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Abstract

Background: Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of

electroanalytical experimental data to estimate diffusion coefficients.

Results: For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression

algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher

accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain

equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the

respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of

typical voltammetric peak features decreased the performance of both regression algorithms compared to a

reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion

coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for

three organometallic complexes.

Conclusions: Estimated diffusion coefficients closely matched the values determined by the parameter fitting

method, but reduced the required computational time considerably for one of the reaction mechanisms. The

automated processing of voltammograms according to the regression algorithms yields better results than the

conventional analysis of peak-related data.

Keywords: Support vector regression, Gaussian process regression, Diffusion coefficient, Principal component

analysis, Voltammetry, Reaction mechanism

Background
Voltammetric signals are measurements of the current

flowing through an electrode as a function of an externally

controlled electrode potential. For example, in a simple

case for an initial oxidation, during a single cycle in cyclic

voltammetry the electrode potential first increases lin-

early with time and, upon reaching the switching poten-

tial, decreases linearly back to the starting potential [1,2].

It has been argued that voltammetric techniques have

found widespread use due to their high sensitivity, ade-

quate selectivity, and ready availability of instrumentation

[3]. Measurements of cyclic voltammetric signals provide
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detailed information about reactions which include, or

are coupled to, electron transfer steps, and thus enable

the analysis of the underlying mechanisms [4]. In a spe-

cial context, these measurements are used, for example,

to study the release of neurotransmitters [5], and to char-

acterize the electrochemical properties of recording and

stimulation microelectrodes in neuroscience research [6].

Automated acquisition of experimental data [7,8] and

computer simulations of electrochemical systems [9,10]

play an important role in modern electrochemistry. Due

to the wide applicability and high speed of voltammetric

experiments [3], data analysis methods are required to aid

electrochemists in extracting knowledge about electro-

chemical systems [11-14]. Recently proposed data analysis

methods include, for example, multi-parameter estima-
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tion from hypersurface models [15,16], artificial neural

networks for classifying voltammetric signals by reac-

tion mechanism [17], and bootstrap resampling to extract

system parameters and their error distributions [18].

The diffusion coefficient D is an important physical

parameter of the species involved in an electrochemi-

cal reaction, that describes diffusional transport. Since

Nicholson and Shain’s classical treatment [1], diffusion

coefficients are directly extracted from voltammetric

signals based on theoretical relations (Randles-Sevčik

equation), valid for particular electrode reaction mecha-

nisms. Recently analytical solutions for calculating the dif-

fusion coefficient from flux data have also been proposed

[19,20], but are restricted to pure diffusive and diffusive-

convective conditions. Semiintegral analysis provides a

“linearization” method that allows D to be determined

for single electron transfers without kinetic complications

[21]. As an alternative, fitting of simulated voltammet-

ric features to experimental data [11,15,16,22], or full

current/potential curves [23,24] may provide values for

D. Both approaches have limitations: Theoretical rela-

tionships are only valid for certain reaction mechanisms

and kinetic schemes, while the fitting of simulated data

requires formulation of a reasonable mechanistic hypoth-

esis, substantial computation time and is very sensitive to

the initialization of the electrochemical system parame-

ters [15]. Non-electrochemical approaches to determine

D include PGSE-NMR spectroscopy [25,26]. However,

these require expensive instrumentation and considerable

additional expertise.

To overcome such limitations, we investigate the esti-

mation of diffusion coefficients from experimental cyclic

voltammograms by means of two function estimation

techniques, support vector regression (SVR) and Gaus-

sian process regression (GPR) [27,28]. Support vector

machines, as a tool for both regression and classification,

have recently gained popularity across different applica-

tion fields such as genetics [29], neuroscience [30,31],

quantum chemistry [32], spectroscopy [33-35], and elec-

trochemistry [36]. Similar to support vector machines,

Gaussian processes have lately seen a revival of interest

due to their combination with covariance kernels [28] and

were successfully applied to problems in (bio)chemistry

and robotics concerning micro-array analysis [37], and

decoding of spike trains [38].

Methods
In the following, f will denote a scalar function,

mapping vectors x ∈ R
n to a scalar y ∈ R. Then, the

estimation of diffusion coefficients from voltammet-

ric signals is equivalent to estimating the unknown

function f (x) �→ y, where x is a cyclic voltammo-

gram (CV) and y ∈ R the diffusion coefficient D.

Function f hence describes the relationship between

experimentally acquired data (CVs) and an unknown

physical property (D) of the electrochemical species.

The following Sections “Support vector regression” and

“Gaussian processes” introduce two different techniques

for estimating function f.

Support vector regression
Support Vector Regression (SVR) [27] is a method to esti-

mate f (x) �→ y, given a set of data points (xi, yi), i =
1, . . . ,m. In the application at hand each data point

(xi, yi) ∈ R
n × R consists of a complete CV and the

respective diffusion coefficient D. To introduce the SVR

algorithm, we first consider estimation of linear functions

f (x) = 〈w, x〉 + b, where w ∈ R
n denotes the weight vec-

tor and b ∈ R the bias term, or offset. For simple linear

regression the parametersw and b are determined bymin-

imizing the quadratic loss l2( f (xi) − yi) = ( f (xi) − yi)
2

(Figure 1A), across all of the data points. In other words,

one solves the optimization problem (1).

min
w,b

m
∑

i=1

(

f (xi) − yi
)2

(1)

In equation (1), the sum of all ( f (xi)−yi))
2 is minimized

with respect to the weight vector w and offset b. After

finding w and b, diffusion coefficients are estimated for

previously unseen cyclic voltammograms by evaluating f.

In general, function f relating voltammograms and diffu-

sion coefficients will not be linear and we will describe the

extension to estimating nonlinear functions later in this

paragraph.

Usually, one is interested in a high prediction accuracy

on data not available during the optimization process, that

is, one wants a function that generalizes well beyond the

given set of training data points. To improve the general-

ization performance of the estimated function the space

of solutions for w is restricted by minimizing ‖w‖2 in

addition to the squared loss (equation 2)

min
w,b

‖w‖2 + C

m
∑

i=1

( f (xi) − yi)
2 , (2)

where the parameter C controls the complexity of the

solution. Large values of C lead to a smaller error on the

training data points at the expense of a complex func-

tion, while small values of C result in simple (flat) linear

functions at the expense of larger training errors. The

ridge regression [39] problem in Equation 2 can be trans-

formed into the SVR optimization problem by replac-

ing the quadratic loss with the ε-insensitive linear loss,
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Figure 1 Loss functions. A: Quadratic loss. B: ε-insensitive linear loss. C: ε-insensitive quadratic loss.

lε( f (xi) − yi) = max{0, f (xi) − yi} which is shown in

Figure 1B:

min
w,b

‖w‖2 + C

m
∑

i=1

ξ + ξ∗

subject to: f (xi) − yi ≤ ε + ξ

yi − f (xi) ≤ ε + ξ∗

ξ , ξ∗ ≥ 0

(3)

From Equation 3 it is clear that only data points with

| f (xi) − yi| > ε contribute to the solution, since other-

wise the slack variables ξ , ξ∗ are zero. The choice of the

ε-insensitive loss function hence induces a sparse solu-

tion that only depends on data points with non-zero loss,

which are called ‘support vectors’ [27]. In practice the

ε-zone of the loss makes the function estimation more

robust against measurement noise in the target values yi,

and the ε parameter is set to match the level of noise

in the target values, if known. The automatic choice of

parameters C and ε will be explained later. Robustness of

f with respect to outliers in the target values is achieved

by the linear part of the loss function (Figure 1B). Since

outliers are not an issue for the envisaged estimation of

diffusion coefficients, where the training data set consists

of simulated cyclic voltammograms, the loss function is

replaced by the ε-insensitive quadratic loss, l2ε( f (xi) −
yi) = max{0, ( f (x) − y)2 − ε}, shown in Figure 1C. This

exchange of the loss function allows to solve the SVR

optimization problem by the Newton algorithm for lin-

ear [40] and nonlinear function estimation [41,42]. For the

ε-insensitive quadratic loss the optimization problem in

Equation 3 transforms into the unconstrained optimiza-

tion problem (4):

min
w,b

‖w‖2 + C

m
∑

i=1

l2ε (〈w, xi〉 − yi) . (4)

Linear functions might not provide the necessary flex-

ibility for the estimation of diffusion coefficients from

experimental data. To extend SVR to nonlinear function

estimation one assumes that the function f (x) resides in a

Hilbert spaceH. Under this assumption the minimization

of ‖w‖2 is replaced by the minimization of the squared

function norm ‖ f ‖2
H

in Hilbert space H, and Equation 4

can be reformulated as:

min
f

‖ f ‖2
H

+ C

m
∑

i=1

l2ε
(

f (xi) − yi
)

. (5)

In this form the optimization problem (5) is not solv-

able, since f is unknown. Yet, according to the representer

theorem [43] the evaluation of f at point xi is given by a

linear combination of kernel functions:

f (xi) =
m

∑

i=1

βik
(

xi, xj
)

. (6)

This permits the minimization of l2ε( f (xi) − yi) in terms

of the coefficients βi instead of f. Further, Equation 6

allows one to rewrite the squared norm of the function:

‖ f ‖2
H

=
〈

f , f
〉

H
=

∑

i,j

βiβj

〈

k (xi, .) , k
(

., xj
)〉

H
.

In the final step the dot product between kernel functions

can be expressed as
〈

k(xi, .), k(., xj)
〉

H
= k(xi, xj), where

we exploited the reproducing property [44] of the Hilbert

space given by f (xi) =
〈

f , k(., xi)
〉

H
. By combining these

reformulations, the nonlinear SVR optimization problem

is:

min
β ,b

βTKβ + C

m
∑

i=1

l2ε (Kiβ + b − yi) , (7)

whereKij = k(xi, xj) is the kernel matrix andKi denotes its

i-th row. Similar to the linear case, the objective function

in (7) contains a regularization term, ‖ f ‖2
H

= βTKβ , and

a loss function term, l2ε(Kiβ + b − yi). As discussed above

for the linear case, parameter C controls the complexity of

the estimated function.

Table 1 lists the two kernel functions which are sub-

sequently used to estimate diffusion coefficients from

Table 1 Kernel functions

Type Function

Linear k
(

xi , xj
)

=
〈

xi , xj
〉

RBF k
(

xi , xj
)

= exp
(

−γ ‖xi − xj‖2
)
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cyclic voltammograms. The parameter γ for the radial

basis function (RBF) kernel, together with the regular-

ization parameter C, and the loss function parameter ε

were automatically chosen during SVR function estima-

tion by minimizing a bound on the leave-one-out error.

The leave-one-out is the average of errors across single

data points that were removed from the set before the

function estimation. It is an almost unbiased estimate of

the expected error on unseen data, but requires the func-

tion to be estimatedm times. To avoid this, we minimized

a bound on the leave-one-out error with a Quasi-Newton

algorithm [45,46]. The described algorithms were imple-

mented within MATLAB®.

Gaussian processes
A Gaussian process is defined as a collection of random

variables, any finite number of which have consistent joint

Gaussian distributions [28]. A Gaussian process general-

izes the concept of the Gaussian distribution over vectors

to a distribution over functions and is fully defined by its

mean function m̄(x) and covariance function k(x, x′). In
order to draw samples from a Gaussian process one first

evaluates the mean and covariance function at a finite set

of data points to obtain a mean vector μi = m̄(xi) ∈ R
m

and covariance matrix �ij = k(xi, xj) ∈ R
m×m, and sub-

sequently draws a vector of function values f ∼ N (μ,�)

where N (μ,�) denotes a multi-dimensional Gaussian

distribution with mean vector μ and covariance matrix �.

Specifying the mean and covariance function thus reflects

prior knowledge about the properties, for example, the

smoothness of the estimated function.

Finding the function values f∗ for previously unseen

test data points is possible by considering the joint

distribution:

[

f

f∗

]

∼ N

([

μ

μ∗

]

,

[

� �∗
�T

∗ �∗∗

])

(8)

where μ∗ is the vector of test means, �∗ the covariance

for training-test data points and �∗∗ the covariance for

test data points. Since the joint distribution is Gaussian,

the posterior distribution of f∗, given the known function

values at the training data points, is again Gaussian:

f∗| f ∼ N

(

μ∗ + �T
∗ �−1( f − μ),�∗∗ − �T

∗ �−1�∗
)

(9)

Thus calculating the distribution of f∗ just requires eval-

uation of the mean vectors and covariance matrices, and

the inversion of the training set covariance matrix by a

Cholesky decomposition [47].

The choice of a particular mean and covariance function

corresponds to the training of a Gaussian process. In the

absence of precise prior information about the functional

relationship underlying the data it is best to parameter-

ize the mean and covariance function and estimate the

parameters from the available data. Usually the training

is restricted to identifying a suitable covariance function,

after subtracting the empirical mean from the regression

targets yi. Table 2 lists the covariance functions considered

for the estimation of diffusion coefficients. An additional

term σnδij is added to each covariance function, with δij
being Kronecker’s delta, in order to model Gaussian noise

in the regression targets.

The parameters θ of the covariance function, e.g. θ =
(σ 2, l) for the squared exponential covariance function,

are determined by maximizing the probability of the

data given the parameters. Since the data distribution is

assumed to be Gaussian the logarithm of this probability

is [28]:

L = log p(y|x, θ)

= −
1

2
log |�| −

1

2
(y − μ)T�−1(y − μ) −

m

2
log(2π) .

(10)

After calculating the partial derivative of Equation 10

with respect to θ one can use a conjugate gradients algo-

rithm to optimize the parameters. It should be noted that

the first term in the objective function (10) regularizes

the solution, while the second term measures the quality

of the data fit, and the third term is a constant inde-

pendent of the data. In contrast to the SVR algorithm

(Section “Support vector regression”) there is no regular-

ization parameter C that needs to be set, since there is an

implicit trade-off between function complexity and data

fit. For the Gaussian process regression we used the freely

available GPML toolbox for MATLAB® [28].

Nicholson-Shain equation approach
The analysis of voltammetric measurements relates a sys-

tem parameter [11], diffusion coefficientD, and the exper-

imental variables, such as the initial concentration c0, the

electrode area A, scan rate v, and temperature T, as well as

other parameters (here: number of transferred electrons

n), of the electrochemical system to the electric current

i flowing through the electrode. For the dimensionless

current function χ the relationship (11) holds [1].

√
πχ =

i

nFAc0

√

D nF
RT v

, (11)

Table 2 Covariance functions

Type Function

Linear k
(

x, x′
)

= σ 2
(

1 +
〈

x, x′
〉)

Squared exp. k
(

x, x′
)

= σ 2 exp
(

−‖x − x′‖2/2l2
)
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with Faraday constant F = 96485.339 C mol−1, and gas

constant R = 8.314472 J mol−1 K−1. If the reaction

under investigation is a simple reversible electron transfer,

the dimensionless current at the peak approaches a value

[1], i.e.
√

πχp = 0.4463, independent of any parameter

describing the electrochemical system. During voltam-

metric experiments the current is measured, while v, T, A,

and c0 are known or under control of the experimenter.

Therefore, the diffusion coefficient of the electrochemi-

cal species can be determined by solving Equation 11, in

particular at the voltammetric peak:

D =

(

iforp

)2
RT

(0.4463 n c0 AF)2 nFv
. (12)

where the current of the forward peak iforp (Figure 2) is

extracted from the experimental cyclic voltammogram.

Although diffusion coefficients can be calculated from

Equation 12 given an experimental cyclic voltammo-

gram, the assumption of a known dimensionless cur-

rent
√

πχp is violated for electrode reactions deviating

from the simple diffusion-controlled one-electron trans-

fer. For more complex cases,
√

πχ depends on vari-

ous variables [1], including rate constants that are often

unknown, and examples are the Eqr (quasi-reversible

electron transfer), the EC (reversible electron transfer

with irreversible chemical follow-up reaction), and the

EqrC (quasi-reversible electron transfer with irreversible

chemical follow-up reaction) mechanisms, described in

Section “Results and discussion”. Then, the peak cur-

rent χp changes in a nonlinear fashion depending on

the kinetic rate constants of the electron transfer or the

follow-up reaction. For the case of the ECmechanism, the

dependence on the dimensionless follow-up rate constant

κ1 = k1/a (with k1 being the first order rate constant,

Figure 2 Example cyclic voltammogram. The forward peak, half

peak, and reverse peak potentials (Eforp , Ep/2 , E
rev
p ), and currents (iforp ,

ip/2 , i
rev
p ), which are used to calculate the manually extracted features

are indicated.

and a = nFv/RT) is shown in Figure 3. In this case calcu-

lation of the diffusion coefficient by the Nicholson-Shain

equation is only possible if the rate constant of the EC

mechanism has a very small value of log(κ1) < −3. If the

exact value of the rate constant is unknown, it might still

be possible to estimate the diffusion coefficient by regres-

sion algorithms such as SVR (Section “Support vector

regression”), or GPR (Section “Gaussian processes”).

Simulations
Voltammetric measurements were simulated by the

CVSIM program included in the EASIEST software pack-

age [48]. Common parameters used in all simulations

are listed in Table 3 while the remaining parameter val-

ues of the electrochemical system are given separately in

Section “Estimation from simulated data” for each ana-

lyzed mechanism. In all simulation runs the CVSIM pro-

gram was configured to use the METAN1 integrator and

the technique of spline collocation [49] with 10 colloca-

tion points.

Fitting of simulation parameters
Fitting simulation parameters by globally minimizing the

sum of squared errors between experimental and sim-

ulated cyclic voltammograms was used to identify the

formal potential E0, the heterogeneous electron transfer

rate constant ks, and D for the Eqr and EqrC mechanisms,

as well as the homogeneous chemical rate constant k1 for

the EqrCmechanism from the experimental cyclic voltam-

mograms. The resulting D were used as approximations

Figure 3 Variation of the dimensionless peak current
√

πχp with
the dimensionless rate constant κ1 for the EC reaction
mechanism. The dimensionless peak current

√
πχp is constant only

for very small (log(κ1) < −3) and very large (log(κ1) > 4) values of

the rate constant. In the former case, the limiting value of 0.4463 is

approached; for an explanation of the black bar on the abscissa, see

text, Section “EC mechanism— dependence on k1”.
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Table 3 Common simulation parameters for all

mechanisms

Parameter and unit Value

Scan rate v (V s−1) 0.2

Potential step size E (mV) 1

Initial concentration c0 (mmol/L) 0.4

Temperature T (°K) 293.15

Electrode area A (cm2) 0.064

Symmetry factor α 0.5

to the real value. To achieve a homogeneous fit across all

experimental voltammograms and avoid large deviations

for small-amplitude voltammograms, the currents of sim-

ulated and experimental voltammograms were scaled to

the interval [−1, 1], prior to computing the objective func-

tion. The minimization of the sum of squared errors mea-

sure was carried out by an interior point algorithm [50]

as implemented in the KNITRO software library [51]. Val-

ues for the diffusion coefficients obtained by this approach

served as a reference for judging the accuracy of coeffi-

cients estimated by SVR and GPR for the experimental

cyclic voltammograms of the organometallic complexes

(Section “Estimations from experimental data”).

Results and discussion
In a first step (Section “Estimation from simulated data”)

the approach based on the Nicholson-Shain equation

and the regression algorithms SVR and GPR were used

to estimate diffusion coefficients for simulated cyclic

voltammograms with known diffusion coefficients. This

allowed us to compare the performance of the different

methods in terms of accuracy of the estimated diffu-

sion coefficients. Furthermore, the simulated data helped

to analyze the dependence of accuracy on the rate con-

stants of the underlying reaction mechanism. In a second

step (Section “Estimations from experimental data”) the

regression algorithms, trained on the simulated data, were

used to estimate D for experimental cyclic voltammo-

grams with unknown diffusion coefficients.

Estimation from simulated data
Cyclic voltammograms were simulated as described

in Section “Simulations” for the following three reac-

tion mechanisms with the respective model parameters

(Table 4):

EC : A
±e
⇋ B

k1→ C E0, k1 (13)

Eqr : A
±e
⇋ B E0, ks, α (14)

EqrC : A
±e
⇋ B

k1→ C E0, ks, α, k1 (15)

Table 4 Simulation parameters for the EC, Eqr, and EqrC

mechanism

EC: A
±e

⇋ B
k1→ C

k1 (s
−1) 0.001, 0.01, 0.1, 1, 10, 100, 1000

D (cm2 s−1) 1·10−6 , 1.5·10−6 , . . ., 5 ·10−5 , 5.05 ·10−5

E0 (V) 0.3

Estart (V) 0

Erev (V) 0.7

Eqr: A
±e

⇋ B

ks (cm s−1) 0.001, 0.005, 0.01, 0.02, . . ., 0.1, 0.5, 1

D (cm2 s−1) as EC

E0 (V) 0.2108

Estart (V) 0

Erev (V) 0.5

EqrC: A
±e

⇋ B
k1→ C

k1 (s
−1) as EC

ks (cm s−1) as Eqr

D (cm2 s−1) as EC

E0 (V) 0.2775

Estart (V) 0

Erev (V) 0.6

For each mechanism one combination of diffusion coef-

ficient and rate constant(s) was used per simulation run

(Table 4). The resulting simulated data set comprised a

total of 700 simulated voltammograms for the EC mecha-

nism, 1400 for the Eqr mechanism, and 2800 for the EqrC

mechanism. This full data set was randomly partitioned

into training and test data sets, each containing 50% of the

simulated cyclic voltammograms. Only the training data

set was used for the function estimation by SVR and GPR,

while the performance of each algorithm was assessed on

the test data set.

First we compared the accuracy of the diffusion coeffi-

cients calculated by the approach based on the Nicholson-

Shain equation, SVR with linear kernel, SVR with RBF

kernel (Table 1), GPR with linear covariance function,

and GPR with squared exponential covariance function

(Table 2) for each of the three reaction mechanisms

(Figure 4). For the simulated data the true value of the

diffusion coefficients is known and can be used as a ref-

erence. Prior to applying the SVR and GPR algorithm we

reduced the dimensionality of the simulated CVs from

1401 (each dimension corresponds to one current value

of the CV) to 5, by projecting the data to the subspace

spanned by the 5 dominant principal components. This

preprocessing by principal component analysis (PCA)

explained 99% of the variance in the EC mechanism data,



Bogdan et al. Journal of Cheminformatics 2014, 6:30 Page 7 of 13

http://www.jcheminf.com/content/6/1/30

Figure 4 Distributions of absolute errors on a logarithmic scale
for estimated diffusion coefficients in cm2 s−1 on the test data
sets for simulations for EC, Eqr, and EqrCmechanisms. Black
horizontal bars indicate the mean of the error distributions. The SVR

and GPR algorithms used PCA preprocessing.

and 99%/98% of the variance in the Eqr/EqrC mechanism

data respectively.

In the Nicholson-Shain Equation 12 the diffusion coef-

ficient is a quadratic function of the forward peak current

iforp . It is therefore not surprising that the nonlinear func-

tions estimated by SVR with RBF kernel and GPR with the

squared exponential covariance function are better suited

to describe the relationship between cyclic voltammo-

gram and diffusion coefficient for all investigated mech-

anisms. There is a significant difference between the

means of the error distributions of SVR with linear/RBF

kernel, and GPR with linear/squared exponential covari-

ance function, as shown in Figure 4. In addition, the

nonlinear functions estimated by SVR and GPR consis-

tently yield lower errors on average than the Nicholson-

Shain equation approach for all the reaction mechanisms.

Please note that the broad range of errors induced by the

Nicholson-Shain equation based approach is not surpris-

ing, due to the non-constant dimensionless peak current

χp in the test voltammograms, although this method

assumes a constant value (Figure 3).

After finding an appropriate kernel (RBF) and covari-

ance function (squared exponential) for the regression

algorithms, we analyzed the influence of different prepro-

cessing methods on the estimated diffusion coefficients

(Figure 5). For the downsampling method the number

of dimensions in each simulated cyclic voltammogram

was reduced by a factor of 20, i.e. retaining only every

Figure 5 Distributions of absolute errors on a logarithmic scale
for diffusion coefficients in cm2 s−1 estimated on the test data
sets for simulated mechanisms EC, Eqr, and EqrC. Black horizontal
bars indicate the mean of the error distributions.

20th sample, while preprocessing by PCA worked as

described above. The manual preprocessing method used

the seven features derived from the potentials and cur-

rents of the cyclic voltammogram shown in Figure 2,

which were chosen as those being most prominent and

Figure 6Mean of the absolute error, on a logarithmic scale, for
diffusion coefficients determined by SVR with RBF kernel, GPR
with squared exponential covariance function, and the
Nicholson-Shain equation approach for the ECmechanism
depending on the rate constant k1. Shading around curves

indicates 95% confidence intervals for the mean. The dotted line

indicates the spacing used for the diffusion coefficients in the

simulated data; PCA preprocessing was used for predicting

coefficients with SVR and GPR.
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Figure 7Mean of the absolute error, on a logarithmic scale, for
diffusion coefficients determined by SVR with RBF kernel, GPR
with squared exponential covariance function and the
Nicholson-Shain equation for the Eqr mechanism depending on
the rate constant ks. Shading around curves represent 95%

confidence intervals for the mean. The dotted line indicates the

spacing used for the diffusion coefficients in the simulated data; PCA

preprocessing was used for predicting coefficients with SVR and GPR.

commonly used for analysis. These manually extracted

features include the forward peak, half peak, and reverse

peak potentials (Eforp , Ep/2, E
rev
p ), the difference between

forward and reverse peak potential Eforp − Erevp , the for-

ward peak current iforp , and the ratio between forward and

reverse peak current iforp /irevp . Note, that this is not the

peak current ratio as defined by Nicholson [52].

As shown in Figure 5 the manual preprocessing method

yields the lowest accuracy of the estimated diffusion coef-

ficients for both regression algorithms and all reaction

mechanisms. This indicates that, albeit being helpful for a

human observer, the manually extracted features discard

too much of the information contained in the full cyclic

voltammogram. The performance differences between

the PCA and downsampling method are small, yet PCA

works best for the EqrC mechanism, while there is no dif-

ference between the preprocessing methods on the EC

and Eqr mechanism in conjunction with the SVR algo-

rithm. For the GPR algorithm PCA is slightly better for

the EC mechanism, while downsampling is better for the

Eqr mechanism. We used PCA preprocessing for both

regression algorithms when estimating diffusion coeffi-

cients from real data, as it allows to judge the quality of

the data reduction depending on the amount of explained

variance.

ECmechanism—dependence on k1

Figure 6 shows the average absolute error between esti-

mated and true diffusion coefficient values depending on

the rate constant k1 for the EC mechanism. The dot-

ted line in Figure 6 marks the spacing used for D in

the simulations and can be considered as the baseline

error of a simple table lookup, e.g. if the diffusion coef-

ficient is determined from a table listing values of D for

different rate constants k1. Confidence intervals for the

average absolute error at the 95% level were computed

by a bootstrap method with 1000 bootstrap samples [53].

While the accuracy of the diffusion coefficients estimated

by the regression algorithms is virtually independent of

the rate constant value, as indicated by the flat error

curves, the accuracy of diffusion coefficients calculated

with the Nicholson-Shain equation degrades with increas-

ing k1 and the error increases above the baseline error for

k1 > 1 s−1.

This behaviour of the results from the Nicholson-

Shain equation based approach is expected due to the

dependence of the dimensionless peak current
√

πχp

on the dimensionless rate constant κ1 described in

Figure 8 Contour plots showing the dependence the average absolute error on the rate constants k1 and ks (EqrCmechanism) on a
logarithmic scale in cm2 s−1. The average absolute error is calculated between estimated and true diffusion coefficients.



Bogdan et al. Journal of Cheminformatics 2014, 6:30 Page 9 of 13

http://www.jcheminf.com/content/6/1/30

Figure 9 Chemical structures of compounds 1, 2a, and 2b for
which data were analyzed in this work.

Section “Nicholson-Shain equation approach”. The black

bars on the abscissa of Figures 3 and 6 mark the region

where the dimensionless peak current does not deviate

significantly from the constant asymptotic value of 0.4463.

It should be noted that the scales on the abscissa in both,

Figures 3 and 6, are equivalent apart from a constant off-

set since, for n = 1, log(κ1) = log(k1/s
−1) − log(a/s−1)

and log(a/s−1) ≈ 0.9. The quality of the diffusion coeffi-

cients calculated by the Nicholson-Shain equation for rate

constants in this range (log(k1/s
−1) ∈ (−∞,−1]) is even

better than the coefficient values estimated by the SVR

algorithmwith RBF kernel (Figure 4). Since the exact value

of the rate constant is often not known in practice, how-

ever, it seems to be better to resort to one of the regres-

sion algorithms for finding the diffusion coefficient in

general.

Eqr mechanism—dependence on ks

For the Eqr mechanism the error incurred by the SVR and

GPR algorithms is constant for electron transfer rate con-

stant values log(ks/cm s−1) > −2.5 (Figure 7). Below this

value one can observe a slight increase in the average abso-

lute error from 10−8 to 10−7.3 for SVR and from 10−11 to

10−10.5 for GPR.

The error of the Nicholson-Shain equation approach,

on the other hand, increases from 10−7 to 10−5 for elec-

tron transfer rates log(ks/cm s−1) in the range [−3,−2]
and thus shows a stronger dependence of diffusion coef-

ficient accuracy on the rate constant. The absolute error

approaches the order of magnitude of the values of D.

Overall, the regression algorithms SVR and GPR yield

a more accurate estimate of the diffusion coefficient

for simulated Eqr voltammograms in comparison to the

Nicholson-Shain equation and to table look-up.

EqrCmechanism—dependence on k1 and ks

In contrast to the EC and Eqr reaction mechanisms,

the EqrC mechanism is governed by two rate constants

k1 and ks (Table 4). For the three tested methods the

error surfaces are rather flat and only slightly increase

for log(ks/cm s−1) between -1.5 and 0 (Figure 8). The

largest difference between two points on the logarithmic

error surface is 0.48 for the Nicholson-Shain equation

approach, 0.36 for SVR, and 0.53 for GPR. Notably, the

global error level for the EqrC mechanism is on the same

scale as the error level for the Eqr and EC mechanism

(Nicholson-Shain: [−5.6,−5.1], SVR: [−7.6,−7.3], GPR:

[−11.4,−10.9]), which indicates that the proposed esti-

mation of diffusion coefficients is extensible to more

complex reaction mechanisms.

Estimations from experimental data
The estimation of diffusion coefficients was applied to

three experimental data sets, each containing 80 experi-

mental cyclic voltammograms. The first data set consisted

of measurements for iridium complex 1 [22], the second

and third of those for ruthenium complexes 2a and 2b

[54,55] (see Figure 9 and Section “Experimental”). The

reaction mechanisms (EqrC for complex 1, and Eqr for

complexes 2a and 2b) were established earlier [22,54].

Table 5 Parameter values yielding the best fit between

simulated and experimental cyclic voltammograms for the

threemetal complexes

Parameter 1 2a 2b

E0 (V) 0.2767 0.2084 0.1938

ks (cm s−1) 0.0232 0.0199 0.0118

k1 (s
−1) 0.1473

D (cm2 s−1) 1.5846e-5 1.0535e-5 1.0824e-5
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Figure 10 Experimental cyclic voltammograms for complexes 1, 2a, 2b (from left to right), indicated by solid lines, for a scan rate of 0.5 V
s−1 and initial concentrations of 0.2, 0.4, 0.6, 0.8 mM. Electroactive area: A = 0.064 cm2 ; potential values vs. a Ag/Ag+ reference electrode

[22,54]; the simulated cyclic voltammograms which are the result of the parameter fitting process are indicated by dashed lines.

Since the true value of the diffusion coefficient is

unknown for each of the experimental data sets, we fit-

ted simulated cyclic voltammograms to the experimental

signals by optimizing the formal potential E0, the rate con-

stants k1, ks, and the diffusion coefficientD as described in

Section “Fitting of simulation parameters”. The fitted dif-

fusion coefficients serve as a reference point for compar-

ing the values calculated by the regression algorithms and

the Nicholson-Shain equation approach. Table 5 lists the

parameter values that yield the best fit between simulated

and experimental cyclic voltammograms and Figure 10

gives an impression of the fit quality. The best fit was

obtained for the Eqr reaction of complex 2a with an aver-

age absolute error between simulated and experimental

signals of 0.75 μA, followed by the Eqr reaction of 2b (1.09

μA), and the EqrC reaction of 1 (3.23 μA).

Based on the results with simulated data (Section

“Estimation from simulated data”) we used SVR with

RBF kernel and GPR with squared exponential covari-

ance function in conjunction with the PCA preprocessing

method to estimate diffusion coefficients for the experi-

mental data sets. For complex 1, the training data con-

sisted of all 2800 simulated cyclic voltammograms created

for the EqrC mechanism (Section “EqrC mechanism —

dependence on k1 and ks”), while 1200 simulated cyclic

voltammograms for the Eqr mechanism served as training

Table 6 Diffusion coefficients in 10−5 cm2 s−1 determined

by different methods for the experimental cyclic

voltammograms; bold values: best matches with respect

to parameter fitting results

1 2a 2b

Parameter-Fit 1.58 1.05 1.08

Nicholson-Shain 1.07 0.84 0.82

SVR 2.32 1.07 1.09

GPR 1.54 1.10 1.13

data for 2a/2b. In order to have the voltammograms on a

comparable scale the current was normalized by multiply-

ing the signal with the factor (c0
√
v)−1.

The trained regression algorithms and the approach

based on the Nicholson-Shain equation were then used

to calculate the diffusion coefficient for each of the 80

experimental voltammetric curves. Since the diffusion

coefficient of the electrochemically active species should

be constant across measurements with different scan rates

and initial concentrations, we averaged the 80 calculated

coefficients to arrive at the final estimate. Table 6 lists the

diffusion coefficients determined by parameter fitting, the

Nicholson-Shain equation approach, and the regression

algorithms.

For 1 the diffusion coefficient estimated by GPR is the

best match with respect to the fitted coefficient value.

Although there is only a small difference in the esti-

mates of SVR and GPR, the best diffusion coefficient

estimates for 2a/2b are provided by SVR. In contrast to

the regression algorithms, the Nicholson-Shain equation

consistently underestimates the diffusion coefficient value

on all data sets.

To further assess the quality of the estimated values we

repeated the simulation of cyclic voltammograms with

the estimated diffusion coefficients and calculated the

discrepancy between simulated and experimental voltam-

metric signals (Table 7). In comparison to the parameter

fitting method the average absolute error increases only

Table 7 Average absolute error of currents inµA between

simulated and experimental cyclic voltammograms

1 2a 2b

Parameter-Fit 3.23 0.75 1.09

Nicholson-Shain 3.74 1.41 1.74

SVR 4.66 0.76 1.10

GPR 3.19 0.803 1.14
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Figure 11 CPU time in minutes required by the parameter fitting method, and the regression algorithms for the three organometallic
complexes 1, 2a, and 2b. Hatched bars indicate the portion of time required by the SVR and GPR algorithm without the simulations. All

measurements were made on an INTEL® XEON® 5150 processor with 2.66 GHz and 8 GB of main memory.

slightly for the coefficients estimated by SVR for 2a/2b,

and GPR on all organometallic complexes. The diffusion

coefficients obtained by the Nicholson-Shain equation for

1, 2a, and 2b, and by the SVR algorithm for 1 are of

inferior quality.

The parameter fitting approach usually yields reliable

estimates of the diffusion coefficients in practice, but

at the expense of long computational times (Figure 11).

In contrast, the creation of simulated data followed by

regression algorithm training and estimation of diffusion

coefficients only takes a small percentage of the parameter

fitting time (3–20%). If simulated data is already available,

this percentage is further reduced to 0.01-0.06%, which is

beneficial if large amounts of experimental data need to

be analyzed.

Experimental
Voltammetric signals in each data set in Section

“Estimations from experimental data” were acquired twice

for ten scan rates of 0.02, 0.05, 0.1, 0.2, 0.5, 1.003,

2.007, 5.120, 10.240, and 20.480 V s−1, and four differ-

ent initial concentrations c0 of 0.2, 0.4, 0.6, 0.8 mmol

L−1 in a dichloromethane electrolyte with 0.1 M tetra-n-

butylammoniumhexafluorophosphate as supporting elec-

trolyte at a Pt electrode (for further experimental details,

see [22,54]). The scanning potential varied between 0 and

0.6 V for 1, and between 0 and 0.5 V for 2a/2b with an

increment of 1 mV in each case.

Conclusion
The results presented in this work show the feasibility of

estimating diffusion coefficients from experimental cyclic

voltammograms by regression algorithms trained on sim-

ulated data. This approach is generic in the sense that it

is not restricted to a particular reaction mechanism and

range of rate constants, as demonstrated by the results

obtained on simulated data for the EC, Eqr, and EqrC

mechanisms. On simulated data the accuracy of diffusion

coefficients estimated by SVR with RBF kernel and GPR

with squared exponential covariance function is higher as

compared to the Nicholson-Shain equation approach over

a wide range of rate constants. The best preprocessing

method for estimating D with the regression algorithms

turned out to be the principal component projection of

the cyclic voltammograms. Projecting the data to the

subspace spanned by the first five principal components

apparently retains important shape information that is

discarded by the manual extraction of prominent peak

features. This indicates that the commonly used evalu-

ation of the limited set of human recognizable features

related to voltammetric peaks might not be optimal for

data evaluation in all cases. For the three experimental

data sets, estimation with GPR yielded diffusion coeffi-

cients that closely matched the values determined by the

classical parameter fitting approach, whereas SVR showed

comparable performance only for 2a/2b. These results

indicate that GPR with a squared exponential covariance

function is better suited than SVR to reliably determine

diffusion coefficients from experimental data. Further-

more the GPR based determination of the diffusion coef-

ficient requires less computational time in contrast to the

parameter fitting approach.
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