
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Estimation of Direct Causal Effects

Maya L. Petersen∗ Mark J. van der Laan†

∗Division of Biostatistics, School of Public Health, University of California, Berkeley, may-
aliv@berkeley.edu
†Division of Biostatistics, School of Public Health, University of California, Berkeley,

laan@berkeley.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper190

Copyright c©2005 by the authors.



Estimation of Direct Causal Effects

Maya L. Petersen and Mark J. van der Laan

Abstract

Many common problems in epidemiologic and clinical research involve estimat-
ing the effect of an exposure on an outcome while blocking the exposure’s effect
on an intermediate variable. Effects of this kind are termed direct effects. Estima-
tion of direct effects arises frequently in research aimed at understanding mecha-
nistic pathways by which an exposure acts to cause or prevent disease, as well as
in many other settings. Although multivariable regression is commonly used to
estimate direct effects, this approach requires assumptions beyond those required
for the estimation of total causal effects. In addition, multivariable regression esti-
mates a particular type of direct effect, the effect of an exposure on outcome fixing
the intermediate at a specified level. Using the counterfactual framework, we dis-
tinguish this definition of a direct effect (Type 1 direct effect) from an alternative
definition, in which the effect of the exposure on the intermediate is blocked, but
the intermediate is otherwise allowed to vary as it would in the absence of expo-
sure (Type 2 direct effect). When the intermediate and exposure interact to affect
the outcome these two types of direct effects address distinct research questions.
Relying on examples, we illustrate the difference between Type 1 and Type 2 di-
rect effects. We propose an estimation approach for Type 2 direct effects that can
be implemented using standard statistical software and illustrate its implementa-
tion using a numerical example. We also review the assumptions underlying our
approach, which are less restrictive than those proposed by previous authors.



1 Introduction.

Many research questions in epidemiology are concerned with understanding
the causal pathways by which an exposure or treatment affects an outcome.
Consider the following examples:

• Researchers often aim to understand the biological mechanisms by
which a treatment slows disease progression or an exposure acts to
cause or prevent disease.

Example 1: In HIV-infected individuals, antiretroviral therapy pre-
serves CD4 T-cell counts. Are these beneficial effects due entirely to
reductions in plasma HIV RNA level (viral load)?

• Individuals and their physicians often alter their treatment decisions
as a result of exposures. In such cases, researchers may be interested
in estimating the causal effects of an exposure if the exposure’s effect
on treatment decisions were blocked.

Example 2: Air pollution regulations rely, in part, on estimates of
the effect of exposure to pollutant levels on lung function in children.
However, high pollutant levels may cause children to increase their use
of rescue medication. How would pollutant levels affect lung function if
medication use were to remain at the same frequency in the population
that it would have had in the absence of elevated pollutants?

• Surrogate markers of an outcome of interest are frequently used when
the outcome itself is rare or expensive to measure. The quality of a
surrogate marker can be assessed by estimating the extent to which
the effect of an exposure on an outcome is captured by the exposure’s
effects on the surrogate.

Example 3: In studying the effect of hormone therapy on risk of car-
diovascular events, C-reactive protein has been suggested as a promis-
ing surrogate outcome.1 To what extent does therapy affect the true
outcome of interest, risk of cardiovascular event, via a pathway that
does not involve C-reactive protein?

The above are just a few examples of a common causal structure underly-
ing epidemiological problems, represented in Directed Acyclic Graph (DAG)
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form in Figure 1.2 In the applications considered in this article, the exposure
of interest acts on the outcome via two pathways, one in which the exposure
affects an intermediate variable which in turn affects the outcome, and one in
which the effects of the exposure do not occur via changes in the intermedi-
ate. In the above examples, the goal is to estimate the effect of the exposure
on the outcome if its effect on the intermediate variable were blocked. Effects
of this kind are referred to as direct effects.

Epidemiologists and others have generally used standard analytic ap-
proaches, such as multivariable regression, to estimate direct effects. In
the single time-point case such approaches may provide a reasonable test
of the null hypothesis that no direct effect is present; however, the validity of
this approach relies on several assumptions which, while raised previously,3−6

may not be widely appreciated. In cases where the necessary assumptions
are met, multivariable regression provides an estimate of the direct effect of
an exposure, at a fixed level of the intermediate variable. Alternatively, a
direct effect can be defined as the effect of an exposure on an outcome, block-
ing only the effect of the exposure on the intermediate.3 Note that, in the
former definition, all causal effects on the intermediate are blocked, while in
the latter case, only the effect of the exposure on the intermediate is blocked
(Figures 2, 3).

The two definitions of a direct effect address different research questions,
particularly when the effect of the exposure of interest is modified by the
level of the intermediate variable. In this paper we use the examples above to
illustrate the analytic issues surrounding the estimation and interpretation of
direct effects in the single time-point case. We introduce a simple method for
the estimation of the direct effect of an exposure on an outcome, blocking only
the effect of the exposure on the intermediate variable, and discuss when such
an approach might be preferable to standard multivariable regression. We
also discuss the assumptions necessary for our estimation approach, which are
less restrictive than the assumptions considered in the current literature.3,4,7

2 Unmeasured confounding of direct effects.

The standard approach to the estimation of direct effects in epidemiology
involves multivariable regression of the outcome on the exposure of inter-
est, confounders, and the causal intermediate. Even in settings where the
exposure occurs at a single time-point, this approach requires assumptions
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beyond those needed to estimate total causal effects. As in any attempt to
estimate a causal effect using multivariable regression, one must assume that
there is no residual confounding of the effect of the exposure on the outcome
beyond the covariates included in the model. Represented using the DAG
framework, the standard assumption of no unmeasured confounders requires
the absence of any unmeasured covariate that is a cause of both the exposure
and outcome (U1 in Figure 4).

However, consistent estimation of direct effects also requires the addi-
tional assumption of no residual confounding of the effect of the intermedi-
ate on the outcome.3,5,6 In other words, one must assume that, within sub-
populations defined by regression covariates and exposure status, there are
no unmeasured variables that predict both the level of the intermediate vari-
able and, independently, predict the outcome. In Figure 4, this assumption
corresponds with the absence of any unmeasured covariate that is a cause of
both the intermediate variable and the outcome (U2 in Figure 4).

3 Confounding by a causal intermediate.

When a direct effect estimate is biased as a result of confounding of the effect
of the intermediate variable, simply including the additional confounders as
covariates in a multivariable regression model may be sufficient to remove
the bias (provided, of course, that the additional confounders are measured).
However, as discussed by Robins and Greenland, in the case where a con-
founder of the effect of the intermediate variable is itself affected by the
exposure of interest, traditional multivariable methods will provide a biased
estimate of the direct effect.3 A confounder of this type is illustrated in Figure
5; a variable (”C”) affects both the intermediate variable and the outcome of
interest, and so acts as a confounder of the effect of the intermediate variable;
in addition, the confounder ”C” is itself a causal intermediate between the
exposure and intermediate variable.

The analytic dilemma posed by confounding of a direct effect in a single
time-point study by a variable that is itself affected by the exposure of inter-
est is similar to the problem of time-dependent confounding that frequently
occurs when estimating total effects in a longitudinal data setting.8 We refer
the interested reader to Robins and Greenland for a simulated data example
of the bias that can result from traditional multivariable regression in this
setting.3 Here, we provide intuitive understanding of confounding of direct
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effects by a causal intermediate by considering Example 1.
In this example, the research aim is to investigate whether protease in-

hibitor (PI)- based antiretroviral therapy for HIV-infected patients has a
direct effect on CD4 T-cells that is not mediated by changes in patients’ vi-
ral loads. We elaborate the causal structure presented in Figure 1 to include
the presence of viral mutations associated with antiretroviral resistance (Fig-
ure 6). Specifically, PI-based treatment results in resistance mutations which
lower viral fitness.9 As a result, these mutations may reduce viral load.10 In
addition, PI resistance mutations may also act to preserve CD4 T-cells by
a pathway unrelated to changes in viral load.11,12 As is clear from Figure 4,
resistance mutations are a confounder of the effect of viral load on CD4 T-cell
count; thus, failure to include mutations in a multivariable regression model
will result in residual confounding and hence a biased estimate of the direct
effect, as discussed in Section 2. However, including resistance mutations in
the multivariable model will also result in a biased estimate of the direct ef-
fect by removing part of the causal effect of interest; by including resistance
in the model, we effectively ”set” or fix its level, and as a result lose any
component of the direct effect of treatment that is mediated by changes in
resistance mutations.

In general, if a variable exists that affects both the intermediate and the
outcome, the effect of the intermediate on the outcome will be confounded
unless this variable is included in the multivariable regression model. How-
ever, if this confounding variable is itself affected by the exposure of interest,
including it in the multivariable regression model can also result in a biased
estimate of effect.

4 Interpretation of multivariable regression.

In the single time-point setting, under the assumptions of no unmeasured
confounding at either the level of the exposure or the intermediate variable,
and given that no confounder of the effect of the intermediate variable is itself
a causal intermediate, then standard multivariable regression of outcome on
exposure, intermediate, and all confounders provides a valid test of the null
hypothesis of ”no direct effect” (by testing whether the coefficients on all
terms containing the exposure of interest in the multivariable model equal
zero). Multivariable regression in this setting also provides an estimate of the
effect of an exposure on an outcome, holding the level of the intermediate

4

http://biostats.bepress.com/ucbbiostat/paper190



variable fixed at a given level. Depending on the research question, the
direct effect of an exposure at a fixed level of the intermediate may or may
not be the quantity of interest. Example 2 illustrates a setting in which
the standard multivariable regression approach may not estimate the direct
effect of interest.

4.1 Example 2: The direct effect of air pollution on
childhood lung function.

In Example 2, the goal is to quantify the impact that air pollution has on
children’s lung function in a given population. Because air pollution can
cause children to increase their use of rescue medication, which in turn can
improve lung function and obscure the impact of air pollution, the effect of
interest is the change in lung function that would result from an increase in
air pollution if the use of rescue medication did not change.

Suppose that multivariable regression of lung function (Y) on air pollution
level (A) and use of rescue medication (Z) yields the following fit. Assume
no confounders (Figure 1).

E[Y |A, Z] = 50 − 15A + 3AZ + 12Z (1)

Given that Model (1) is correctly specified, the change in expected lung
function resulting from an incremental increase in air pollution at a fixed
level of rescue medication use can then be estimated as

E[Y |A = a + 1, Z] − E[Y |A = a, Z] = −15 + 3Z (2)

Such a model fit suggests that the direct effect of air pollution depends
on the frequency of rescue medication use in the population; if the entire
population were to use rescue medication (Z = 1), air pollution would de-
crease lung function less than if the entire population did not use rescue
medication (Z = 0). However, while this may be an interesting finding, it
does not answer the research question of interest: How would an increase
in air pollution affect lung function in the population if rescue medication
use remained the same? In addition, it may not be logical to think of fixing
the rescue medication of the entire population at a given level. For example,
there are likely to be children in the population with underlying respiratory
diseases who will always require rescue medication, regardless of air pollution
levels; the direct effect of air pollution if these children (along with all others

5

Hosted by The Berkeley Electronic Press



in the population) did not use medication is in this case not a meaningful
quantity.

5 A formal definition of direct effects.

Consider two alternative ideal experiments a researcher might conduct to
estimate a direct effect: 1) the researcher might measure the effect of an
exposure while somehow holding the intermediate variable at a fixed level
(Figure 2); or 2) the researcher might measure the effect of an exposure,
blocking the exposure’s effect on the intermediate variable, but allowing the
intermediate to vary between individuals (Figure 3). Under assumptions,
standard multivariable regression can be used to reproduce the results of
experiment 1; however, when experiment 2 answers the scientific question of
interest, standard multivariable regression is often insufficient. In order to
clarify the difference between the two types of direct effects, we define them
using the counterfactual framework for causal inference.

Under the counterfactual framework, the causal effect of an exposure on
an individual is defined as the difference in outcome if the same individual
were exposed vs. unexposed. These outcomes are termed counterfactual be-
cause only one is observed for a given individual. Typically, a counterfactual
outcome under a given exposure A = a is denoted Ya. For example, for a
binary exposure, Y0 would denote an individual’s outcome in the absence of
the exposure and Y1 the same individual’s outcome in its presence.

The counterfactual framework can also be used to define both types of
direct causal effects. In experiment 1, the direct effect of an exposure on
an individual is defined as the difference in counterfactual outcome if the
individual were exposed and her intermediate variable fixed at level Z = z
vs. the counterfactual outcome if she were unexposed and her intermediate
fixed at the same level Z = z. Using standard notation, the direct effect
of an exposure a on an individual can thus be written Yaz − Y0z, where Yaz

denotes an individual’s counterfactual outcome controlling both exposure
and intermediate variable. We refer to this definition as an individual Type
1 direct effect.

Alternatively, in experiment 2 the direct effect of an exposure on an in-
dividual is defined as the difference in counterfactual outcome if the indi-
vidual were unexposed vs. the counterfactual outcome if she were exposed,
but her intermediate variable remained at its counterfactual level under no
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exposure.3,4,7 We refer to this definition as a Type 2 direct effect. To formally
define a Type 2 direct effect requires considering an additional counterfac-
tual, the counterfactual level of an individual’s intermediate variable at a
given level of exposure A = a, denoted Za. The Type 2 direct effect of an
exposure a on an individual can be written YaZ0 −Y0,Z0 , where Z0 is an indi-
vidual’s counterfactual level of the intermediate in the absence of exposure.

Under both definitions, the population direct effect is the mean (or some
other parameter) of the population distribution of the individual direct ef-
fects.

Type 1 Direct Effect: E(Yaz − Y0z) (3)

Type 2 Direct Effect: E(YaZ0 − Y0,Z0) (4)

To illustrate, in Example 2 the Type 1 direct effect is the change in the
expected lung function if the entire population were exposed to an incremen-
tal increase in air pollution and every member of the population were forced
to use the same fixed level of rescue medication. The Type 2 direct effect
also estimates the change in expected lung function if the entire population
were exposed to an incremental increase in air pollution, but allows every
individual in the population to continue to use rescue medication as he did
at the reference level of air pollution.

6 Estimation of Type 2 direct effects.

In the single time-point case (under assumption 14, see below), the Type 2
direct effect is identified by the following formula:

DE(a) = EW

∑
z

{E(Yaz | W ) − E(Y0z | W )}Pr(Z0 = z|W ). (5)

In the case of a confounder that is affected by the exposure (Section 3),
(5) still permits consistent estimation of Type 2 direct effects by assuming
a marginal structural model and employing a corresponding estimation pro-
cedure (such as inverse probability weighting or g-computation) to estimate
the quantity E(Yaz|W ) − E(Y0z|W ).3,13 In the absence of a confounder that
is also a causal intermediate, and under the assumptions of no unmeasured
confounding, the Type 2 direct effect of an exposure can be estimated using
standard statistical methods.
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Estimation of the Type 2 direct effect begins with standard multivariable
regression of outcome on intermediate, exposure and confounders. It then
involves fitting an additional multivariable model regressing the intermediate
on exposure and confounders. This latter model is used to predict each
individual’s expected level of the intermediate variable in the absence of
exposure, based on that individual’s covariates. The marginal direct effect
of the exposure in the study population is estimated with the level of the
intermediate fixed at its expected level in the absence of exposure.

We demonstrate how to implement this estimate using a numerical ex-
ample based on the estimation of the direct effect of PI-based therapy on
CD4 T-cell count (Example 1). (For a formal presentation of the approach,
please see the online appendix). The data consist of an outcome, CD4 T-
cell count, an intermediate, viral load, an exposure, PI-based therapy, and a
confounder, an indicator of treatment with mono/dual antiretroviral therapy
prior to baseline (Figure 7).

Implementation of the direct effect estimate involves the following steps:

1. Fit a multivariable regression of outcome on confounders, exposure
and intermediate variable. For example, we fit the following linear
regression model of CD4 T-cell count (Y) on viral load (Z), treatment
history (W), and PI-based therapy (A).

Ê(Y |A, W, Z) = 450+50A−20AW +10AZ +100AZW −50W −100Z
(6)

2. Estimate the direct effect of the exposure (given W ) at a fixed level of
the intermediate variable (Type 1 direct effect): E(Yaz − Y0z|W ). In
our example,

Ê(Yaz − Y0z|W ) = Ê(Y |A = 1, W, Z = z) − Ê(Y |A = 0, W, Z = z) (7)

= 50 − 20W + 10z + 10zW

Equation (7) suggests that the direct effect of PI-based therapy depends
on both the patient’s viral load and treatment history.

3. Estimate an individual’s Type 2 direct effect by replacing z in 7 with
an estimate of the level of the intermediate the individual would have
had in the absence of exposure (Z0), and estimate the population direct
effect as the mean of the individual direct effects.

Ê(Y1Z0 − Y0Z0) = 50 − 20Ê(W ) + 10Ê(Z0) + 10Ê(Z0 ∗ W ) (8)
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4. Estimate E(Z0) by fitting a multivariable regression of the intermediate
on exposure and confounders. In our example, we regress viral load on
treatment history and antiretroviral regimen.

Ê(Z|A, W ) = 1.7 + 1.25W + 0.2A + 0.2AW (9)

The average of E(Z|A = 0, W ) across the population provides an es-
timate of Ê(Z0). In our example, 33% of the study population have a
history of mono/dual therapy (W = 1).

Ê(W ) = Pr(W = 1) = 0.33 (10)

Thus, the average predicted viral load in the study population under
non-PI therapy is,

Ê(Z0) = Ê(Ê(Z|A = 0, W ))

= Ê(Z|A = 0, W = 1)P̂ r(W = 1) + Ê(Z|A = 0, W = 0)P̂ r(W = 0)

= 2.95 ∗ 0.33 + 1.7 ∗ 0.67

= 2.1

5. Similarly, the average of E(Z|A = 0, W ) ∗ W across the population
provides an estimate of E(Z0 ∗ W ). In our example,

Ê(Z0 ∗ W ) = Ê(Ê(Z|A = 0, W ) ∗ W )

= Ê(Z|A = 0, W = 1)(1)P̂ r(W = 1) + Ê(Z|A = 0, W = 0)(0)P̂ r(W = 0)

= 2.95 ∗ 0.33

= 0.97

6. Substitute these values into model (8) to get an estimate of the Type
2 direct effect in the population. In our example, the direct effect of
PI-based therapy on CD4 T cell count is estimated to be:

D̂E = Ê(Y1Z0 − Y0Z0)

= 50 − 20Ê(W ) + 10Ê(Z0) + 10Ê(Z0 ∗ W )

= 50 − 20 ∗ 0.33 + 10 ∗ 2.1 + 10 ∗ 0.97

= 74.1

We estimate that treatment of the study population with PI-based
therapy vs. non-PI-based therapy would result in a 74 cell increase in
average CD4 T-cells if the effect of PI-based therapy on viral load were
blocked.

9
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7 Assumptions.

Estimation of direct effects in the manner presented requires several assump-
tions. First, in addition to the assumptions of no unmeasured confounders
of either the effect of the exposure on the outcome or the effect of the in-
termediate on the outcome (U1 and U2 in Figure 4), we assume that there
are no unmeasured confounders of the effect of the exposure on the interme-
diate variable Z (U3 in Figure 8). This assumption is necessary to ensure
that regressing Z on the exposure and covariates (step 4) and evaluating the
resulting model with exposure set equal to its reference level is providing a
consistent estimate of the counterfactual level of the intermediate variable
at the reference level of exposure. For example, if, as is illustrated in Figure
9, poor ability to adhere to prescribed medications results in both a higher
viral load and an increased probability of assignment to a PI-based regimen,
failure to include this variable when regressing viral load on regimen and
treatment history will result in an underestimate of the counterfactual vi-
ral load that would have been observed if the entire study population had
received a non-PI-based therapy.

Formally, our assumptions regarding no unmeasured confounders can be
summarized as follows (where X⊥Y means X is independent of Y):

A⊥Yaz|W (11)

Z⊥Yaz|A, W (12)

A⊥Za|W (13)

We further assume that, within subgroups defined by covariates included
in our multivariable model, the level of the intermediate variable in the ab-
sence of exposure doesn’t tell us anything about the expected magnitude of
the exposure’s effect at a fixed level of the intermediate variable. We refer to
this assumption as the direct effect assumption, which can be stated formally
as:

E(Yaz − Y0z|Z0 = z, W ) = E(Yaz − Y0z|W ) (14)

In our example, the direct effect assumption states that, within strata defined
by treatment history, knowing what an individual’s viral load would have
been on non-PI-based treatment does not provide any additional information
about the effect of PI-based treatment on the individual’s expected CD4 T-
cell count at a fixed viral load.
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Previous work discussing estimation of direct effects suggested that the
assumptions necessary to make these effects identifiable were more restrictive
than those presented here,3,4,7 perhaps explaining in part why methodology
for the estimation of direct effects has not been pursued further in the epi-
demiological literature. Robins and Greenland proposed an alternative to
our direct effect assumption (14),3 which states that the intermediate and
the exposure of interest do not interact to affect outcome at the individual
level.

Yaz − Y0z is a random function B(a) that does not depend on z. (15)

Such an assumption is both very restrictive and unrealistic in many bio-
logical settings. The assumption can be tested by examining the data; in our
example, the presence of interactions between viral load (Z) and antiretrovi-
ral therapy (A) in model (6) suggests that the assumption is violated. Note
that if the ’No Interaction’ assumption were to hold, estimation of both Type
1 and Type 2 direct effects would simply require taking the average of model
(7) (which would now not include z) across the population.

Pearl proposed a third alternative identifying assumption which states
that,7 within subgroups defined by baseline covariates included in the model,
an individual’s counterfactual outcome does not depend on the level of the
intermediate in the absence of exposure:

Ya,z⊥Z0|W (16)

An alternative way of formulating this assumption is that, within subgroups
defined by baseline covariates, individual counterfactual outcome is a de-
terministic function of treatment, the level of the intermediate, and an ex-
ogenous error (conditionally independent of Z0 given W ), but not of the
counterfactual outcome under no treatment. In contrast, under our assump-
tion, at a fixed level of z, an individual’s counterfactual outcome under a
given treatment, Yaz, can depend on the individual’s counterfactual outcome
under no treatment, Y0z. Generally, Y0z explains a lot of the variation in
Yaz, suggesting that our assumption is more reasonable. In addition, it can
be shown that 14 holds in essentially all cases where 18 holds, and in many
cases where it does not.

We refer interested readers to the appendix for an in-depth comparison
of our assumptions with the assumptions of previous authors. In conclusion,
we note that, even when our direct effect assumption (14) fails to hold,
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the method we present still estimates an interesting causal parameter: a
summary of the direct effect of the exposure in the population, with the
intermediate fixed at its mean counterfactual level in the absence of exposure.
As a result, we feel that the identifiability assumption should not present a
barrier to researchers interested in the estimation of direct effects.

8 Discussion.

The estimation of direct effects is a common goal in epidemiologic research.
In the estimation of direct effects, as in all analyses, the choice of method
must be driven by the research question. In settings where the aim is to
estimate the causal effect of an exposure while holding the level of the in-
termediate variable at a fixed level defined by the researcher (Type 1 direct
effect), multivariable regression, under assumptions, may indeed provide an
estimate of the effect of interest. However, if the research goal is to estimate
the effect of an exposure on an outcome if the exposure’s effect on the in-
termediate were blocked, allowing the intermediate to follow the course it
would have taken in the absence of exposure (Type 2 direct effect), multi-
variable regression alone may be insufficient. In the case where exposure and
intermediate do not interact at the individual level to affect outcome, Type
1 and Type 2 direct effects are equivalent; however, such an assumption is
not required to ensure their identifiability.

We have presented a straightforward method for estimating Type 2 di-
rect effects and illustrated it in a simple single time-point setting where
exposure and intermediate interact to cause disease. Our method involves
fitting a multivariable regression of outcome on exposure, confounders, and
intermediate, and an additional multivariable regression of the intermediate
on confounders and exposure. In settings where a confounder is affected
by the exposure, as well as in longitudinal settings, the same general ap-
proach can be used, but methods other than multivariable regression (such
as inverse probability weighting or g-computation) must be used to estimate
E(Yaz − Y0z|W ). We hope that researchers will be encouraged to estimate
direct effects of interest and, where appropriate, to continue their analyses
beyond fitting multivariable regression models of the outcome.

12
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9 Appendix.

9.1 Comparison with identifying assumptions in prior
literature

We propose the following novel assumption for identification of Type 2 direct
causal effects:

E[Yaz − Y0z|Z0, W ] = E[Yaz − Y0z|W ] for all a and z, (17)

Comparison with Pearl: Pearl shows (using the structural equation
framework) that the Type 2 direct effect is identifiable,7 if

Yaz ⊥ Z0 | W for all z, (18)

It is of interest to compare our assumption (17) with (18).
An alternative way of formulating this assumption (18) is that there exists

a function m such that
Ya,z = m(a, z, W, e), (19)

where e is a random variable which is conditionally independent of Z0, given
W . Stated in words, Pearl assumes that,7 within subgroups defined by base-
line covariates, individual counterfactual outcome is a deterministic function
of treatment, the level of the intermediate variable, and an exogenous error,
but not of the counterfactual outcome under the reference treatment. In
contrast, under our assumption, at a fixed level of z, an individual’s counter-
factual outcome under a given treatment, Yaz, can depend on the individual’s
counterfactual outcome under the reference treatment, Y0z. Generally, Y0z

explains a lot of the variation in Yaz, suggesting that our assumption is more
reasonable. For example, subjects can have different CD4 T-cell counts un-
der non-PI-based therapy (Y0z), which are themselves extremely predictive of
the counterfactual CD4 T-cell count Yaz under PI-based therapy, and are not
explained by baseline covariates W . In other words, within subpopulations
defined by baseline covariates W and a fixed viral load z, an individual’s CD4
T-cell count on PI-based therapy is likely to depend on what that individ-
ual’s CD4 T-cell count would have been under non-PI-based therapy. In this
case the assumption of Pearl does not hold. However, it seems less unrea-
sonable to assume that, within subpopulations defined by baseline covariates
and fixed viral load z, the average magnitude of the direct effect of PI-based
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antiretroviral therapy does not differ between individuals with different CD4
T-cell counts under non-PI-based therapy.

Suppose that assumption (18) holds at two treatment values a and 0.
In that case, we have that both counterfactual outcomes Yaz and Y0z are
conditionally independent of Z0, given W . One would now expect that the
difference Yaz − Y0z is also conditionally independent of Z0, given W , and
thus for our assumption (17) to hold. (In fact, mathematically it follows
that Yaz − Y0z is uncorrelated with any real valued function of Z0, given
W .) This suggests that in most examples in which (18) holds, one will also
have that our assumption holds. On the other hand, it is easy to construct
examples in which our assumption holds, while (18) fails to hold.13 We refer
to Robins for further discussion of the limitations of assumption (18).4

Comparison with Robins:
Robins and Greenland propose an alternative identifying assumption,3

which they call the No-Interaction Assumption:

Yaz − Y0z is a random function B(a) that does not depend on z. (20)

In words, this assumption states that the individual direct effect at a fixed
level z does not depend on the level at which z is fixed, or in other words,
that the intermediate variable does not interact with the exposure of interest
in its effects on outcome.

A detailed mechanistic discussion of this assumption is given in Robins
and Greenland.3 The “No-interaction Assumption” implies, in particular,
that EYaz = m1(a) + m2(z) for some functions m1 and m2, or in other
words, that the marginal causal effects of the treatment and the intermediate
variable on outcome are additive. In most applications one expects these
interactions to be present, and, the interactions themselves often correspond
with interesting statistical hypotheses. Consequently, the “No-Interaction
Assumption” is very restrictive as well.

Applied to our HIV example, Robins’ assumption implies that the indi-
vidual direct effect of PI-based antiretroviral treatment at a controlled viral
load does not depend on the level at which viral load is controlled. In other
words, the direct effect of PI-based treatment on CD4 T-cell count would be
the same if viral load were controlled at a high level (the study population
was virologically failing) or controlled at a low level (the study population
was virologically succeeding). This assumption is unlikely to be met, and is
an interesting research question in itself. In particular, PI-based regimens
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are hypothesized to act directly on CD4 T-cells by inhibiting their apoptosis
(programmed cell death).12 Higher levels of ongoing CD4 T-cell apoptosis
may be induced by higher viral loads. Thus, we would expect that, if PI-
based therapy has an anti-apoptotic direct effect on CD4 T-cell count (i.e.,
not mediated by changes in viral load), such an effect might be larger among
individuals with higher viral loads and higher levels of apoptosis. In such a
case, Robins’ assumption does not hold.

9.2 Identifiability result

Under the direct effect assumption (17), we have the following identifiability
result, presented as a theorem:

Theorem 1 Let DE(a) = E(YaZ0 − Y0Z0). Assume that (17) holds. Then,

DE(a) = D̃E(a)

≡ EW

∫
{E(Yaz | W ) − E(Y0z | W )} dFZ0|W (z). (21)

We provide here the formal identifiability result for our theorem (21)
based on our assumption (17),

DE = E(YaZ0 − Y0Z0)

DE = EW (E(YaZ0 − Y0Z0 | W ))

DE = EW (EZ0|W (E((YaZ0 − Y0Z0 | Z0, W )))

DE = EW

∫
Z

E(Yaz − Y0z | Z0 = z, W )dFZ0|W (z)

DE = EW

∫
Z

E(Yaz − Y0z|W )dFZ0|W (z) by (17)

DE ≡ D̃E,

where the right-hand side is identifiable from the observed data distribu-
tion.

The identifiability result of Pearl can be shown in precisely the same
manner. Clearly, the assumption of Pearl (18) also implies DE = D̃E. Thus
Pearl’s identifiability mapping is the same as ours (21), but it was based on
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a different assumption. Similarly, under the assumption of Robins (20) we
have YaZ0 − Y0Z0 = Yaz − Y0z for any z so that

E(YaZ0 − Y0Z0) = E(Yaz − Y0z), (22)

where the latter quantity does not depend on z. Robins’ identifiability map-
ping (22) corresponds with ours using an empty W (and thus with Pearl’s).
since the integration w.r.t. FZ0 does not affect the integral. We conclude that
all three identifiability mappings agree with each other (except that Robins
avoids integration w.r.t. FZ̄0

by making the “No-Interaction assumption”),
but that the model assumptions which were used to validate the identifiabil-
ity mapping are different. Our result shows that the identifiability mapping
of Pearl holds under a much less restrictive union-assumption: that is, the
identifiability result presented in Theorem 1 holds if either our assumption
holds, or the (18) assumption holds, or the “No-Interaction Assumption”
holds.

9.3 Estimation approach in single time point case

Consider the simple single time-point data structure W, A, Z, Y . For sim-
plicity, we assume that all variables are univariate. We need to assume that
within strata of W , (A, Z) is randomized (there is no unmeasured confound-
ing at the level of either treatment or the intermediate variable), and our
assumption (17)). In the single time point case, given that no confounders
are also affected by the exposure of interest, one can then use standard re-
gression methods to test for and estimate a direct effect.

Under the assumption that (A, Z) is randomized w.r.t. W , we have E(Y |
A = a, Z = z, W ) = E(Yaz | W ) and thus that

E(Yaz − Y0z | W ) = E(Y | A = a, Z = z, W ) − E(Y | A = 0, Z = z, W ).

We now assume a linear regression model for

E(Y | A, Z, W ) = A(β0 +β1Z +β2W +β3ZW )+(α0 +α1Z +α2W +α3ZW ),

so that we have the model

E(Yaz − Y0z | W ) = a(β0 + β1z + β2W + β3zW ). (23)

One can then test for no direct effect by testing H0 : β0 = β1 = β2 =
β3 = 0.
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In order to estimate the direct effect, we need to take the conditional
expectation of (23) over z w.r.t. the distribution of Z0, given W . For this
purpose, we assume a model m(a, W | λ) for E(Za | W ) = E(Z | A = a, W )
indexed by parameters λ. By the linearity of (23) in z, it follows that the
direct effect is now modeled as

DE = A(β0 + β1E(m(0, W | λ)) + β2EW + β3E(m(0, W | λ)W )),

where m(0, W |λ) is the model of the expected value of the counterfactual
intermediate variable, given treatment and baseline covariates, evaluated at
a = 0. An estimate of DE is obtained by replacing the regression parameters
(β, λ) by their least squares estimators.
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Exposure (A) Outcome (Y)

Intermediate (Z)

Direct causal effect

Figure 1: Basic causal structural of direct effect questions
Example 1: A=type of antiretroviral therapy (PI-based or not), Z=viral load,
Y=CD4 T-cell count
Example 2: A=pollution level, Z=use of rescue medication, Y=lung function
Example 3: A=hormone therapy, Z=C-reactive protein, Y=cardiovascular
event
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Exposure (A) Outcome (Y)

Intermediate (Z)

Covariate (W1) Covariate (W2) Covariate (W3)

Direct causal effect

Figure 2: Type 1 Direct Effect of A on Y, holding Z at a fixed level (blocking
all effects on Z).
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Exposure (A) Outcome (Y)

Intermediate (Z)

Covariate (W1) Covariate (W2) Covariate (W3)

Direct causal effect

Figure 3: Type 2 Direct Effect of A on Y, blocking only the effect of A on
Z.
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U1

Exposure (A) Outcome (Y)

Intermediate (Z) U2

Direct causal effect

Figure 4: Unmeasured confounders of exposure effect (U1) and intermediate
effect (U2).
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Exposure (A)

Intermediate (Z)

Outcome (Y)Confounder (C)

Indirect effect of A on Y (via Z)
Direct effect of A on Y (not via Z)
Pathway contributing to both the direct and indirect effect of A on Y

Figure 5: Confounding by a causal intermediate.
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PI-based
therapy (A)

CD4 T-cell 
count (Y)

Viral Load (Z)

Viral mutations (C)

Indirect effect of A on Y (via Z)
Direct effect of A on Y (not via Z)
Pathway contributing to both the direct and indirect effect of A on Y

Figure 6: Confounding by a causal intermediate: Illustration based on
Example 1.
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Treatment History (W)

PI-based
therapy (A)

Viral Load (Z)

CD4 T-cell 
count (Y)

Direct causal effect

Figure 7: Causal structure for numerical example, based on Example 1.
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Exposure (A) Outcome (Y)

Intermediate (Z)

U3

Direct causal effect

Figure 8: Confounding of the effect of exposure on the intermediate variable.
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PI-based
Therapy (A)

CD4 T-cell 
count (Y)

Viral Load (Z)

Medication
adherence

Direct causal effect

Figure 9: Confounding of the effect of exposure on the intermediate variable:
Illustration based on Example 1.

27

Hosted by The Berkeley Electronic Press


	text.pdf.1127869036.titlepage.pdf.VsSlB
	ucworkingpaper1190.pdf

