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Abstract – Commonly, surveillance operators are today 
monitoring a large number of CCTV screens, trying to 
solve the complex cognitive tasks of analyzing crowd 
behavior and detecting threats and other abnormal 
behavior. Information overload is a rule rather than an 
exception. Moreover, CCTV footage lacks important 
indicators revealing certain threats, and can also in other 
respects be complemented by data from other sensors. This 
article presents an approach to automatically interpret 
sensor data and estimate behaviors of groups of people in 
order to provide the operator with relevant warnings. We 
use data from distributed heterogeneous sensors (visual 
cameras and a thermal infrared camera), and process the 
sensor data using detection algorithms. The extracted 
features are fed into a Hidden Markov Model in order to 
model normal behavior and detect deviations. We also 
discuss the use of radars for weapon detection. 

Keywords: Behavior analysis, heterogeneous sensors, 
distributed network, image processing, sensor fusion, 
Hidden Markov Models. 

1 Introduction 
In order to protect citizens, property and infrastructure, 
surveillance systems are increasingly being fielded. 
Typically, such a system consists of a large amount (often 
hundreds) of CCTV cameras, monitored by operators in a 
control room. The human operators are usually able to 
watch only a fraction of the imagery being presented to 
them. Moreover, to detect abnormal or threatening events is 
a complex cognitive task requiring a focus that humans can 
uphold for only a short time. As a consequence, surveillance 
video is often used for post-analysis rather than detection. 

Thus, there is a need for persistent systems for pro-
active surveillance, i.e. systems which give early warnings 
for threats or abnormal behavior. There are a number of 
technical problems to be solved in order to enable such 
systems. First, the (popular) computer vision topic of 
detecting and tracking humans in surveillance video. 
Second, the extraction of features that can indicate the 
presence of and/or classify threats or types of behavior. 
Third, the modeling of behaviors in order to know what to 
look for. Since we cannot anticipate all possible threats, this 

in practice implies that we need a learning system that can 
adapt to the normal behaviors in the current context. 

In spite of the growing need and market for efficient 
surveillance, much research in this area has a touch of 
technology push, i.e., focusing on what can be done, and not 
what needs to be done. For example, analysis of video 
imagery is very popular, since it is easy to get access to 
such data (there are numerous public datasets [1, 2, 3]). 
However, important indicators of threats are not easily 
revealed by video data alone, and this is the reason why we 
work on heterogeneous sensors, as described below. 

In this article, we propose to process the data from a set 
of heterogeneous sensors in order to extract binary 
observations (e.g. is there a crowd present?) and feed these 
observations to a Hidden Markov Model (HMM), where the 
hidden states represent the behavior of the crowd. 

The article is organized as follows. In section 2, the 
various sensors and their purpose are briefly described. 
Section 3 treats sensor fusion and crowd modeling using the 
HMM. Section 4 describes work done on analysis of sensor 
data in order to extract the binary observations that can 
reveal threats or abnormal behavior. Section 5 describes our 
experimental results. Conclusions and future work are 
discussed in sections 6 and 7. 

1.1 Previous work 
Work on detection and tracking algorithms for dense 
crowds can be found in the literature. In [4] a method is 
suggested for simultaneously tracking all people in a dense 
crowd using a set of cameras with overlapping fields of 
view. To overcome occlusion the cameras are placed at a 
high elevation and only the heads of the people are tracked. 
The method was tested on data from indoor and outdoor 
scenarios under challenging illumination conditions. It was 
possible to successfully track up to twenty people walking 
in a small area, in spite of severe occlusions. In [5] a real-
time system for detection of moving crowds is presented. A 
scheme is proposed that looks at the motion patterns of the 
crowd in the spatio-temporal domain. Experiments show 
that crowds can be detected at distances up to 70 m. 
Extraction of features for classification of behavior in video 
is a current research topic, see, for example, [6, 7, 8]. HMM 
has been used in various applications for behavior 
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recognition, see for example [9] for facial action recognition 
and [10] for crowd behavior analysis with data from a single 
visual camera. 

2 Sensors for urban monitoring 
As mentioned above, other sensors than surveillance 
cameras can provide complementary information and 
indicators of threats and abnormal behavior. It can be 
argued that ordinary visual video cameras (CCTV) are 
inexpensive and already abundant, and that additional 
sensor types results in additional costs. However, these 
extra costs are expected to result in higher efficiency of the 
total system. Complementary sensors that can be used are 
described below. 

Thermal infrared (TIR) cameras, i.e. cameras operating 
in the long wave infrared band (8–12 micrometers) are 
sensitive to the emitted radiation from objects with 
temperatures common around us (approx. -30 to 100 
degrees Celsius). Since the amount of reflected radiation is 
very small in this band, the cameras are useful in total 
darkness, and the imagery contains no cast shadows or 
variation in illumination – both common problems in 
analysis of visual imagery. Historically thermal cameras 
have been too expensive to be used in other than special 
applications. However, this situation is now changing with 
the advent of inexpensive high-resolution un-cooled thermal 
cameras in the market. 

Radars can potentially give clues of high value for 
security applications. Not only do radars give range data, 
but, more important in our application, they can also see 
through materials that optical sensors cannot. Thus, radar 
sensors can, potentially, be used to reveal concealed objects, 
like weapons hidden under clothing. Stand-off detection of 
weapons using imaging radar is currently a research topic 
by its own, and will hit the market somewhat later.  

It is obvious that acoustic sensors can provide indicators 
for abnormal behavior that are hard to extract from images, 
for example screaming. Moreover, acoustic sensors can also 
be used for localization of sound sources, which is 
especially useful in combination with image data (that 
person is shouting, firing a gun, etc.). 

3 Crowd behavior modeling 
Detecting and tracking people in dense crowds is a 
challenging problem because of e.g. occlusion and the fact 
that individuals can often not be segmented properly. The 
idea in this paper is instead to regard the crowd as one unit 
that emits observations which can be used to estimate the 
behavior of the crowd as being normal or abnormal (see 
Figure 1). In this application there is no need of identifying 
specific persons in the crowd, or to determine their exact 
positions in the scene. We only want to know if the crowd 
can be assumed as normal, if there is an increased threat 
level or if something abnormal has occurred. This is 
expected to be enough information for an operator, who can 

in a next step confirm the estimated behavior and decide 
whether further actions need to be taken. 

 

Figure 1. The crowd is viewed as a single unit that emits 
observations obtained from the different sensors. 

3.1 Hidden Markov Model 
The Hidden Markov Model (HMM) λ is a useful tool for 
automatic classification of behaviors and patterns. It is a 
doubly embedded stochastic process which has an 
underlying stochastic process that is not observable. λ is 
described by the following parameters: 

 ),,,,( iOSBA πλ =  (1) 

where 

A  = probability distribution of state transitions 
B  = probability distribution of observations in each state 
π   = initial state distribution 
S  = states in the model 
Oi = discrete observation symbols per state 

The underlying process can be observed through another 
stochastic process that produces sequences of observations 
Oi. The states S represent some unobservable conditions of 
the system. In each state there is a certain probability of 
producing any observable system outputs Oi together with a 
probability indicating the likely next states. 

The parameters A, B, and π can be obtained by training 
λ on relevant training data. The training can be performed 
using the EM algorithm [11].  

In this application we use λ to model normal behavior. 
If λ  yields a high likelihood value for a specific observation 
sequence O, it is likely that O represents normal behavior. 
But if λ  yields a low likelihood value it is likely that O 
does not represents normal behavior.  

3.2 HMM for normal crowd behavior 
Normal behavior of a crowd can be expected to correspond 
to relatively calm movements, for example associated with 
walking and standing. Generally, there should seldom be 
persons falling or lying down on the ground, at least for 
longer time periods. There should not be any weapons 
present. There should not be any loud sounds. However, 
unusual observations should be allowed for shorter time 
periods since they may occur also for normal behavior, or 
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can be the result from incorrect sensor detections. The types 
of observations that we have used in this article are 
presented in Table 1. These observations are binary and 
extracted from sensor data using the methods described in 
section 4. They are useful especially for visual and TIR 
cameras.  

Table 1: Explanation of the different crowd observations. 
Observation Explanation of the observation  

O1 Normal activities, calm movements, 
persons are standing and walking 

O2 Increased activities (e.g. walking), 
intensive activities by a few 

O3 Strongly intensive activities by 
many 

O4 A person is not standing. The 
person may be sitting or lying down 

O5 A crowd exists (has been formed) 
within a certain area 

O6 The crowd is large i.e. exceeds a 
certain amount of detections 

O7 The crowd size is rapidly increasing 
 
Since we do not have enough recorded training data we 
have derived training data based on knowledge and 
experience of what often is associated with normal 
behavior. The training data also include observations that 
are mostly regarded as abnormal or unusual in order to 
reflect the fact that they may appear occasionally also for 
normal behavior. The training data consist of 100 
observation sequences, with 10 observations per sequence. 

For λ we selected two states, which refer to calm 
motions (standing and walking) for S1, and slightly 
increased activities (predominantly walking) for S2, still 
belonging to normal behavior. Both states include certain 
segments of unusual observations from e.g. incorrect sensor 
detections and the fact that unusual observations may occur 
occasionally also for normal behavior. We also selected the 
seven types of observations (O1 – O7), presented in Table 
1. Figure 2 and Eqs. 2-3 present the parameters that were 
obtained from the training process. 
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Figure 2. Probability distribution of observations (B) for the 
states S1 and S2. 
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3.3 Computation of the likelihood 
An observation sequence O = O1, O2, …Ot; Oi ∈ {O1..O7} 
to λ is created by collecting the emitted observations as they 
arrive to the fusion node. Each observation Ot corresponds 
to the value of one of the alternatives in Table 1. When O 
has reached enough observations, the likelihood that O 
belongs to the model λ is calculated. For calculating the 
likelihood the Forward algorithm is used: 

 )|,,...,()( 21 λα ittt SqOOOPi ==  (4) 

where qt is the current state. Eq. 4 is iterated for the whole 
observation sequence, i.e. t = 1, 2,…, T-1. The final result is 
given by the sum of the forward variables αt(i) for the 
different states, at time T.  
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To be able to handle very small numbers the scaling factor 
ct is introduced [11]. 
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The final equation for calculating the likelihood is: 
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4 From sensor data to observations 
As input to the crowd behavior analysis described in 
Section 3, we need to extract a number of observation 
variables. As a preliminary step, we also need to detect the 
presence of persons in the monitored area. Then, we extract 
the intensity of the motion of the detected persons, the pose 
of the persons and the size and growth rate of the crowd. 
These extractions use different sensor data as input, and are 
described in the following. 
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4.1 Motion activity measurement 
The level of activity of persons in a crowd provides 
information which can be used to detect anomalous crowd 
behavior. Normal behavior often corresponds to calm 
movements, i.e. people standing or moving relatively 
slowly through the scene, without making excessive 
gestures. An anomalous event, however, is likely to be 
accompanied by more rapid movements. We define three 
levels of activity: normal activity (calm motion), intensive 
activities by a few and intensive activities by several. These 
three levels of activity correspond to three binary 
observations to be fed into the crowd behavior analysis. 

The level of activity is measured by computing the 
optical flow (in this case in the visual image) in the vicinity 
of each detected person. If a person is walking quickly, 
running or moving his or her arms rapidly, the magnitude of 
the optical flow will be large compared to when a person is 
moving slowly or standing still. An average value of the 
magnitude of the optical flow is obtained. 

The measurement requires detection of persons in the 
scene. Since we focus on surveillance scenarios with static 
cameras, we employ a foreground and background 
segmentation algorithm similar to that proposed in [12]. 
Persons are detected in the foreground image using a head 
detector [13]. By thresholding the level of activity, as 
explained in Section 5.1, the binary observations O1, O2, 
and O3 are extracted. 

4.2 Rough pose estimation 
TIR data make possible a robust detection of people, since 
the data are relatively insensitive to variations in the 
environment, such as shadows and illumination. Detected 
persons in a TIR image are shown in Figure 3. Objects are 
automatically detected by performing background 
segmentation. The derived foreground pixels are used for 
confirming the detection of people. This confirmation is 
performed by using image gradients∇I(x,y), which are 
defined by a vector whose individual components are given 
by the two partial derivatives [14]: 

 ),(),( yx
x
IyxIx ∂

∂=  (8) 

 ),(),( yx
y
IyxI y ∂

∂=  (9) 

where I represents the image with the foreground objects, 
where the foreground objects are represented in color (i. e. I 
is not a binary image). Ix and Iy are compared with the 
thresholds ΔT1 and ΔT2, after the background segmentation, 
to classify the head (ΔT1) and the body (ΔT2,) respectively. 
For especially lower surrounding temperatures ΔT1 > ΔT2.  
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Figure 3. Foreground objects (a small crowd) in a TIR 
image. The surrounding temperature is around 0 oC. 

Once a pixel where Ix or Iy exceed ΔT1 has been found, the 
lower neighboring area is investigated to see if Ix or Iy 
exceed ΔT2 in a sufficient number of pixels. If this larger 
area can be found it is assumed that a standing person has 
been detected. If this larger area can not found the person 
may be sitting or lying down. The expected size of a person 
in the image is assumed to be known, since the cameras 
have been calibrated for the scene. The pose estimation is 
used for the extraction of observation O4. 

4.3 Estimation of the crowd size 
The existence and size of a crowd can be estimated by 
detecting persons and counting the number of detections. 
This can be done with both visual and TIR data. However, 
counting the number of detections may be difficult if the 
crowd is dense and specific individuals can not be 
separated. Another way of approximating the size of the 
crowd is to estimate the part of the image where foreground 
objects are present, and divide this number with the total 
amount of pixels. With calibrated cameras, and the head 
detection as described above, the distance to the crowd can 
be known. This improves the estimation of the crowd size. 
A threshold value is used to indicate when a crowd is 
assumed to be present. 

Sometimes it is of interest to estimate the existence and 
size of a crowd within a specific area in the image. This can 
be done by limiting the search for foreground objects to this 
specific area. What is considered as a large crowd will 
differ from case to case. To obtain a realistic estimation of 
the crowd size, measurements should be performed over a 
certain time period. The crowd size is used for extraction of 
observations O5, O6 and O7. 

4.4 Weapon detection 
In addition to optical sensors, a radar sensor can provide 
important information about a crowd, especially concerning 
the estimated threat level. A high-resolution radar has the 
capability to detect weapons carried by a person. The 
weapons could also be hidden under clothing. Work is 
going on to develop radar image processing techniques for 
detection of hidden weapons [15].  
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Figure 4 shows radar reflections of four persons in two 
images. In the image to the left the persons do not carry any 
weapons. But in the image to the right the persons carry 
weapons. As can be seen there are differences in radar 
reflections, especially for the outermost persons. In the right 
image these persons carry larger weapons such as a bomb 
belt and a rifle. The persons in the middle carry a pistol and 
a grenade, which are quite small objects.  

The body itself causes radar reflections. Hence, it can be 
difficult to distinguish between natural reflections and 
reflections that come from weapons, especially small 
weapons. The false alarm rate for weapon detection can 
therefore be relatively high. 

 

Figure 4. In the left radar image the persons do not carry 
weapons. In the right image the persons carry weapons.  

The radar is not present in the experiment described in 
section 5. However, if a radar was present and a weapon 
was detected the HMM should indicate a large deviation 
from normal behavior. This is important since weapon 
detection indicates a high threat level that requires a quick 
measure from the operator. Since weapons are associated 
with high threat level, a higher false alarm rate for weapon 
detection could be acceptable. 

5 Experimental results 
A film sequence of a fight illustrates the detection and 
HMM algorithms as alert functions. Two small crowds 
approach each other on a road and meet at an open space.  
 

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

 
Figure 5. The view from one of the visual cameras. The two 

small groups of people meet. 

A fight starts and after a while the fight is over and one of 
the persons has been hurt and remains lying, as the others 
are leaving. The event is observed by three cameras: two 
visual cameras and one TIR camera. All cameras observe 
the scene from different positions. In Figures 5 - 7 parts of 
the event are shown from the different cameras. 
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Figure 6. The view from the other visual camera. A fight is 

just about to start. 

 
 

Figure 7. The view from the TIR camera. The fight is over 
and one person remains lying on the ground as the others 

soon will leave the area.  

5.1 Sensor detections 
Applying the activity level measurement presented in 
section 4.1 to images from the two visual cameras, the 
results shown in Figure 8 and 9 are obtained. Two 
thresholds have been applied (red lines) to define the three 
types of observations O1, O2 and O3. The first value (y = 5) 
indicates the transition from normal activities/calm motions 
to more intensive activities performed by a few. The next 
value (y = 12.5) indicates the transition to strongly intensive 
activities by many.  

The thresholds are based on knowledge and experience 
of what can be expected as normal. However, for motion 
activity estimation there is a risk that there will be a 
relatively large amount of false alarms, since it is often 
difficult to measure separate motions in a crowd. The 
results from camera 1 shows that most of the time the 
activity represents normal behaviors. The fight starts at t ≈ 
20 and ends at t ≈ 27, and the estimated activity level 
clearly rises in this interval.  

The results from camera 2 show that the variation in 
activity is somewhat different compared to camera 1. This 
is because the cameras observe from different angles and 
hence will observe different activities. A peak is however 
obtained at around the same time as in camera 1, which 
indicates the increased activities associated with the fight. 
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Figure 8. Motion activity from camera 1. The red lines 
represent the different activity levels. The time interval 

between observations is 0.1 s. 
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Figure 9. Motion activity from camera 2, which has another 
position compared to camera 1. The red lines represent the 

different activity levels. 

The rough pose estimation according to the TIR camera is 
presented in Figure 10 (and derived according to section 
4.2). The TIR observations are obtained with longer time 
intervals compared to the visual cameras. At t ≈ 23 a person 
falls down as a result of the fight. This is observed by the 
TIR camera (O4 = 1). At t ≈ 27 the lying person is hidden 
behind another person (i.e. occlusion) and there is no 
indication from the TIR camera on a lying person. If there 
are incorrect head detections the pose estimation may also 
be incorrect. This happens here just before t ≈ 15.  
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Figure 10. Rough pose estimation according to TIR data. 
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Figure 11. Estimation of the presence of a crowd. 

The presence of the crowd is estimated by dividing the 
detected foreground pixels with the total amount of pixels in 
the TIR image (according to section 4.3). At t ≈ 20 a crowd 
is formed and O5 = 1. The result of the crowd estimation is 
illustrated in Figure 11. In this case the crowd is not 
estimated as large and it is not rapidly increasing in size. 
Therefore O6 and O7 will not be equal to 1 during the film 
sequence. 

5.2 Crowd behavior analysis 
The estimation of the crowd behavior is presented in Figure 
12. Thirty-five observation sequences, each with 10 
observations, are analyzed with HMM. The observations O1 
- O3 are reported by both visual cameras and O4 – O7 are 
reported by the TIR camera.  

If there are only normal activities reported from the 
sensors (i.e. predominantly O1 = 1 and O2 = 1) for the 
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whole observation sequence, the log-likelihood for normal 
behavior is -8.2. To be able to consider a certain number of 
false alarms, also at this stage, the threshold for abnormal 
behavior has been set lower than -8.2, in this case -10 (red 
line in Figure 12). 
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Figure 12: The likelihood of normal behavior during the 
film sequence. For t > 20 s the behavior can be clearly 

estimated as abnormal. 

The crowd behavior can be estimated as abnormal 
especially for t > 20. Before that there are also shorter time 
intervals when the behavior is estimated as abnormal. 
These intervals may indicate the more threatening event 
that is to come. They also indicate some incorrect sensor 
detections. When t > 20 there are two or more cameras that 
simultaneously, or just after another, detect abnormalities 
and consequently the log-likelihood for normal behavior is 
strongly reduced.  

5.3 Discussions 
It is important to have a representative description of the 
normal behavior for the specific monitoring application. 
This description is the basis for how well the HMM can 
give indications on deviations from the normal behavior.  

Some monitoring environments are easier to handle for 
an automatic algorithm than others. It is easier to handle 
environments where the persons are expected to move 
according to specific movement patterns. In environments 
with less specific movement patterns the analysis will be 
more complicated. Airports and ports represent 
environments that include areas with expected movement 
patterns, e.g. areas with check-in and security controls (that 
must be passed). Monitoring areas with more degrees of 
freedom are for example school yards and also open public 
outdoor spaces (which was used in this experiment). 
Furthermore, on a school yard intensive movements belong 
to normal behavior to a larger extent than in many other 
environments. 

We have tested this approach for another scenario with a 
similar fight scene. This other scenario describes a check-in 
disk at an airport, where a fight takes place. Data are 
collected from two distributed visual cameras and one TIR 
camera. Two of them report motion activities and the third 
reports rough pose estimations. The approach shows also 
for the airport scenario that the log likelihood for normal 
behavior is strongly reduced during the fight. For the airport 
scenario the same representation for normal behavior was 
used as in the experiment described in this article. To obtain 
good results also for other typical airport events the HMM 
should be adapted to typical airport activities. Hence, to get 
representative HMM parameters for the airport environment 
the training data should reflect normal activities at airports. 

6 Conclusions  
As presented in this article the HMM is a useful tool for 
estimating behaviors of a crowd. Observations to the HMM 
are derived from distributed and heterogeneous sensors. 
There is no need of identifying specific persons or decide 
their exact positions in the scene. The aim is to become 
aware of that something abnormal has occurred. The 
concept is used for automatically alerting operators when 
abnormal behaviors occur, or are about to occur. 

The experiment shows how the contributions from 
different sensors affect the overall opinion on the crowd 
behavior. The different sensors indicate abnormality at 
different times and during different time periods. A reason 
for this is that the sensors observe the scene from different 
angles and in different ranges of the electromagnetic 
spectrum. With the HMM the different observations can be 
evaluated simultaneously, and over time, and be compared 
to expected normal behaviors. This is useful when 
abnormality can be indicated by several different 
observations, which may not necessarily indicate 
abnormality if they are analyzed one at a time.  

The capability of the HMM is strongly dependent on its 
parameters. Relevant HMM parameters are obtained by 
training the model with relevant training data. It is 
preferable to model only the normal behavior, instead of 
different abnormal behaviors, since it is easier to get 
accurate training data for normal behavior. Moreover, it is 
often unknown how abnormal behaviors can appear.  

The HMM is also suitable for handling false sensor 
alarms. Reduction of false alarms can be obtained by 
allowing false alarms to be present in the training data. 
False alarms can also be reduced by applying a time-based 
threshold for the HMM, i.e. large deviations from normal 
behaviors should last for a certain time period before 
alerting the operator. 

7 Further work 
The approach will be tested and evaluated also with other 
experimental data representing other security scenarios. The 
fusion of acoustic and optical sensor data will be 
investigated to see whether acoustic data can improve the 
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performance of the detection and behavior models. Fusion 
of optical data and radar data will also be further 
investigated to see whether the detection of hidden weapons 
can be improved. 

The authors also participate in the on-going EU funded 
project Prometheus (FP7-214901) [16]. Prometheus aims at 
establishing a general framework which links fundamental 
sensing tasks to automated cognition processes. The 
framework will enable interpretation and short-term 
prediction of individual and crowd behaviors. An important 
task is the definition and design of fusion models, tracking 
models and behavioral models that will be used to 
automatically detect persons and interpret their behavior as 
well as the behavior of groups of people. The work that has 
been presented in this article will, among other things, be 
further developed in the continuing work of Prometheus. 
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