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Abstract

The estimation of the entropy of a random system or process is of interest in many scientific

applications. The aim of this article is the analysis of the entropy of the famous Kumaras-

wamy distribution, an aspect which has not been the subject of particular attention previ-

ously as surprising as it may seem. With this in mind, six different entropy measures are

considered and expressed analytically via the beta function. A numerical study is performed

to discuss the behavior of these measures. Subsequently, we investigate their estimation

through a semi-parametric approach combining the obtained expressions and the maximum

likelihood estimation approach. Maximum likelihood estimates for the considered entropy

measures are thus derived. The convergence properties of these estimates are proved

through a simulated data, showing their numerical efficiency. Concrete applications to two

real data sets are provided.

1 Introduction

Information theory provides natural mathematical tools for measuring the uncertainty of ran-

dom variables and the information shared by them. In this regard, entropy and mutual infor-

mation are two fundamental concepts. More precisely, the probability distribution of a

random variable is associated with some sort of uncertainty, and entropy is used to quantify it.

The concept of entropy was formerly proposed by [1]. Since that publication, many areas of

study such as statistics, neurobiology, cryptography, bioinformatics, quantum computer sci-

ence and linguistics, have developed various entropy-based measures. Modern and exhaustive

reviews on the ‘entropy universe’ can be found in [2–6].

In applied probability and statistics, many authors have conducted their studies for

diverse and important distributions based on entropy. The essential references in this regard

are briefly presented below. Reference [7] used the concept of entropy to communicate on

the probability distribution of electric charge between atoms observed in a certain condition.
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Reference [8] derived the entropy for the Feller-Pareto family and presented the entropy

ordering property for some related sample minimum and maximum. Reference [9] esti-

mated the entropy of the Weibull distribution by considering different loss functions based

on a generalized progressively hybrid censoring scheme. Reference [10] discussed the

entropy for the generalized half-logistic distribution based on the type II censored samples.

References [11] and [12] proposed estimates for the entropy of absolutely continuous ran-

dom variables. Reference [13] presented an indirect method using a decomposition to sim-

plify the entropy’s calculation under the progressive type II censoring. Reference [14]

derived a nonparametric kernel estimator for the general Shannon entropy. Reference [15]

estimated the entropy for several exponential distributions and extended the results to other

circumstances. Reference [16] estimated the Shannon entropy of the Rayleigh model under

doubly generalized type-II hybrid censoring, and evaluated its performance by two criteria.

Reference [17] derived a nonparametric wavelet estimator for the general Shannon entropy.

Reference [18] provided an exact expression for entropy information contained in both

types of progressively hybrid censored data and applied it in the setting of the exponential

distribution. Reference [19] investigated entropy measures for weighted and truncated

weighted exponential distributions. Reference [20] presented the estimation of entropy

for inverse Weibull distribution under multiple censored data. Reference [21] introduced

estimation of entropy for inverse Lomax distribution under the multiple censored scheme.

Reference [22] examined Bayesian and non-Bayesian methods to estimate the dynamic

cumulative residual Rényi entropy for the Lomax distribution.

Surprisingly, to our knowledge, the entropy of the famous Kumaraswamy distribution has

not been studied in depth. In this article, we fill this gap both probabilistically and statistically.

The specificities and interests of the Kumaraswamy distribution are described below. First, it

was introduced by [23], and was motivated as an alternative to the beta distribution which are

(i) mathematically simpler, without special function in particular, and (ii) more suited to the

modeling of various hydrological phenomena observed at low frequency (daily rainfall, daily

flow of rivers, etc.). Mathematically, the probability density function (pdf) of the Kumaras-

wamy distribution is specified by

f ðx; a; bÞ ¼ abxa� 1ð1 � xaÞb� 1
; 0 < x < 1; ð1Þ

with f(x;a, b) = 0 otherwise, where a, b> 0. This pdf is unimodal if a, b> 1, uniantimodal if a,

b< 1, increasing if a> 1, b� 1, decreasing if a� 1, b> 1 or constant if a = b = 1, in the same

way as the beta distribution. The corresponding cumulative distribution and quantile func-

tions are quite simple; they are defined without special function contrary to those of the beta

distribution. Special cases of the Kumaraswamy distribution correspond to the distribution

of minimum or maximum of uniform samples. We may refer the reader to [24] for all the

known features of this distribution. Also, the kumaraswamy distribution has generated many

flexible distributions with various domains and number of parameters through the generalized

Kumaraswamy class elaborated by [25].

In a sense, this study complements the work of [24] by investigating the overall concept of

entropy of the Kumaraswamy distribution, which has never been studied before. More pre-

cisely, we consider six well-referenced entropy measures. We derive their analytical expres-

sions by using the well-known beta function. We compare them numerically by considering

different parameter values. Then, we propose an efficient strategy based on the maximum like-

lihood approach to estimate these entropy measures. A simulation study is done to see how

effective our strategy is. Graphical and numerical comparisons are performed. We end the
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study by two illustrative examples on real data sets, showing how the methodology can be

applied in a concrete statistical setting.

The following sections make up the document. Section 2 presents a result on a special inte-

gral, and shows how it is related to important entropy measures of the Kumaraswamy distribu-

tion. Numerical values of these entropy measures with different values of the parameters are

also given. Section 3 studies the estimation of these entropy measures. Then, using generated

values from the Kumaraswamy distribution, graphical and numerical comparisons are dis-

cussed. The entropy of the random characteristics behind two real data sets is investigated.

Finally, conclusions are presented in section 4.

2 Entropy of the Kumaraswamy distribution

2.1 An integral result

The following result shows that a certain integral involving the pdf of the Kumaraswamy distri-

bution can be expressed in terms of the classical beta function. The connection between this

integral and the considered entropy measures will be developed later.

Proposition 1 Let δ> 0, f(x;a, b) be specified by Eq (1) and

Idða; bÞ ¼
Z 1

0

f ðx; a; bÞddx:

Then, Iδ(a, b) exists if and only if min(a, b)>max(1 − 1/δ, 0), and it is expressed as

Idða; bÞ ¼ bdad� 1B d 1 �
1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �

;

where B(u, v) denotes the classical beta function, that is Bðu; vÞ ¼
R 1

0
xu� 1ð1 � xÞv� 1dx for u,

v> 0.

Proof. Owing to Eq (1), we have

Idða; bÞ ¼
Z 1

0

f ðx; a; bÞddx ¼ ðabÞd
Z 1

0

xdða� 1Þð1 � xaÞdðb� 1Þdx:

When x tends to 0, we have xδ(a−1)(1 − xa)δ(b−1)� xδ(a−1), which is integrable in the neigh-

borhood of 0 if and only if δ(1 − a)<1 by the Riemann integral criteria. Similarly, when x
tends to 1, we have

xdða� 1Þð1 � xaÞdðb� 1Þ
� ð1 � xaÞdðb� 1Þ

� adðb� 1Þð1 � xÞdðb� 1Þ
;

which is integrable in the neighborhood of 1 if and only if δ(1 − b)<1 by the Riemann integral

criteria. In summary, Iδ(a, b) exists if and only if δmax(1 − a, 1 − b)<1, which is equivalent to

min(a, b)>1 − 1/δ. Now, under this assumption, by applying the change of variables y = xa,
that is x ¼ y1

a with dx ¼ y1
a� 1dy=a, we obtain

Idða; bÞ ¼ ðabÞ
d

Z 1

0

xdða� 1Þð1 � xaÞdðb� 1Þdx ¼ bdad� 1

Z1

0

yd 1� 1
að Þþ1

a� 1
ð1 � yÞdðb� 1Þdy

¼ bdad� 1B d 1 �
1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �

:

This ends the proof of Proposition 1.
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In fact, the beta function is implemented in most of the mathematical software (see the

function beta of the package stat of R, the Beta function of Mathematica, etc.). There-

fore, thanks to Proposition 1, the computation of Iδ(a, b) can be done quite efficiently with lit-

tle effort. Also, the existing results on the beta functions allow a mathematical control of this

integral. Some related results are presented below.

• Through the use of the standard Euler gamma function given as GðuÞ ¼
R þ1

0
xu� 1e� xdx, one

can write

Idða; bÞ ¼ bdad� 1
Gðdð1 � 1=aÞ þ 1=aÞGðdðb � 1Þ þ 1Þ

Gðdðb � 1=aÞ þ 1=aþ 1Þ
:

• Also, assuming that δ(1 − 1/a) + 1/a and δ(b − 1) + 1 are positive integers, the following for-

mula holds:

Idða; bÞ ¼ bdad� 1
½dð1 � 1=aÞ þ 1=a � 1�!½dðb � 1Þ�!

½dðb � 1=aÞ þ 1=a�!
:

• By virtue of the main result in [26], if δ(a − 1)� a − 1 and b� 1, then we have

abdad� 1 �
bdad

½dða � 1Þ þ 1�½dðb � 1Þ þ 1�
� Idða; bÞ � bb

dad� 1;

with the best possible constants α = 0 and β = 0.08731. . .. Therefore, for not too large value

of δ, the following numerical approximation seems acceptable:

Idða; bÞ �
bdad

½dða � 1Þ þ 1�½dðb � 1Þ þ 1�
:

In our study, the interest of Proposition 1 is that Iδ(a, b) is the main ingredient in the defini-

tions of various entropy measures of the Kumaraswamy distribution, as developed in the next

part.

2.2 Various entropy measures

The entropy of the Kumaraswamy distribution can be measured in different manners. The

most useful entropy measures of the literature are recalled in Table 1 for a general distribution

with pdf denoted by f(x;φ), φ representing a possible vector of parameters. Also, we suppose

that δ> 0 and δ 6¼ 1 as basic assumptions in this general case.

For the two entropy measures proposed by [27], it is supposed that supx2Rf ðx;φÞ is finite

and well identified.

From Table 1, we see that the integral
R þ1
� 1

f ðx; φÞddx is central to determine the

considered entropy measures. Now, we present the corresponding entropy measures of the

Kumaraswamy distribution. Based on Proposition 1, it is supposed that a, b and δ satisfy

min(a, b)>max(1 − 1/δ, 0).
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Rényi entropy. Based on Table 1, Eq (1) and Proposition 1, the Rényi entropy of the

Kumaraswamy distribution can be expressed as

Rdða; bÞ ¼
1

1 � d
log Idða; bÞ½ �

¼
1

1 � d
d log bþ ðd � 1Þ logaþ log B d 1 �

1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �� �� �

:

Havrda and Charvát entropy. From Table 1, Eq (1) and Proposition 1, the Havrda and

Charvát entropy of the Kumaraswamy distribution can be expressed as

HCdða; bÞ ¼
1

21� d � 1
Idða; bÞ � 1½ �

¼
1

21� d � 1
bdad� 1B d 1 �

1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �

� 1

� �

:

Arimoto entropy. Again, from Table 1, Eq (1) and Proposition 1, the Arimoto entropy of

the Kumaraswamy distribution is specified by

Adða; bÞ ¼
d

1 � d
Idða; bÞ

1
d � 1

h i

¼
d

1 � d
ba1� 1

d B d 1 �
1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �� �1
d

� 1

( )

:

Tsallis entropy. Based on Table 1, Eq (1) and Proposition 1, the Tsallis entropy of the

Kumaraswamy distribution can be expressed as

Tdða; bÞ ¼
1

d � 1
1 � Idða; bÞ½ �

¼
1

d � 1
1 � bdad� 1B d 1 �

1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �� �

:

Table 1. Important entropy measures of a distribution with pdf f(x;φ) at δ.

Name of the entropy Reference Notation Expression

Rényi [28] Rδ(φ)
1

1� d
log

Z þ1

� 1

f ðx; φÞddx
� �

Havrda and Charvat [29] HCδ(φ)
1

21� d � 1

Z þ1

� 1

f ðx; φÞddx � 1

� �

Arimoto [30] Aδ(φ)
d

1� d

Z þ1

� 1

f ðx;φÞddx
� �1

d

� 1

( )

Tsallis [31] Tδ(φ)
1

d� 1
1 �

Z þ1

� 1

f ðx; φÞddx
� �

Awad and Alawneh 1 [27] AA1δ(φ)
1

d� 1
log sup

x2R
f ðx; φÞ

� �1� d Z þ1

� 1

f ðx; φÞddx

( )

Awad and Alawneh 2 [27] AA2δ(φ)
1

21� d � 1
sup
x2R

f ðx; φÞ
� �1� d Z þ1

� 1

f ðx; φÞddx

( )

� 1

" #

https://doi.org/10.1371/journal.pone.0249027.t001
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Awad and Alawneh 1 entropy. From Table 1, Eq (1) and Proposition 1, the Awad and

Alawneh 1 entropy of the Kumaraswamy distribution is given as

AA1dða; bÞ ¼
1

d � 1
log sup

0<x<1

f ðx; a; bÞ
� �1� d

Idða; bÞ

( )

: ð2Þ

Before going further, we need to determine sup0<x<1 f(x;a, b). The following lemma pro-

vides the necessary in this regard.

Lemma 2 Let f(x;a, b) be given as Eq (1). Then, sup0<x<1 f(x;a, b) is finite if and only if a� 1

and b� 1 with ab 6¼ 1, and in this case, we have

sup
0<x<1

f ðx; a; bÞ ¼ abbða � 1Þ
1� 1

aðb � 1Þ
b� 1
ðab � 1Þ

1
a� b:

Proof. We have

f 0ðx; a; bÞ ¼ abða � 1Þxa� 2ð1 � xaÞb� 1
� a2bðb � 1Þx2a� 2ð1 � xaÞb� 2

¼ abxa� 2ð1 � xaÞb� 2
fða � 1Þ � ½ða � 1Þ þ aðb � 1Þ�xag:

Therefore, f 0(x�;a, b) = 0 implies that

x� ¼
a � 1

ab � 1

� �1
a

:

Since f 0(x;a, b)>0 for x< x� and f 0(x;a, b)<0 for x> x�, x� is a maximum point for f(x;a, b).

Hence,

sup
0<x<1

f ðx; a; bÞ ¼ f ðx�; a; bÞ ¼ abxa� 1
�
ð1 � xa

�
Þ
b� 1

¼ ab
a � 1

ab � 1

� �1� 1
a aðb � 1Þ

ab � 1

� �b� 1

¼ abbða � 1Þ
1� 1

aðb � 1Þ
b� 1
ðab � 1Þ

1
a� b:

Note that, for a = 1, with the convention 00 = 1, we have f(x�;a, b) = b(b − 1)b−1(b − 1)1−b = b

and for b = 1, we have f x�; a; bð Þ ¼ aða � 1Þ
1� 1

aða � 1Þ
1
a� 1
¼ a. This ends the proof of Lemma

2.

Based on Lemma 2, if a> 1 and b> 1, Eq (2) becomes

AA1dða; bÞ ¼
1

d � 1
log aðb� 1Þð1� dÞbða � 1Þ

ð1� dÞ 1� 1
að Þðb � 1Þ

ð1� dÞðb� 1Þ
�

n

ðab � 1Þ
ð1� dÞ 1

a� bð ÞB d 1 �
1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� ��

¼
1

d � 1
ðb � 1Þð1 � dÞ logaþ log bþ ð1 � dÞ 1 �

1

a

� �

log ða � 1Þ

�

þð1 � dÞðb � 1Þ log ðb � 1Þ þ ð1 � dÞ
1

a
� b

� �

log ðab � 1Þ

þ log B d 1 �
1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� �� ��

:
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Awad and Alawneh 2 entropy. From Table 1, Eq (1), Proposition 1 and Lemma 2, the

Awad and Alawneh 2 entropy of the Kumaraswamy distribution is given as

AA2d ¼
1

21� d � 1
aðb� 1Þð1� dÞbða � 1Þ

ð1� dÞ 1� 1
að Þðb � 1Þ

ð1� dÞðb� 1Þ
�

nh

ðab � 1Þ
ð1� dÞ 1

a� bð ÞB d 1 �
1

a

� �

þ
1

a
; dðb � 1Þ þ 1

� ��

� 1

�

:

Theoretically, it is complicated to study the behavior of these entropy measures. For this

reason, a numerical study is proposed in the next section.

2.3 Numerical values

We now investigate the numerical values for the six entropy measures presented in Subsection

2.2 under the following configuration of the parameters: Configuration 1: a = 2, b 2 Y with

Y = {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0} and δ = 0.5, Configuration 2: a = 2, b 2 Y and

δ = 1.5, Configuration 3: a = 2, b 2 Y and δ = 2.5, Configuration 4: a 2 Y, b = 2 and δ = 0.5,

Configuration 5: a 2 Y, b = 2 and δ = 1.5, and Configuration 6: a 2 Y, b = 2 and δ = 2.5. The

findings of all the six entropy measures are presented for these configurations in Tables 2–7,

respectively.

In view of Tables 2–7, the following comments can be formulated.

First, we recall that Tables 2–4 indicate the values of the entropy measures of the Kumaras-

wamy distribution for a fixed value of a and different values for b and δ. In this context,

Table 2. Numerical values of the considered entropy measures of the Kumaraswamy distribution at a = 2 and δ = 0.5.

b Rδ(a, b) HCδ(a, b) Aδ(a, b) Tδ(a, b) AA1δ(a, b) AA2δ(a, b)

1.5 -0.034 -0.092 -0.075 -0.076 -0.142 0.430

2.0 -0.037 -0.100 -0.081 -0.083 -0.151 0.457

2.5 -0.047 -0.127 -0.103 -0.106 -0.163 0.500

3.0 -0.060 -0.161 -0.129 -0.134 -0.175 0.538

3.5 -0.074 -0.197 -0.157 -0.163 -0.184 0.570

4.0 -0.088 -0.233 -0.183 -0.193 -0.192 0.596

4.5 -0.102 -0.267 -0.209 -0.221 -0.198 0.618

5.0 -0.115 -0.299 -0.232 -0.248 -0.203 0.637

5.5 -0.128 -0.330 -0.255 -0.273 -0.208 0.653

6.0 -0.140 -0.359 -0.275 -0.297 -0.212 0.667

https://doi.org/10.1371/journal.pone.0249027.t002

Table 3. Numerical values of the considered entropy measures of the Kumaraswamy distribution at a = 2 and δ = 1.5.

b Rδ(a, b) HCδ(a, b) Aδ(a, b) Tδ(a, b) AA1δ(a, b) AA2δ(a, b)

1.5 -0.069 -0.280 -0.162 -0.164 -0.108 0.398

2.0 -0.075 -0.306 -0.177 -0.179 -0.113 0.416

2.5 -0.091 -0.377 -0.217 -0.221 -0.120 0.439

3.0 -0.110 -0.461 -0.264 -0.270 -0.125 0.457

3.5 -0.129 -0.547 -0.312 -0.320 -0.129 0.471

4.0 -0.147 -0.631 -0.359 -0.370 -0.132 0.483

4.5 -0.165 -0.713 -0.404 -0.418 -0.135 0.491

5.0 -0.181 -0.792 -0.447 -0.464 -0.137 0.499

5.5 -0.197 -0.867 -0.488 -0.508 -0.139 0.505

6.0 -0.211 -0.939 -0.528 -0.550 -0.140 0.510

https://doi.org/10.1371/journal.pone.0249027.t003
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• the Rényi, Havrda and Charvat, Arimoto, Tsallis and Awad and Alawneh1 entropy measures

are decreasing when b is increasing while the Awad and Alawneh 2 entropy is increasing

when b is increasing.

• the Rényi, Havrda and Charvat, Arimoto and Tsallis entropy measures are decreasing when

δ is increasing while the Awad and Alawneh1 entropy is increasing when δ is increasing, but

the Awad and Alawneh2 entropy is decreasing and increasing when δ is increasing.

Table 4. Numerical values of the considered entropy measures of the Kumaraswamy distribution at a = 2 and δ = 2.5.

b Rδ(a, b) HCδ(a, b) Aδ(a, b) Tδ(a, b) AA1δ(a, b) AA2δ(a, b)

1.5 -0.087 -0.546 -0.214 -0.235 -0.089 0.408

2.0 -0.095 -0.600 -0.233 -0.259 -0.093 0.423

2.5 -0.114 -0.743 -0.283 -0.320 -0.097 0.440

3.0 -0.134 -0.913 -0.340 -0.393 -0.101 0.454

3.5 -0.155 -1.094 -0.398 -0.471 -0.103 0.464

4.0 -0.174 -1.278 -0.454 -0.551 -0.105 0.472

4.5 -0.193 -1.463 -0.509 -0.631 -0.107 0.478

5.0 -0.210 -1.647 -0.561 -0.710 -0.108 0.483

5.5 -0.226 -1.830 -0.611 -0.789 -0.109 0.487

6.0 -0.241 -2.011 -0.659 -0.867 -0.110 0.490

https://doi.org/10.1371/journal.pone.0249027.t004

Table 5. Numerical values of the considered entropy measures of the Kumaraswamy distribution at b = 2 and δ = 0.5.

a Rδ(a, b) HCδ(a, b) Aδ(a, b) Tδ(a, b) AA1δ(a, b) AA2δ(a, b)

1.5 -0.026 -0.072 -0.059 -0.060 -0.125 0.374

2.0 -0.037 -0.100 -0.081 -0.083 -0.151 0.457

2.5 -0.059 -0.160 -0.128 -0.132 -0.180 0.555

3.0 -0.086 -0.229 -0.180 -0.189 -0.205 0.641

3.5 -0.115 -0.298 -0.232 -0.247 -0.225 0.713

4.0 -0.143 -0.366 -0.280 -0.303 -0.241 0.773

4.5 -0.170 -0.429 -0.324 -0.356 -0.255 0.824

5.0 -0.196 -0.489 -0.364 -0.405 -0.267 0.867

5.5 -0.222 -0.544 -0.400 -0.451 -0.276 0.904

6.0 -0.246 -0.595 -0.432 -0.493 -0.285 0.936

https://doi.org/10.1371/journal.pone.0249027.t005

Table 6. Numerical values of the considered entropy measures of the Kumaraswamy distribution at b = 2 and δ = 1.5.

a Rδ(a, b) HCδ(a, b) Aδ(a, b) Tδ(a, b) AA1δ(a, b) AA2δ(a, b)

1.5 -0.055 -0.221 -0.128 -0.130 -0.097 0.361

2.0 -0.075 -0.306 -0.177 -0.179 -0.113 0.416

2.5 -0.111 -0.466 -0.267 -0.273 -0.128 0.468

3.0 -0.151 -0.649 -0.369 -0.380 -0.140 0.508

3.5 -0.191 -0.838 -0.473 -0.491 -0.149 0.537

4.0 -0.228 -1.026 -0.574 -0.601 -0.156 0.561

4.5 -0.264 -1.211 -0.673 -0.709 -0.161 0.579

5.0 -0.297 -1.392 -0.768 -0.815 -0.166 0.594

5.5 -0.328 -1.568 -0.860 -0.918 -0.170 0.606

6.0 -0.358 -1.739 -0.948 -1.019 -0.173 0.617

https://doi.org/10.1371/journal.pone.0249027.t006
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Tables 5–7 show the values of the entropy of the Kumaraswamy distribution for a fixed

value of b and different values for a and δ. In this setting,

• the Rényi, Havrda and Charvat, Arimoto, Tsallis and Awad and Alawneh1 entropy measures

are decreasing when a is increasing while the Awad and Alawneh 2 entropy is increasing

when a is increasing.

• the Rényi, Havrda and Charvat, Arimoto and Tsallis entropy measures are decreasing when

δ is increasing while the Awad and Alawneh1 entropy is increasing when δ is increasing, but

the Awad and Alawneh2 entropy is decreasing and increasing when δ is increasing.

3 Maximum likelihood estimation

The inference on the six considered entropy measures of the Kumaraswamy distribution is

now investigated via the maximum likelihood technique. This technique is well-known and

has proved itself in various modern studies such as those in [32–34].

3.1 Estimation of the entropy measures

The estimation of the parameters of the Kumaraswamy model through the maximum likeli-

hood technique is well-known and the details can be found in [24]. The minimal theory is

recalled below. Based on n values x1, . . ., xn supposed to be observed from a random variable X
with the Kumaraswamy distribution with parameters a and b, the maximum likelihood esti-

mates (MLEs) of a and b, say â and b̂, are defined by

ðâ; b̂Þ ¼ argmax ða;bÞ2ð0;þ1Þ2‘ða; bÞ;

where ℓ(a, b) denotes the log-likelihood function specified by

‘ða; bÞ ¼ n logaþ n log bþ ða � 1Þ
Xn

i¼1

log xi þ ðb � 1Þ
Xn

i¼1

log ð1 � xai Þ:

These MLEs are also the solutions of the two following equations according to a and b:

@

@a
‘ða; bÞ ¼

n
a
þ
Xn

i¼1

logxi � ðb � 1Þ
Xn

i¼1

xai log xi
1 � xai

¼ 0;
@

@b
‘ða; bÞ ¼

n
b
þ
Xn

i¼1

log 1 � xai
� �

¼ 0:

Table 7. Numerical values of the considered entropy measures of the Kumaraswamy distribution at b = 2 and δ = 2.5.

a Rδ(a, b) HCδ(a, b) Aδ(a, b) Tδ(a, b) AA1δ(a, b) AA2δ(a, b)

1.5 -0.070 -0.426 -0.170 -0.184 -0.081 0.378

2.0 -0.095 -0.600 -0.233 -0.259 -0.093 0.423

2.5 -0.137 -0.932 -0.346 -0.402 -0.103 0.462

3.0 -0.181 -1.340 -0.472 -0.578 -0.110 0.490

3.5 -0.223 -1.799 -0.602 -0.775 -0.116 0.511

4.0 -0.264 -2.297 -0.732 -0.990 -0.121 0.527

4.5 -0.301 -2.830 -0.860 -1.220 -0.124 0.539

5.0 -0.336 -3.392 -0.985 -1.462 -0.127 0.549

5.5 -0.369 -3.983 -1.108 -1.717 -0.129 0.557

6.0 -0.399 -4.600 -1.227 -1.982 -0.131 0.563

https://doi.org/10.1371/journal.pone.0249027.t007
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That is, â and b̂ satisfy the following simple relation:

b̂ ¼ � n
Xn

i¼1

log ð1 � xâi Þ

" #� 1

:

Then, the properties of these MLEs follow from the usual maximum likelihood theory. In

particular, thanks to the functional invariance of the MLEs, one can deduce easily the MLEs of

the entropy measures. More concretely, based on the six entropy measures described in Sub-

section 2.2, Rdðâ; b̂Þ is the MLE of Rδ(a, b), HCdðâ; b̂Þ is the MLE of HCδ(a, b), Adðâ; b̂Þ is the

MLE of Aδ(a, b), Tdðâ; b̂Þ is the MLE of Tδ(a, b), AA1dðâ; b̂Þ is the MLE of AA1δ(a, b), and

AA2dðâ; b̂Þ is the MLE of AA2δ(a, b).

3.2 Simulation

We now investigate the numerical behavior of the MLEs of the entropy measures via the use

of simulated values. That is, we consider N = 5000 samples of values from a random variable

X with the Kumaraswamy distribution of parameters a and b with different samples sizes;

n = 100, 200, 300 and 1000 are considered. The following configurations on the parameters are

considered: Configuration1: a = 3, b = 3 and δ 2 X with X = {0.5, 1.5, 2.5}, and Configuration

2: a = 3, b = 5 and δ 2 X.

In each configuration, for each sample, the MLEs â and b̂ are determined. Then, based on

the N samples of fixed size, we determine the average of the N MLEs and use it to define the

entropy estimates. The corresponding mean squared error (MSE) and mean deviation (MD)

defined by the following generic formulas: MSE = sum(exact value—estimate)2 / N and

MD = sum abs(exact value—estimate) / N, respectively, are also calculated. These assessment

criteria are often used quite effectively to make a full comparison of models. In this regard, we

can refer the reader to the useful works of [35–37].

The results on the Rényi entropy under Configurations 1 and 2 are given in Tables 8 and 9,

respectively, results on the Havrda and Charvat entropy under Configurations 1 and 2 are

indicated in Tables 10 and 11, respectively, results on the Arimoto entropy under Configura-

tions 1 and 2 are presented in Tables 12 and 13, respectively, results on the Tsallis entropy

Table 8. Numerical values of the simulation related to the Rényi entropy for Configuration 1 (a = 3, b = 3).

n δ = 0.5 δ = 1.5 δ = 2.5

Rδ(a, b) Estimate MSE MD Rδ(a, b) Estimate MSE MD Rδ(a, b) Estimate MSE MD

100

-0.2107

-0.2215 0.0020 0.0344

-0.3674

-0.3812 0.0039 0.0487

-0.4379

-0.4523 0.0046 0.0529

200 -0.2132 0.0009 0.0233 -0.3702 0.0018 0.0332 -0.4406 0.0021 0.0362

300 -0.2117 0.0005 0.0180 -0.3683 0.0010 0.0257 -0.4387 0.0012 0.0280

1000 -0.2113 0.0002 0.0103 -0.3680 0.0003 0.0147 -0.4385 0.0004 0.0160

https://doi.org/10.1371/journal.pone.0249027.t008

Table 9. Numerical values of the simulation related to the Rényi entropy for Configuration 2 (a = 3, b = 5).

n δ = 0.5 δ = 1.5 δ = 2.5

Rδ(a, b) Estimate MSE MD Rδ(a, b) Estimate MSE MD Rδ(a, b) Estimate MSE MD

100

-0.2753

-0.2800 0.0021 0.0371

-0.4504

-0.4553 0.0037 0.0488

-0.5258

-0.5307 0.0042 0.0522

200 -0.2781 0.0011 0.0260 -0.4535 0.0019 0.0343 -0.5289 0.0021 0.0366

300 -0.2802 0.0007 0.0218 -0.4564 0.0013 0.0287 -0.5321 0.0015 0.0306

1000 -0.2775 0.0002 0.0111 -0.4532 0.0003 0.0146 -0.5287 0.0004 0.0157

https://doi.org/10.1371/journal.pone.0249027.t009
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under Configurations 1 and 2 are given in Tables 14 and 15, respectively, results on the Awad

and Alawneh 1 entropy under Configurations 1 and 2 are given in Tables 16 and 17, respec-

tively, and results on the Awad and Alawneh 2 entropy under Configurations 1 and 2 are indi-

cated in Tables 18 and 19.

Based on Tables 8–19, in all the situations, we see that the MLEs of the entropy measures

are close to the target values and, as anticipated, the MSEs and MDs decrease and approach 0

as n increases. This proves the accuracy of the proposed estimation methods in the context of

the Kumaraswamy distribution. Also, one can notice that the MSEs and MDs increase as δ
increases.

Table 10. Numerical values of the simulation related to the Havrda and Charvat entropy for Configuration 1 (a = 3, b = 3).

n δ = 0.5 δ = 1.5 δ = 2.5

HCδ(a, b) Estimate MSE MD HCδ(a, b) Estimate MSE MD HCδ(a, b) Estimate MSE MD

100

-0.2414

-0.2494 0.0021 0.0357

-0.6885

-0.7102 0.0154 0.0967

-1.4364

-1.4960 0.0913 0.2330

200 -0.2452 0.0013 0.0280 -0.6987 0.0094 0.0759 -1.4656 0.0550 0.1819

300 -0.2438 0.0007 0.0214 -0.6949 0.0054 0.0579 -1.4544 0.0311 0.1382

1000 -0.2433 0.0002 0.0113 -0.6937 0.0015 0.0307 -1.4496 0.0085 0.0731

https://doi.org/10.1371/journal.pone.0249027.t010

Table 11. Numerical values of the simulation related to the Havrda and Charvat entropy for Configuration 2 (a = 3, b = 5).

n δ = 0.5 δ = 1.5 δ = 2.5

HCδ(a, b) Estimate MSE MD HCδ(a, b) Estimate MSE MD HCδ(a, b) Estimate MSE MD

100

-0.3104

-0.3188 0.0027 0.0400

-0.8623

-0.8864 0.0197 0.1085

-1.8572

-1.9299 0.1373 0.2816

200 -0.3134 0.0012 0.0282 -0.8708 0.0087 0.0761 -1.8836 0.0578 0.1953

300 -0.3151 0.0008 0.0227 -0.8753 0.0061 0.0613 -1.8939 0.0405 0.1576

1000 -0.3125 0.0003 0.0127 -0.8681 0.0019 0.0343 -1.8730 0.0123 0.0877

https://doi.org/10.1371/journal.pone.0249027.t011

Table 12. Numerical values of the simulation related to the Arimoto entropy for Configuration 1 (a = 3, b = 3).

n δ = 0.5 δ = 1.5 δ = 2.5

Aδ(a, b) Estimate MSE MD Aδ(a, b) Estimate MSE MD Aδ(a, b) Estimate MSE MD

100

-0.1900

-0.1980 0.0012 0.0275

-0.3908

-0.4073 0.0051 0.0553

-0.5008

-0.5216 0.0080 0.0695

200 -0.1943 0.0006 0.0195 -0.3997 0.0025 0.0390 -0.5120 0.0039 0.0489

300 -0.1925 0.0004 0.0160 -0.3959 0.0016 0.0321 -0.5071 0.0026 0.0403

1000 -0.1912 0.0001 0.0091 -0.3933 0.0005 0.0181 -0.5039 0.0008 0.0227

https://doi.org/10.1371/journal.pone.0249027.t012

Table 13. Numerical values of the simulation related to the Arimoto entropy for Configuration 2 (a = 3, b = 5).

n δ = 0.5 δ = 1.5 δ = 2.5

Aδ(a, b) Estimate MSE MD Aδ(a, b) Estimate MSE MD Aδ(a, b) Estimate MSE MD

100

-0.2406

-0.2476 0.0014 0.0297

-0.4859

-0.5013 0.0059 0.0607

-0.6182

-0.6380 0.0094 0.0767

200 -0.2426 0.0006 0.0197 -0.4904 0.0025 0.0401 -0.6240 0.0040 0.0507

300 -0.2420 0.0004 0.0161 -0.4891 0.0017 0.0327 -0.6222 0.0027 0.0413

1000 -0.2408 0.0001 0.0095 -0.4864 0.0006 0.0193 -0.6188 0.0009 0.0244

https://doi.org/10.1371/journal.pone.0249027.t013
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Table 16. Numerical values of the simulation related to the Awad and Alawneh 1 entropy for Configuration 1 (a = 3, b = 3).

n δ = 0.5 δ = 1.5 δ = 2.5

AA1δ(a, b) Estimate MSE MD AA1δ(a, b) Estimate MSE MD AA1δ(a, b) Estimate MSE MD

100

-0.48694

-0.48987 0.00102 0.02573

-0.33028

-0.33123 0.00021 0.01169

-0.25981

-0.26035 0.00009 0.00751

200 -0.48830 0.00057 0.01950 -0.33069 0.00012 0.00887 -0.26004 0.00005 0.00569

300 -0.48793 0.00034 0.01448 -0.33060 0.00007 0.00658 -0.26000 0.00003 0.00422

1000 -0.48703 0.00011 0.00825 -0.33028 0.00002 0.00375 -0.25980 0.00001 0.00241

https://doi.org/10.1371/journal.pone.0249027.t016

Table 17. Numerical values of the simulation related to the Awad and Alawneh 1 entropy for Configuration 2 (a = 3, b = 5).

n δ = 0.5 δ = 1.5 δ = 2.5

AA1δ(a, b) Estimate MSE MD AA1δ(a, b) Estimate MSE MD AA1δ(a, b) Estimate MSE MD

100

-0.51891

-0.52148 0.00074 0.02153

-0.34379

-0.34465 0.00014 0.00942

-0.26837

-0.26886 0.00006 0.00598

200 -0.52091 0.00038 0.01553 -0.34456 0.00007 0.00677 -0.26883 0.00003 0.00430

300 -0.52043 0.00023 0.01221 -0.34438 0.00004 0.00534 -0.26873 0.00002 0.00339

1000 -0.51951 0.00007 0.00660 -0.34403 0.00001 0.00288 -0.26852 0.00001 0.00183

https://doi.org/10.1371/journal.pone.0249027.t017

Table 18. Numerical values of the simulation related to the Awad and Alawneh 2 entropy for Configuration 1 (a = 3, b = 3).

n δ = 0.5 δ = 1.5 δ = 2.5

AA2δ(a, b) Estimate MSE MD AA2δ(a, b) Estimate MSE MD AA2δ(a, b) Estimate MSE MD

100

0.66553

0.66962 0.00226 0.03816

0.51972

0.52074 0.00041 0.01628

0.49927

0.49983 0.00020 0.01135

200 0.66502 0.00127 0.02792 0.51909 0.00023 0.01197 0.49874 0.00011 0.00835

300 0.66668 0.00084 0.02284 0.51994 0.00015 0.00977 0.49937 0.00008 0.00681

1000 0.66621 0.00027 0.01301 0.51993 0.00005 0.00556 0.49940 0.00002 0.00387

https://doi.org/10.1371/journal.pone.0249027.t018

Table 15. Numerical values of the simulation related to the Tsallis entropy for Configuration 2 (a = 3, b = 5).

n δ = 0.5 δ = 1.5 δ = 2.5

Tδ(a, b) Estimate MSE MD Tδ(a, b) Estimate MSE MD Tδ(a, b) Estimate MSE MD

100

-0.2572

-0.2633 0.0015 0.0308

-0.5051

-0.5173 0.0056 0.0589

-0.8004

-0.8271 0.0204 0.1120

200 -0.2604 0.0009 0.0232 -0.5117 0.0032 0.0443 -0.8150 0.0115 0.0838

300 -0.2590 0.0005 0.0183 -0.5088 0.0019 0.0348 -0.8086 0.0067 0.0656

1000 -0.2591 0.0002 0.0100 -0.5087 0.0006 0.0189 -0.8075 0.0020 0.0356

https://doi.org/10.1371/journal.pone.0249027.t015

Table 14. Numerical values of the simulation related to the Tsallis entropy for Configuration 1 (a = 3, b = 3).

n δ = 0.5 δ = 1.5 δ = 2.5

Tδ(a, b) Estimate MSE MD Tδ(a, b) Estimate MSE MD Tδ(a, b) Estimate MSE MD

100

-0.2000

-0.2083 0.0015 0.0304

-0.4033

-0.4193 0.0056 0.0584

-0.6190

-0.6508 0.0181 0.1038

200 -0.2041 0.0007 0.0210 -0.4111 0.0026 0.0402 -0.6344 0.0081 0.0710

300 -0.2043 0.0005 0.0180 -0.4116 0.0019 0.0345 -0.6348 0.0060 0.0608

1000 -0.2004 0.0001 0.0093 -0.4040 0.0005 0.0178 -0.6207 0.0015 0.0311

https://doi.org/10.1371/journal.pone.0249027.t014
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For a visual approach, the behavior of the MSEs and MDs are illustrated in Figs 1–12, for

the Rényi, Havrda and Charvat, Arimoto, Tsallis, Awad and Alawneh 1 and Awad and Alaw-

neh 2 entropy measures following the settings of Tables 8–19, respectively.

Figs 1–12 support the claims formulated about the results of Tables 8–19.

3.3 Illustrative examples

In this Section, two real life data sets are used to illustrate the proposed methodology. The con-

sidered data sets are described below.

The first data set. The data set consists of 48 rock samples from an oil reservoir. It corre-

sponds to twelve oil tank cores that were sampled by four cross sections. Each core was mea-

sured for permeability and each cross section has the following variables: total pore area, total

pore perimeter, and shape. We analyze the perimeter of the shape by a squared variable (area).

It has been analyzed by [38], among others. Explicitely, the data set is: {0.0903296, 0.2036540,

0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 0.2627270, 0.1794550,

0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250,

0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950,

0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730,

0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530,

0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470}.

Fig 1. Plots of the (a) MSEs and (b) MDs for the Rényi entropy in the setting of Table 8.

https://doi.org/10.1371/journal.pone.0249027.g001

Table 19. Numerical values of the simulation related to the Awad and Alawneh 2 entropy for Configuration 2 (a = 3, b = 5).

n δ = 0.5 δ = 1.5 δ = 2.5

AA2δ(a, b) Estimate MSE MD AA2δ(a, b) Estimate MSE MD AA2δ(a, b) Estimate MSE MD

100

0.71515

0.72043 0.00166 0.03256

0.53922

0.54086 0.00026 0.01303

0.51263

0.51366 0.00012 0.00892

200 0.71595 0.00080 0.02300 0.53930 0.00013 0.00925 0.51264 0.00006 0.00634

300 0.71711 0.00053 0.01825 0.53985 0.00008 0.00732 0.51303 0.00004 0.00502

1000 0.71663 0.00017 0.01059 0.53976 0.00003 0.00424 0.51299 0.00001 0.00290

https://doi.org/10.1371/journal.pone.0249027.t019
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The second data set. This data set contains 20 observations of flood data. It was analyzed

by [39]. The data set is listed as follows: {0.265, 0.392, 0.297, 0.3235, 0.402, 0.269, 0.315, 0.654,

0.338, 0.379, 0.418, 0.423, 0.379, 0.412, 0.416, 0.449, 0.484, 0.494, 0.613, 0.74}.

In order to check the adequateness of the Kumaraswamy distribution to these data, we

apply the Kolmogorov-Smirnov test. We find p-value 0.2092 and p-value = 0.3359 for the first

and second data sets, respectively. Since both satisfy p-values >0.05, the two considered data

set are in adequateness with the Kumaraswamy distribution.

Fig 3. Plots of the (a) MSEs and (b) MDs for the Havrda and Chardat entropy in the setting of Table 10.

https://doi.org/10.1371/journal.pone.0249027.g003

Fig 2. Plots of the (a) MSEs and (b) MDs for the Rényi entropy in the setting of Table 9.

https://doi.org/10.1371/journal.pone.0249027.g002
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Now, Tables 20 and 21 present the estimations of the six entropy measures considered in

Subsection 2.2, following the methodology described in Subsection 3.1, for the first and second

data sets, respectively.

We can notice that, under our framework, the Rényi, Havrda and Charvat, Arimoto, Tsallis,

Awad and Alawneh 2 entropy measures are decreasing when δ is increasing while the Awad

and Alawneh 1 entropy is increasing when δ is increasing.

Fig 4. Plots of the (a) MSEs and (b) MDs for the Havrda and Chardat entropy in the setting of Table 11.

https://doi.org/10.1371/journal.pone.0249027.g004

Fig 5. Plots of the (a) MSEs and (b) MDs for the Arimoto entropy in the setting of Table 12.

https://doi.org/10.1371/journal.pone.0249027.g005
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Tour knowledge, it is the first time that the entropy of the uncertainty behind these data

sets are evaluated. They can be taken into account for further statistical analysis in the future.

4 Conclusion

For the first time, this article proposed a special focus on the entropy of the Kumaraswamy

distribution. Both theoretical and practical aspects were covered, though complementary

works. In particular, six different entropy measures were investigated. After determining the

Fig 6. Plots of the (a) MSEs and (b) MDs for the Arimoto entropy in the setting of Table 13.

https://doi.org/10.1371/journal.pone.0249027.g006

Fig 7. Plots of the (a) MSEs and (b) MDs for the Tsallis entropy in the setting of Table 14.

https://doi.org/10.1371/journal.pone.0249027.g007
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closed-form expressions of these measures, an estimation strategy was developed to evaluate

them in a practical setting. A simulation study ensured the convergence of the obtained esti-

mates. Two real-life data sets are used to show how the related entropy can be concretely esti-

mated. The finding of this study aims to be applied by the statistician to assess the entropy of

diverse data with values on the unit interval, such as modern rate, percentage and proportion

type data.

Fig 8. Plots of the (a) MSEs and (b) MDs for the Tsallis entropy in the setting of Table 15.

https://doi.org/10.1371/journal.pone.0249027.g008

Fig 9. Plots of the (a) MSEs and (b) MDs for the Awad and Alawneh 1 entropy in the setting of Table 16.

https://doi.org/10.1371/journal.pone.0249027.g009
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The limitation of current research remains on the classicity of the statistical framework

considered. Directions for future research include the estimation of the entropy of the Kumar-

aswamy distribution in more sophisticated statistical schemes with physical motivations,

such as the progressive type II censoring scheme, generalized progressively hybrid censoring

scheme, etc., or taking into account generalized versions of the Kumaraswamy distribution,

such as the one proposed by [40].

Fig 10. Plots of the (a) MSEs and (b) MDs for the Awad and Alawneh 1 entropy in the setting of Table 17.

https://doi.org/10.1371/journal.pone.0249027.g010

Fig 11. Plots of the (a) MSEs and (b) MDs for the Awad and Alawneh 2 entropy in the setting of Table 18.

https://doi.org/10.1371/journal.pone.0249027.g011
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