at the eld scale, farmers can supply appropriate
amounts of irrigation water corresponding to each growth stage, leading to water conservation.

1. Introduction

Irrigation water is limited and scarce in many areas of the
world. Agriculture is the major consumer of fresh water
[1, 2], but it is not necessarily used e�ciently due to farmers
supplying more water than is consumed by the crop. 	us,
better estimation of irrigation water requirements is essential
to use water e�ciently so water is available for use in the
future. To achieve water conservation, it is necessary that
farmers adopt new technologies for estimating crop water
demands more accurately.

Crop evapotranspiration (ETc) represents crop water
requirement and is a
ected by weather and actual crop
conditions [3, 4]. A useful method to estimate ETc or crop
water requirements is to multiply reference evapotranspira-
tion (ETr) by a crop coe�cient (�c) (see (1)). ETr is estimated
based onmeteorological information (e.g., solar radiation, air

temperature, wind, and air vapor pressure decit) froma local
weather station. 	e Penman-Monteith equation has been
advanced as the standard method for estimating reference
ET [5, 6]. �c is typically taken from literature values and is
a
ected by crop variety and growth stage [5–7]. ETc has been
estimated or measured using other methods, for example,
weighing lysimeters, evaporation pan, soil water balance,
atmometer, Bowen Ratio Energy Balance System (BREBS),
and Eddy Covariance (EC). However, these methods are
recognized as the point-based measurements. Satellite-based
remote sensing is an alternative to estimate crop water
requirement and its spatial and temporal distribution on a
eld-by-eld basis at a regional scale. 	ese remote sensing-
based methods have been shown to be accurate [8–11]:

ETc = ETr × �c. (1)

Hindawi
Advances in Meteorology
Volume 2018, Article ID 4525021, 12 pages
https://doi.org/10.1155/2018/4525021

http://orcid.org/0000-0002-6983-0905
https://doi.org/10.1155/2018/4525021


2 Advances in Meteorology

Torreón, Coah.

0 5 10 20
(Km)

México

1000 km

500 mi

2
6
∘
0
 0


N

2
5
∘
4
5
 0


N

2
5
∘
3
0
 0


N

2
6
∘
0
 0


N

2
5
∘
4
5
 0


N

2
5
∘
3
0
 0


N

103∘400W 103∘200W 103∘00W

103∘400W 103∘200W 103∘00W

(b)

(a)

Figure 1: Location of the study area at northern Mexico (a). 	e subset of the area of interest, Landsat with false color composite (bands 4,
3, 2); the yellow triangles denote ve locations where we selected the corn elds and the white star indicates weather station (b).

Remote sensing is a technology that can estimate ETc

at regional and local scale in less time and with less cost
[9, 10]. Remote sensing can also estimate crop coe�cients
based on spectral re�ectance of vegetation indices (VIs) [5,
12]. 	e normalized di
erence vegetation index (NDVI) is
the most common VIs [13]. NDVI takes into account the
re�ectance of red and near-infrared wavebands [14], where
red waveband is strongly absorbed by chlorophyll in leaves of
the top layers, while near-infrared wavebands is re�ected by
themesophyll structure in leaves, penetrating into deeper leaf
layers in a healthy vegetation [15, 16].High values ofNDVI are
related to healthy and dense vegetation, which presents high
re�ectance values in the NIR waveband and low re�ectance
values in the red waveband [17]. Crop coe�cients generated
from VIs determine ETc better than a tabulated�c because it
represents the actual crop growth conditions and capture the
spatial variability among di
erent elds [2, 18, 19].

Several studies have usedmultispectral vegetation indices
derived from remote sensing to estimate�c values on agricul-
tural crops including corn crop, for example, in [20–31]. Crop
coe�cients derived from remotely sensed vegetation index
also have used to generate local and regional ETc maps [2, 32–
34]; however, in northern Mexico, ETc maps using satellite
remote sensing-based vegetation index remain unexplored.

	e objectives of this study were to (1) calculate NDVI
values for each corn eld for each growing season, (2)
develop a simple linear regression model between NDVI

derived from satellite-based remote sensing and tabulated�c
obtained of alfalfa-based crop coe�cient fromASCEManual
70, (3) generate�c maps using the linear regression equation
obtained between NDVI and �c values, and (4) create ETc

maps with high spatial resolution at regional and eld scales.

2. Materials and Methods

2.1. Study Area. 	e study was carried out in northern
Mexico (Comarca Lagunera) during four growing seasons.
Comarca Lagunera had an average latitude of 25∘40�N and
longitude of 103∘18�Wand elevation of 1115m abovemean sea
level (Figure 1). In Comarca Lagunera, forage crops (alfalfa,
corn, sorghum, and oat (planted in the winter season))
occupiedmore than 75% of the total irrigated area [35]. Silage
corn is the most important crop a�er alfalfa in this region.
Five silage corn elds in each growing season were selected
for NDVI calculations. 	e corn elds were irrigated using
surface irrigation systems. 	e plant population density was

78,000 plants ha−1. Silage corn is typically planted from late
March to early April and chopped for silage from late July to
early August, depending on the crop variety. 	e corn elds
selected ranged between 10 and 20 hectares in size. 	e soil
texture for this region is clay loam soil. 	e mean annual
maximum temperature is 28∘C, minimum 13∘C, and mean
21∘C [36]. 	e mean annual precipitation is 200mm, while
the annual potential evapotranspiration is 2,000mm [37].
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Table 1: 	e year, acquisition dates, day a�er planting (DAP), Landsat satellite, and path/row for 2013, 2014, 2015, and 2016 growing seasons.

Year Acquisition Dates DAP Satellite Path/Row

2013

April 14 10 Landsat 8 30/42
April 22 18 Landsat 7 30/42
April 30 26 Landsat 8 30/42
May 16 42 Landsat 8 30/42
June 9 66 Landsat 7 30/42
June 17 74 Landsat 8 30/42

2014

April 17 8 Landsat 8 30/42
May 3 24 Landsat 8 30/42
May 11 32 Landsat 7 30/42
May 19 40 Landsat 8 30/42
May 27 48 Landsat 7 30/42
June 4 56 Landsat 8 30/42
June 12 64 Landsat 7 30/42
June 28 80 Landsat 7 30/42
July 6 88 Landsat 8 30/42
July 14 96 Landsat 7 30/42
July 22 104 Landsat 8 30/42

2015

April 28 22 Landsat 7 30/42
May 30 54 Landsat 7 30/42
July 17 102 Landsat 7 30/42

2016

April 14 8 Landsat 7 30/42
May 16 40 Landsat 7 30/42
June 9 64 Landsat 8 30/42
June 25 80 Landsat 8 30/42
July 3 88 Landsat 7 30/42
July 11 96 Landsat 8 30/42
July 19 104 Landsat 7 30/42

2.2. Landsat Images. Clear sky images from Landsat 7
Enhanced 	ematic Mapper Plus (ETM+) and Landsat 8
Operational Land Imager (OLI) and	ermal Infrared Sensor
(TIRS) (Path 30, Row 42) were used to estimate NDVI,
�c, and ETc values. 	e images were downloaded from the
United States Geological Survey (USGS) EROS Datacenter.
EROS performed the atmospheric corrections on the images.
Also the wedge-shaped gaps appearing within the Landsat 7
images as a result of the SLC-o
 issue were removed using
the Imagine built-in focal analysis tool [11]. Six, eleven, three,
and seven clear Landsat images were acquired for 2013, 2014,
2015, and 2016, respectively (Table 1).	e satellite imageswere
processed using the Model Maker tool of ERDAS Imagine
So�ware.

2.3. Pixel Selection. Ten pixels for each corn eld and each
season were selected and extracted from NDVI maps. 	e
pixels were located in the center of each corn eld for each
overpass date during the four growing seasons. 	e same
pixels were observed throughout the corn growing season.
We assumed that the pixels are representative of the entire
corn eld. All corn elds had�at terrain.	enumber of pixels
per year is presented in Table 2.

Table 2: 	e year and number of pixels selected throughout the
growing season.

Year Number of pixels

2013 300

2014 550

2015 150

2016 350

2.4. NDVI Calculations. 	eNDVI is the di
erence between
near-infrared (NIR) and red waveband re�ectances divided
by their sum [13]. NDVI values range between −1 and +1,
where water presents negative values and dense canopy
presents high positive values [17, 38, 39]. 	e NDVI was
calculated for each overpass date and for each growing season
using Model Maker tool of ERDAS Imagine So�ware as
shown in the next equations:

For Landsat 7, NDVI was calculated as follows:

NDVI = (NIRband 4 − Redband 3)
(NIRband 4 + Redband 3)

. (2)
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Figure 2: Flowchart of crop evapotranspiration estimation using vegetation index method.

For Landsat 8, NDVI was calculated as follows:

NDVI = (NIRband 5 − Redband 4)
(NIRband 5 + Redband 4)

, (3)

where NIRband and Redband are the near-infrared and red
wavebands, respectively.

Reyes-González et al. [40] made some comparisons of
NDVI derived from satellite remote sensing and derived from
GreenSeeker in the Comarca Lagunera, Mexico. 	e results
showed that the NDVI values derived from satellite were
within 95% of the in situ values (data not shown).

2.5. Crop Coe�cient (��) Values from Manual 70. 	e �c
values were taken from ASCE Manual 70 (Appendix E) [7]
and were adjusted according to di
erent corn growth stages
throughout the growing season. For�c estimations the ASCE
Manual 70 divides the growing season into two periods,
namely, percent of time from planting to e
ective cover and
days a�er e
ective cover to harvest. 	e e
ective cover and
harvest of corn in our study occurred around 55 and 105DAP,
respectively, based on the crop phenology.

2.6. Relationship betweenNDVI and�� and��MapsDevelop-
ment. 	e relationships between NDVI derived from Land-
sat images and tabulated �c’s values obtained from ASCE
Manual 70 (Appendix E) [7], corresponding to each satellite
overpass date for 2013, 2014, 2015, and 2016 corn growing
seasons, were established. 	ese relationships were used to
generate a single linear regression equation for entire period
of study.

2.7. Reference Evapotranspiration (���) Calculations. 	e
meteorological information was taken from an automated
weather station. 	e weather station was located at the
National Institute of Forestry, Agriculture, and Livestock
Research (INIFAP),Matamoros, Coahuila,Mexico (Figure 1).

	e ETr values were taken from the weather station, where
ETr was calculated using the Penman-Monteith equation
[5, 41].

2.8. Crop Evapotranspiration (���)Maps. 	e�c values from
the �c maps were multiplied by ETr (see (1)) to create ETc

maps with high spectral resolution (30m) for 2014 growing
season, using Model Maker tool of ERDAS Imagine So�ware
and ArcGIS version 10.3.1. 	e ETc maps are generated to
monitor the spatial distribution and temporal evolution of the
crop water requirements during the growing season.

2.9. Flowchart of ETc Estimation. A summary of ETc esti-
mation using satellite remote sensing-based vegetation index
is shown in Figure 2. 	e Landsat images and weather data
are the two major inputs parameters in the vegetation index
method.

3. Results and Discussion

3.1. NDVI Curves. 	e NDVI average values (10 pixels) se-
lected and extracted from NDVI maps for ve corn elds
and for di
erent corn growing seasons are shown in Figure 3.
	e gures show similar NDVI curves for 2014 and 2016,
while, for 2013 and 2015, the curves are incomplete due to lack
of clear sky images during the growing seasons. In general,
NDVI values at initial stage were low around 0.15 in early
April (DAP ∼ 8). 	en the NDVI values increase as the crop
develops reaching its maximum value (0.8) at mid-season
stage followed by plateau from late May to middle July (DAP
55–95). At the end of the season the NDVI values are slightly
decreasing (∼0.7) by the end of July (DAP 105). Several
researchers reported similar seasonal NDVI curves for corn
(e.g., [17, 20, 24, 30, 42–47]). All NDVI curves developed
by these researchers showed low values at early stages, then
increasing at mid-season stages and then slightly declining
at late stages. However, 	omason et al. [44] reported that
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Figure 3: Seasonal evolution of NDVI at ve corn elds for 2013, 2014, 2015, and 2016 growing seasons in northern Mexico.

NDVI curves of forage corn gradually increased from initial
to mid-season and then remained constant until the end of
the season.

In this study, the NDVI values derived from Landsat 8
(L8) were greater than NDVI values derived from Landsat
7 (L7) in mid-season (Figure 3 (2014 and 2016)) and early
stages (Figure 3 (2013)). 	e di
erences between L8 and L7
ranged from 0.03 to 0.09 (data not shown).	ose di
erences
are in agreement with values reported by Flood [48] (0.04)
andKe et al. [49] (0.06), but greater than reported byRoy et al.
[50] (0.02).	e di
erence between L8 and L7 was because L8
has a narrower near-infrared waveband (L7 = 0.77–0.90 �m,
L8 = 0.85–0.88 �m), higher signal to noise ratio, and higher
12-bit radiometric resolution [48, 49, 51, 52]. 	ese features
provide more precise measurements that are less in�uenced
by atmospheric conditions and more sensitive to surface
re�ectance [48, 49, 52]. Although the comparison of NDVI
between L8 and L7 was not an objective of this study, it is
important tomention that inconsistent or unreliable values of
NDVI can produce poor estimates of crop evapotranspiration
[49].

3.2. Relationship between NDVI and ��. 	e NDVI values
were taken from NDVI maps generated as an output using
Landsat 7 and Landsat 8, while �c values were taken from
ASCEManual 70 (Appendix E) table for 2013, 2014, 2015, and
2016 corn growing seasons. Figure 4 shows the relationship
between NDVI of ve corn elds and tabulated �c values
for four growing seasons. Strong relationships were observed

for 2013 and 2015 growing seasons, with 	2 equal to 0.99,

whereas, for 2014 and 2016, 	2 was equal to 0.96. 	e slightly

low values of 	2 found in 2014 and 2016 seasons, probably was
due to major numbers of NDVI values, where some of them
were lower than�c values, especially in development growth
stage. Similar values of coe�cients of determination (0.99)
between NDVI and �c for corn crop were found by Rocha
et al. [53] and Reyes-González et al. [54] but low coe�cients
were reported by Sing and Irmak [45], Kamble et al. [30], and

Toureiro et al. [17], who reported values of 	2 to be equal to
0.83, 0.81, and 0.82, respectively.

	e NDVI computed from Landsat images and �c
obtained from Appendix E of ASCE Manual 70 were used to
develop the linear regression equations for 2013, 2014, 2015,
and 2016 growing seasons (Figure 4).	ose linear regressions
were similar to the linear equations of corn reported by other
researchers; for example, in [20, 53–55], all these authors
used alfalfa-reference crop coe�cient and NDVI values for
generating linear regression equations.

	e linear regression equations for the four years were
compared using the 
-test method to test statistical di
erence
between two independent regressions [56]. Table 3 shows the
results of all comparisons, where all 
 values were less than
tabulated 
 values, which means that there were no statistical
di
erences between linear regression equations. Based on
these results all data from the four years were pooled and a
single linear equation was generated (Figure 5). 	is linear
equation was used to create�c maps for 2014 growing season
(Figure 6).

3.3. �� Maps and �� Curve. Previous empirical linear equa-
tion between NDVI and �c was used to generate �c maps
using Landsat images processed in ERDAS Imagine So�ware
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Figure 4: Linear relationship between NDVI derived from NDVI maps and�
c
from ASCEManual 70 for four growing seasons. 	e dashed

line indicates the 1 : 1 line.

Table 3: Comparisons between linear regression equations using
the 
-test method.

Compared years 
 value 
 from table

2013 to 2014 1.14 2.16

2013 to 2015 0.96 2.57

2013 to 2016 2.13 2.26

2014 to 2015 1.53 2.22

2014 to 2016 1.08 2.14

2015 to 2016 2.31 2.44

(Model Maker) for the 2014 growing season. Figure 6 shows
spatial and temporal variability of �c values throughout the
2014 growing season. 	e �c maps showed low �c values
early in the growing season (DAP 8) (light blue-green color)
and gradually increase at mid-season stage (DAP 56), where
plateau remains until harvest (DAP 105) (brown color).
Similar �c maps for corn were developed by Sing and Irmak
[45], Irmak et al. [57], Rocha et al. [53], and Reyes-González
et al. [54], who reported maps of daily spatial distribution of
�c for six, four, seven, and four overpass dates, respectively.
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for all data.	e
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	eweather during our 2014 season resulted in usable images
for nearly every satellite overpass, on 8-day intervals. 	ese
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Figure 6: Spatial and temporal evolution of �
c
generated with ERDAS Imagine So�ware (Model Maker) and ArcGIS version 10.3.1 during

the 2014 growing season in northern Mexico.

�c maps show how the�c values increase (from 0.2 to 1.0) as
the silage crop develops.

	e �c values obtained from �c maps based on the
average of ten selected pixels within each of ve corn elds
for each overpass date throughout the 2014 growing season is
shown in Figure 7. In general, the minimum �c value (0.24)
was presented in early season, while the maximum �c value
(1.00) was presented in the mid-season stage. 	e standard
deviation (vertical bars) values of �c were lower than 0.07
throughout the growing season (Figure 7), this means that
planting dates, management practice, and maturity dates
among corn elds did not a
ect too much the �c values
during the season.

	e relationship between�c calculated from�cmaps and
�c from tables is shown in Figure 8. A strong relationship

was found with 	2 = 0.96. 	is means that �c values
derived from vegetation index (�c calculated) can be a robust
parameter to calculate actual crop evapotranspiration. 	e
main di
erence between �c calculated and �c tabulated is
that the �c tabulated comes from well-water reference crop
(e.g., alfalfa), whereas �c calculated comes from the actual
crop growth conditions, where some �c values derived from

24 32 40 48 56 64 80 88 96 1048
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K
c

Figure 7: Crop coe�cient curve of corn throughout the 2014
growing season. Vertical bars represent standard deviation values.

re�ectance of vegetation were reduced by soil water content.
Similar results were reported by Singh and Irmak [45] and
Kamble et al. [30]. 	ey found that limited moisture content
decreased�c values.	ose low�c values occurred around 15
days previous to start the mid-season stage. In our study the
little di
erence between �c calculated and �c tabulated was
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Figure 9: Spatial and temporal ETc maps generatedwith ERDAS Imagine So�ware (ModelMaker) andArcGIS version 10.3.1 for 2014 growing
season in northern Mexico.

found in the development growth stage (DAP 40–48) when
limited soil moisture content was presented.

3.4. ETc Maps and ETc Values. ETc maps of 30m resolution
were generated as an output of �c maps multiplied by ETr

values for corresponding day using ERDAS Imagine So�ware
(Model Maker) for 2014 growing season (Figure 9). 	e ETc

maps showed low ETc values (2.0mmday−1) (light green

color) at initial stage and high ETc values (8.0mmday−1) (red
color) at mid-season stage. 	ese two seasons were charac-
terized because in the initial stage crop needs smaller water
requirements, whereas in the mid-season crop needs higher
water requirements, as we can see in the next section. 	e
ETc maps created in this study are in agreement with other
researchers; for example, in [2, 4, 58, 59], they generated ETc

maps using�c derived from remote sensing-based vegetation
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Figure 10: ETc maps at a eld scale (e.g., silage corn) generated with ERDAS Imagine So�ware (Model Maker) and ArcGIS version 10.3.1
using Landsat 7 and Landsat 8 satellite images for the 2014 growing season. 	e red, light green, and dark blue colors within the corn eld
(black rectangle) indicate low, medium, and high ETc values.

indices. Other researchers reported that �c derived from
canopy re�ectance based vegetation index had the potential
to estimate crop evapotranspiration at regional and eld
scales, for example, in [17, 18, 29, 55, 60, 61].

3.5. ETc Maps at a Field Scale. ETc maps at led scale help
to explain the variability of crop water requirements during
the growing season as shown in Figure 10. 	ese images
at a eld scale level show the corresponding ETc values
according to each growth stage; this indicates that each stage
requires di
erent amount of water throughout the season.

For example, minimum water requirements (2.0mmday−1)
are needed at the initial stage, whereas maximum water

requirements are needed atmid-season stage (8.0mmday−1).
Understating di
erent crop growth stages and applying the
accurate amount of volumetric water, farmers can improve
their irrigation scheduling, improve water management, and
enhance irrigation water sustainability.

Similar ETc maps at a eld scale for agricultural crops
including corn were reported by Farg et al. [32], Zipper and
Loheide [62], and Senay et al. [63], they reported minimum

and maximum ETc values at di
erent crop growth stages,
where the higher evapotranspiration rates were found at the
mid-season growth stage and lowest evapotranspiration rates
were found at early growth stage.

3.6. Comparison between ETr and ETc. 	e ETr values were
taken directly from a local weather station, while ETc values
were derived from ETc maps. Figure 11 shows the comparison
betweenETr andETc for 214 growing season.	is gure illus-
trated that the daily ETr values were higher than the daily ETc

outputs at the beginning of the growing season, but similar
values were recorded atmid-season stage. In early stage (DAP

1–20) the ETr values were around 6.0mmday−1, while the

ETc values were around 2.0mmday−1. In development stage

(DAP 20–55) the ETr values continue around 6mmday−1,
while ETc values increase from 2 to 6mmday−1. In the mid-
season stage (DAP 55–95) both ETr and ETc values were

very similar around 7.0mmday−1. At the end of the growing
season (DAP95–105) the ETr valueswere slightly greater than

ETc values by 0.5mmday−1. From early to mid-development
stage the ETc values were lower than ETr values, this means
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Figure 11: Comparison between ETr and ETc for 2014 growing
season in northernMexico.	e grey wide column indicates the time
interval where producers can save irrigation water.

that in those particular stages farmers can save irrigation
water (grey wide column in the graph), because in those
stages the crop needs small water requirements, due to the
fact that the crop canopy is no yet fully developed. In short,
the ETc values from ETc maps could be used by farmers in
their irrigation scheduling programs because it shows when
and how much water is required by the crop during di
erent
growth stages.

Reyes-González et al. [54] reported that the farmers
should use ETc instead of ETr for irrigation scheduling in arid
and semiarid region where irrigation water is scarce. USDA-
NASS [64] reported that the farmers in the United States
use four primary methods to determine when to irrigate:
the rst was visual observation of crop condition method
(41%), the second was the soil feel method (21%), the third
was personal calendar schedule method (11%), and the fourth
was daily crop evapotranspiration method (4%). Methods
for deciding when to irrigate need to be more accurate
because of the competition for irrigation water increases and
its value increases. Farmers must use scientic irrigation
scheduling methods (e.g., ET method) instead of empirical
methods (e.g., crop condition, feel of soil, and personal
calendar) to save water and protect the environment. 	e ET
method is based on climatic demands and is more accurate
than empirical methods for irrigation scheduling [65]. ET
maps and atmometers are methods to estimate crop water
requirements with high accuracy [11].

4. Conclusions

	egeneral objective of this studywas to estimate crop evapo-
transpiration using satellite remote sensing-based vegetation
index in northern Mexico.

	e relationships between NDVI derived from Landsat
images and tabulated �c obtained from ASCE Manual 70
(Appendix E) were established for four growing seasons.
	ese empirical linear regression equations were used to
generate a single linear regression equation.

ETc maps were created as an output of �c maps mul-
tiplied by ETr values. 	e ETc values ranged from 1.40 to

7.41mmday−1 during the period of study.	e results showed

that ETc values were low at initial and early development
stages, while ETc values were high during mid-season and
harvest stages. Daily ETc maps helped to explain the variabil-
ity of crop water use throughout the growing season.

Farmers in northern Mexico region use empirical meth-
ods in their irrigation scheduling methods. 	e results
indicate that farmers could reduce their seasonal water
application amounts by 18% just by using ETc appropriately
in their irrigation scheduling methods.

	e information generated in this study is essential for
irrigation scheduling because it shows when and how much
water is required by the crop during di
erent crop growth
stages.

According to our results we can conclude that ETc maps
developed from remotely sensed multispectral vegetation
indices are a useful tool for quantifying accurate crop water
consumption or crop evapotranspiration at regional and eld
scales.
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