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Estimation of Displacement Vectors and
Strain Tensors in Elastography Using Angular

Insonifications
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Abstract—In current practice, only one out of three components
of the tissue displacement vector and one of nine components of
the strain tensor are accurately estimated and imaged in ultra-
sound elastography. Since, only the axial component of both the
displacement and strain are imaged, other important elastic pa-
rameters, such as shear strains and the Poisson’s ratio, also are not
imaged. Moreover, reconstruction of the Young’s modulus would
be significantly improved if all components of the strain tensor
were available. In this paper, we describe a new method for esti-
mating all the components of the tissue displacement vector fol-
lowing a quasi-static compression. The method uses displacements
estimated from radiofrequency echo-signals along multiple ultra-
sound beam insonification directions. At each spatial location in
the compressed medium, orthogonal tissue displacements in both
the axial and lateral direction with respect to the direction of the
applied compression are estimated by curve fitting angular dis-
placement vector data calculated for all insonification directions.
Following displacement estimation in orthogonal directions, com-
ponents of the corresponding normal and shear strain tensors are
estimated. Simulation and experimental results demonstrate the
utility of this technique for the computation of the normal and
shear strain tensors.

Index Terms—Angular strain, axial strain, displacement, elas-
ticity, elasticity imaging, elastogram, elastography, imaging, lat-
eral strain, least squares, linear model, Poisson’s ratio, shear, shear
strain, strain.

I. INTRODUCTION

IMAGING the elastic properties of tissue is a new area of
research in ultrasound [1]–[8]. Tissue elasticity imaging

methods based on ultrasound fall into three main groups:
1) methods, i.e., elastography, where a quasi-static uniaxial
compression is applied to the tissue and the resulting components
of the strain tensor are estimated [1]–[4]; 2) methods where
a low-frequency vibration is applied with ultrasonic Doppler
detection of velocities of reflectors perturbed by the vibrations
[5], [6]; and 3) methods that use acoustic radiation force [9]–[13].
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Reconstruction of the elastic moduli from the displacement
or strain data obtained has been reported as well [4], [14].

In elastography, ultrasonic signals obtained from standard
medical ultrasound diagnostic equipment before and after a
uniaxial compression, typically about 1%, are analyzed. Local
tissue displacements along the beam direction are measured
using classical time delay estimation techniques [15]. Strains are
then computed from the gradients of the tissue displacements.
Thus, strains parallel to the insonification direction, which is
typically along the compression force direction, are estimated.
In the literature, these strains are referred to as axial strains
because they are parallel to the ultrasound beam axis during
data acquisition. (Note the notation for the axial direction will
be modified later to simply be the direction that is parallel
to the compression force direction.) Strains orthogonal to the
axial strains, such as lateral strains (orthogonal to the axial
strain but in the same image plane) and elevational strains
(orthogonal to the axial strain and to the image plane) could
also be estimated from these ultrasonic signals. However, the
results are noisy and less accurate than axial strain results.

As mentioned above, a disadvantage of current elasticity
imaging and elastography is that only the axial strain is estimated
and used to produce the elastogram. However, all the components
of the strain tensor are required to characterize the displacement
following compression since tissue motion inevitably occurs in
three dimensions [16]. Without those components, other elastic
properties such as shear strains and the Poisson’s ratio cannot
be estimated. In general, knowledge of the strain tensor and
Poisson’s ratio is necessary for Young’s modulus reconstruction
algorithms [4], [14]. In addition, the components of the strain
tensor are coupled, and accurate estimations of all components
are necessary for a complete visualization of the strain incurred
in tissue.

Ultrasound-based strain imaging enhances the capability of
this modality for diagnosis of disease and for monitoring re-
sponse to therapy. For example, some tumors of the breast, liver,
and prostate are detected by manual palpation through the over-
lying tissue. Young’s modulus (or stiffness) is perhaps the most
fundamental parameter of interest since it depends upon tissue
composition [17] and can be directly computed from strain mea-
surements under certain assumptions [1]. The Poisson’s ratio,
i.e., the ratio between the lateral expansion and the axial com-
pression under uniaxial stress conditions, may also allow for
differentiation between normal and abnormal tissues. For poro-
elastic materials, the Poisson’s ratio depends on the duration
of the compression because of unbound liquids continuously
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leaving the material under compression. Imaging the Poisson’s
ratio of these materials over time may be useful for quantita-
tive assessment and imaging of fluid transport in local regions
of edema, inflammation, or other hydrated poroelastic tissues
[18].

Previous research in the estimation of components of tissue
displacement vectors using ultrasound and in measuring blood
flow velocity in two and three dimensions has been reported in
the literature [19]–[23]. Bonnefous [20] used multiple crossing
beams and time correlation techniques to estimate displace-
ments in transverse directions to detect three-dimensional
(3-D) motion. Morsy and Von Ramm [21] presented a method
based on combining feature tracking and 3-D correlation
searching for tracking tissue motion and blood flow in 3-D
using successive volumetric ultrasound scans. Speckle tracking
using a sum-absolute-difference (SAD) algorithm that uses
two-dimensional (2-D) kernels between successive ultrasound
frames has also been used to track tissue motion and to produce
a vector map of 2-D velocities [24]. Multiple parallel receive
beams with 2-D pattern matching have also been used by Bohs
et al. [22], and two receive beams at different angles, along
with one-dimensional (1-D) speckle tracking have been used
by Tanter et al. [19] to obtain 2-D motion.

Lateral displacements for strain imaging have also been
obtained utilizing assumptions of tissue incompressibility [25].
In that work, lateral displacements were computed using the
higher precision axial displacement estimates and assuming a
Poisson’sratioof0.5.However,theincompressibilityassumption
may not hold in some tissues, for example lung tissue with
a Poisson’s ratio of 0.3 [17], and cartilage with a Poisson’s
ratio of 0.17 [26]. In addition, the Poisson’s ratio may not
be constant, such as for poroelastic tissue when edema is
present [18].

Konofagou and Ophir [27] proposed the simultaneous esti-
mation of both axial and lateral displacements and strains using
a precision tracking algorithm based on weighted interpolation
between neighboring RF A-lines in the lateral direction, along
with an iterative correction of lateral and axial displacements.
They applied a number of recorrelation and correction stages
for axial and lateral displacements. Unlike 2-D kernel tech-
niques [24], this algorithm was able to obtain displacement
estimates in the lateral direction by tracking the RF pattern
of a single A-line segment in the lateral direction. However,
the extensive lateral interpolation between RF A-lines and the
iterative nature of the algorithm increase its computational
complexity.

In this paper, we describe a novel method for estimating
components of a displacement vector following tissue compres-
sion. The method collects RF echo signal data along multiple
angular insonification directions of the ultrasound beam. Dif-
ferent methods can be utilized to acquire the angular ultrasound
RF echo signal data. For example, the most efficient approach
for clinical data acquisition would be to utilize a linear or
curvilinear array transducer with beam steering [28], as is
done with compound imaging. In the present study we utilize
a phased array transducer that is mechanically translated in
the lateral direction such that a given region in the tissue is

Fig. 1. A diagram for elastographic imaging using a linear array transducer
with beam steering. This image shows superposition of three RF frames with
different steering angles,��, 0, and+� . Generally, the beam could be steered
in many angular steps. The figure defines the z and x directions which are,
respectively, the axial and lateral direction of the ultrasound beam without
steering.

interrogated from multiple beam directions. Tissue displace-
ments at each spatial location in the compressed medium are
measured in each beam direction using classical time-delay
estimation techniques. A linear model of the relationship be-
tween these directional displacements and the components of
the actual displacement vector is constructed. The components
of the displacement vector are then estimated using a least
squares solution, where the squared errors between the ob-
served displacements and the displacements computed from the
linear model are minimized with respect to the displacement
components in the model. Then the components of the strain
tensor are estimated using least squares strain estimators [29]
from the displacement components. The Poisson’s ratio is
approximated from the ratio of the lateral strain to the axial
strain.

In this paper we apply our method of estimating displacement
vectors and strain tensors to simulated pre and post-compres-
sion RF echo signals calculated from an ultrasound simulation
program that incorporates 3-D beams. The simulation combines
elastic deformation equations with a linear ultrasound image
model, calculating echo signals for point-like scatterers in the
medium before and after compression. Experimental results are
then presented for a thermal lesion encased in a gelatin block.

II. THEORY

We assume that the sample volume to be studied is subjected
to a compressive force as it is being imaged with an ultrasound
transducer. The component directions of the displacement
vector are defined as follows. The -axis is taken as the direc-
tion of the compression force (see Fig. 1). This is generally
from top to bottom of the sample as illustrated in the diagram.
The lateral direction or the -axis is defined as the direction
orthogonal to the axial direction and located in the image plane.
It is usually from left to right in our diagrams. The elevational
direction or the -axis is defined as the direction orthogonal to
the image plane, which is usually from back to front. Note that
the transducer displayed in Fig. 1 is a linear array transducer
with the beam steering feature. However, we have followed
different approaches for the acquisition of RF echo signal data
for the simulation and experimental validation in this paper.
We will discuss the data acquisition method in more detail in
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Fig. 2. An actual displacement vector d at point O, observed by an ultrasound
beam u in an RF frame with beam steering angle �. The product of the
displacement vector d and the unit vector in the � direction is designated by
the line OA, which is equal to d cos � + d sin �, where d and d are the
component of the displacement vector d in the z and x directions, respectively.

the latter sections that describe the simulation and experiment,
respectively.

Suppose that an actual displacement vector at point O in
space is observed using a 1-D linear transducer with the beam
steering feature (see Fig. 2). Let be an A-line in an RF frame
with a beam angle that passes through point O, and be
the projection of the displacement vector onto a unit vector

in the direction. Then the projection is the dot product
between and , which is

(1)

where and are the components of displacement vector
in the and directions, respectively, while and are
the components of the unit vector in the and directions,
respectively. Let be an observation of the displacement vector

using . This observed displacement could be written as

(2)

where is the noise in the observation. In this paper, denotes
the displacement estimate obtained using cross-correlation be-
tween the overlapped windows of the precompression and post-
compression RF echo signals along the insonification direc-
tion. We have previously demonstrated that displacement errors
or the displacement noise artifacts follow a zero-mean normal
distribution [30]. Thus, these errors in displacement estimates
are modeled using a randomly distributed additive noise. How-
ever, the least squares approach utilized in this paper does not
requires a statistical descriptions of the parameters and ,
or the noise [31].

We assume that the tissue displacement is measured using
multiple beams at different beam angles passing through
point O. Each beam line produces one observation. Let
be an A-line at beam angle passing through point O for

, where is the total number of insonification
angles. Let be the noise in the observation at angle .
Using (2) for each angle and rewriting these equations into a
matrix form, we have

(3)

Fig. 3. Plots of projections of the actual displacement vector onto a unit vector
in the � direction for an axial displacement of d = 0:2mm and different values
of the lateral displacement d in millimeters.

where

...

...
...

and

...
(4)

We can minimize the squared error between the measurement
and the linear model with respect to to estimate the value
of . This solution is the least squares solution [31], which is

(5)

The solution exists and is unique since the columns of are lin-
early independent [31], where the matrix is called Gram-
mian or Gram matrix. For example, consider when a point is
sampled using 91 RF beam lines, separated by 1 increments
between and 45 . Fig. 3 presents plots of the projections

versus angle for different displacement vectors , whose
components are constant at 0.2 mm but components vary

from to 0.2 mm. This demonstrates that different values
of the displacement vector produce different curves. Note that
the projection is maximum when is in the same direction
as the displacement vector .

These equations are applied for the actual displacement
vector in two-dimensions. In practice, the tissue displacement
occurs in three dimensions. For this case, a 2-D array with
beam steering in both lateral and elevational directions would
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be needed to track the motion. The modified version of these
equations for the 3-D case is in the Appendix .

III. DISPLACEMENT ESTIMATION

The algorithm developed in this paper will be demonstrated
for the general case of estimating the displacement vector. Es-
timation of displacements accurately has applications in ultra-
sound Doppler imaging and elasticity imaging.

A. Algorithm

The displacement estimation algorithm can be described in
three steps.

1) At each location in the tissue, pulse-echo RF data are ac-
quired for a number of independent beam angles, before
and after a compressive force is applied or some other
source of tissue translation occurs.

2) Components of the displacement vectors are estimated
along each beam direction from the pretranslated and
posttranslated RF echo signal frames.

3) Orthogonal displacement components are then estimated
from the angular displacement data.

B. Simulation Tests of the Method

Ultrasound RF echo signals at different insonification angles
before and after phantom deformation were obtained using an
ultrasound simulation program developed by Li and Zagzebski
[32]. The conditions simulated for the acquisition of RF signals
at different angles is shown in Fig. 4. Note that the phantom
is not deformed but translated in this case. For computational
ease, the model assumed that transducer was rotated around the
center of the phantom (3.5-cm width 4-cm height) at 1 an-
gular increments, from to 45 , instead of applying beam
steering. A linear array transducer was modeled, which was
assumed to consist of 0.15 10 mm elements with a 0.2-mm
center-to-center element separation. Each beam line was formed
using 128 consecutive elements. The incident pulses were mod-
eled to be Gaussian shaped with a 5-MHz center frequency and
a 50% bandwidth measured at the full-width at half-maximum
(FWHM). The sound speed in the phantoms was taken as 1540
m/s, and attenuation was assumed to be negligible. The scat-
terers were modeled as 50- radius polystyrene beads with
an average concentration of 9.7/mm and were randomly dis-
tributed in the phantom.

After calculating RF signals for each of the angular views
in Fig. 4, the phantom was assumed to be translated by a spe-
cific displacement, resulting in the same movement/ motion for
each scatterer, and echo signals were again computed for the
angular views. The motion of the scatterers was then tracked
using our algorithm. Two displacement cases were simulated.
The first considered only an axial displacement, where angular
RF echo signals were acquired before and after the phantom was
displaced 0.225 mm along the direction. In the second simu-
lation, both axial and lateral displacements were simulated, i.e.,
a displacement of 0.2 mm along the direction and
along the direction.

Fig. 4. Simulation model for strain tensor estimation. A linear transducer
rotates for every 1 around the center of the phantom, from �45 to 45 .
RF signals are generated for each location of the transducer before and after
phantom deformation.

C. Simulation Results

Displacements at the center of the translated phantom ob-
served from simulated ultrasound signals at different insonifi-
cation angles are plotted in Fig. 5(a). The theoretical curve of
the projection of the known actual displacement vector (

and ) to the unit vector parallel to the beam
angle obtained using (1) is shown as the solid line. The dis-
placements estimated from simulated data correspond to the
solid circles and follow the variation of the theoretical curve.
The least squares solution [dashed line, computed using (5)] is
also plotted in Fig. 5(a); the solution resulted in a displacement
vector with 0.2229 mm and components
in the and directions, respectively. The means of displace-
ments in the and directions computed over a region of in-
terest consisting of 1,000 points around the center of the uniform
phantom are shown in Table I. Note that the values obtained are
in excellent agreement with those applied in the model, 0.225
mm axially and 0 mm laterally.

Fig. 5(b) presents results for the case of and
. Theoretical plots of the displacement vector

are shown, along with the displacements estimated from the
simulated data sets. Just as in Fig. 5(a), the displacement es-
timates follow the theoretical curve for the more complex trans-
lation. The least squares solution [dashed line, computed using
(5)] is also plotted in Fig. 5(b). The mean and standard deviation
of the displacements computed are shown in Table I. Again the
values obtained are in excellent agreement with those applied in
the model, i.e., 0.2 mm in the axial direction and 0.1 mm in the
lateral direction.

The results in Fig. 5 demonstrate the ability of the algorithm
to estimate the displacement vector in two orthogonal direc-
tions. The orthogonal displacement vectors were obtained from
displacement estimates computed along angular insonification
directions.

IV. STRAIN TENSOR ESTIMATION

A. Algorithm

After acquiring displacement data in the manner shown
above, strain tensor elements can be estimated. The normal and
shear strain tensor estimation algorithm applied in this paper is
summarized as follows:



TECHAVIPOO et al.: ESTIMATION OF DISPLACEMENT VECTORS AND STRAIN TENSORS IN ELASTOGRAPHY USING ANGULAR INSONIFICATIONS 1483

Fig. 5. Plot of the measured displacement at the center of the uniform phantom under two different translation conditions. The case shown in (a) includes only axial
displacement with the phantom displaced by 0.225 mm, while (b) includes both axial and lateral displacements of 0.2 mm in the axial direction and �0:1 mm

in the lateral direction, respectively. The measured displacements (dots) are plotted versus the different insonification angles. The theoretical prediction of the
displacement vector is plotted as the solid line, and the least squares fit of the measured data points is shown as the dotted line. The estimated displacements in (a)
and (b) corresponding to the least squares solution are (0.2229, �4:0109� 10 ) and (0.1981, �0:1015), respectively. Note that these estimates are very close
to the values of the axial and lateral displacement utilized in the simulation.

TABLE I
RESULTS OBTAINED USING THE SIMULATION TO OBTAIN ESTIMATES OF THE DISPLACEMENT VECTOR USING

THE ALGORITHM.THE MEAN* AND STANDARD DEVIATION* OF THE ESTIMATED DISPLACEMENTS WERE

OBTAINED AROUND THE CENTER OF THE UNIFORM PHANTOM

1) At each location in the tissue, pulse-echo RF data are ac-
quired for a number of independent beam angles, before
and after a unidirectional applied compression or defor-
mation.

2) Components of displacement vectors along each trans-
ducer direction are estimated from the precompression
and postcompression RF echo signal frames, as shown in
the previous section.

3) Linear interpolation is applied for image registration or
scan conversion of the angular displacement data com-
puted in Step 2), to a Cartesian spatial grid.

4) Axial and lateral displacement images are computed from
the angular displacement data.

5) Normal and shear strain tensor elastograms are computed
and displayed.

The algorithm does not involve interpolation of RF beam
lines, nor does it involve an iterative process to obtain the resul-
tant elastograms. However, a large number of angular RF data
sets are acquired, with the subsequently large processing over-
head.

B. Simulation Tests

The ultrasound simulation model was adapted for acquisi-
tion of RF signals at different angles before and after an applied
compression, again as shown in Fig. 4. The modeled phantom

contained an 8-mm-diameter cylindrical inclusion that was four
times stiffer than the surrounding. The Poisson’s ratio of both
background and inclusion was set to 0.495. The phantom was
deformed by a 0.5% uniaxial compression in the direction,
with the center point of the phantom fixed. The displacement
of each scatterer in the phantom was calculated using an ana-
lytical solution of the elasticity equations derived for a medium
subjected to a uniaxial compression, assuming plane-strain con-
ditions [33]. This results in no strain in the direction. The new
scatterer positions were used when calculating the post com-
pression echo signals at each acquisition angle.

The strain tensor estimation algorithm applied to the pre and
post compression angular RF data sets can be described in four
stages. In the first stage, displacements observed along different
transducer insonification angles, or “angular displacement
images” are computed. We applied the normalized cross-cor-
relation algorithm [1] using a 3-mm window size and 75%
overlap between consecutive windows when computing an-
gular displacements. In the second stage, linear interpolation is
used for image registration of all angular displacement images.
Fig. 6 illustrates examples of angular displacement images of
the uniform phantom at and 23 angles with respect to
the direction of compression. It also shows the corresponding
displacement images after image registration. Note that the
boundaries of the phantom in the angular displacement images
rotate to match each other.
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Fig. 6. Observed displacement images (a) and (b) before and (c) and (d) after
image registrations of a simulated cylindrical inclusion phantom under 0.5%
uniaxial compression in the z direction (top to bottom of the phantom) measured
at�23 and 23 beam angles in (a) and (b), respectively. Note that the width and
height are in centimeters, while the displacement color bars are in millimeters.

The tissue displacement estimation at a point requires obser-
vations from different beam angles. Since the displacement im-
ages at different angles have different pixel-grid systems, pixels
from different angular images may not be located at the same
spatial location. By assuming that the angular displacement im-
ages are smooth, linear interpolation can be applied to estimate
the observations at the pixels on the zero-angle grid, for which
the row and column pixels are parallel to the and directions.
This step enables estimation of the tissue displacement for every
pixel on the zero-angle grid. For our setup, the pixel size was
0.75 mm in height and 0.20 mm in width. These numbers come
from the use of the 75% overlap of the 3-mm window applied in
displacement estimations and from the separation between suc-
cessive beam lines.

The third stage represents the estimation of the displace-
ment vector (obtained after compression) at each pixel on
the zero-angle grid using a least squares approach. This stage
is illustrated using Fig. 7 for angular displacement vectors
estimated after the quasi-static compression of the inclusion
phantom. Fig. 7 shows plots of phantom displacement estimates
at a 1-cm depth of the center A-line versus insonification angle
similar to that shown in Fig. 5. The number of observations
available in the least squares may not be equal to the total
number of angled RF frames. The actual number depends on

Fig. 7. Plot of displacement at a 1-cm depth for the center A-line of the
inclusion phantom versus insonification beam angle. Shown are projections
of the actual displacement vector onto the unit vector, calculated using
d = 0:0460 cos � (solid line); the displacement observed using different
insonification angels (dots), and the projection of the displacement vector
estimated using the least squares fit: d (fit) = 0:0459 cos ��7�10 sin �

(dotted line). Note that the actual displacement is 0.0460 and 0 mm in the z and
x directions, respectively, while the corresponding estimated displacements are
0.0459 mm (z) and �7� 10 mm (x).

Fig. 8. Ideal (a) and estimated (b) axial displacement images and ideal
(c) and estimated (d) lateral displacement images for the inclusion phantom
simulations. Images were obtained by simulating signals for 91 angular
insonifications (�45 to 45 ). The depth and width of these images are 4 and
3.5 cm, respectively. The axial direction or the z direction is from top to bottom
and the lateral direction or the x direction is from left to right.

the location of that pixel. For example, as Fig. 4 shows, the
region corresponding to a pixel at the center of the phantom
would be insonified with ultrasound beams from every angle.
Therefore, in our simulation a complete set of 91 measurement
data was available at this point. In contrast, ultrasound beams
from larger angles of the transducer cannot reach areas near
the corners of the phantom, so pixel data for these locations are
generated using a smaller number of observations. The final
images of the displacements in both the and directions for
the simulated inclusion phantom are shown in Fig. 8.

Finally, elements of the strain tensor, in this case normal
strains in the and directions and shear strains, are obtained
from the displacements in the and directions. Note that the

and directions also refer to the axial and lateral directions
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Fig. 9. Ideal and estimated axial strain images in (a) and (b), respectively, and
ideal and estimated lateral strain images in (c) and (d), respectively.

for ultrasound beams forming the zero angle frame. The normal
strains are defined by

and (6)

where and are the strains in and directions, respec-
tively, and the shear strain is defined by

(7)

In the example illustrated here, the partial derivatives in (6)
and (7) were approximated using a least squares strain esti-
mator (LSQSE) [29]. Outliers on the elastograms were sup-
pressed using a 5 5 median filter.

C. Results

The images of displacements in the and directions ob-
tained from the least squares solutions are shown in Fig. 8. Note
that the displacements have signs corresponding to their axes. It
shows that as the phantom is compressed in the direction it ex-
pands in the direction. These results satisfy the imposed simu-
lation condition of the phantom compression. The displacement
patterns due to the stiffer cylindrical inclusion are clearly ob-
served at the center of the displacement image. These displace-
ment images are very smooth, which implies that the strain im-
ages generated from their gradients should be smooth and have
a high SNR.

Fig. 9 presents both the ideal and estimated images of strains
in the and directions. The ideal axial and lateral strain images
in Fig. 9(a) and (c) were calculated using analytical solutions
of a plane elasticity problem [33]. The axial and lateral strain
images in Fig. 9(b) and (d) were estimated using least squares
strain estimators (LSQSE) [29] applied to the simulated data.
The shapes of the inclusion and the values of the axial and lat-
eral strains on the simulated data match the ideal images quite
well. Plots of the strain profiles across the center of the inclu-
sion along the vertical and horizontal directions of the strain
images are shown in Figs. 10 and 11, respectively. These plots

show that the estimated values of strains in both directions are
close to the ideal values. The profiles for strain in the direc-
tion (lateral strain) are noisier than the profiles in the direction
(axial strain). The estimated height is close to the ideal value,
but the estimated width is slightly smaller than the ideal value.
These results confirm that the displacement estimates are accu-
rate, and the images exhibit sufficient continuity for generating
high-quality strain images.

The images of the partial derivatives obtained using (7) and
the corresponding shear strains are shown in Fig. 12. Fig. 12
provides a comparison between the ideal shear strain images and
their estimated pairs generated from the simulated data. Observe
that the images in each pair are almost identical, except for the
increased noise in regions around the edges of the simulated
images and around the inclusion. Note the presence of stress
concentrations around the inclusion for different shears. These
stress concentrations are clearly observed and are identical in
the ideal and the estimated shear strain elastograms.

Poisson’s ratio images were approximated using point-by-
point division of the negative strains in the direction by the
strains in the direction, as described by other researchers [27].
However, this method provides a good approximation only if the
voxel or small volume element used to calculate the local strain
experiences uniaxial stress. Note that uniaxial stress means that
the stress, or compression force per unit area normal to the force
direction, only occurs on one axis. For a uniform elastic medium
compressed by a large plate in one direction, each voxel ex-
periences almost uniaxial stress. Conversely, for a nonuniform
elastic medium, i.e., a material containing an inclusion, under
the same compression conditions, each voxel will not experi-
ence true uniaxial stress, especially for voxels near the inclu-
sion. Also, in the plane-strain state, the uniaxial stress condition
is never satisfied because stress directed in and out of the image
plane always exists. However, under the plane-strain state, any
material that has a Poisson’s ratio of 0.5 will have .
This means that if we attempt to calculate the Poisson’s ratio by
dividing the negative axial strain by the lateral strain as in [27],
we would get a “Poisson’s ratio” value of 1.

A Poisson’s ratio image of the simulated phantom using axial
and lateral strain, and the ideal Poisson’s ratio image are shown
in Fig. 13. The ideal image in Fig. 13(a) is uniform with value
1. The values of the estimated Poisson’s ratio image shown in
Fig. 13(b) are almost constant, except for the area around the
inclusion boundary and around the edges of the image. This
could result from displacement estimates that used the win-
dowed signal across the discontinuity region of the material.
The means of the Poisson’s ratios calculated from the boxes in-
side and outside the inclusion, shown in Fig. 13(b), are 0.9578
and 0.9587, respectively. The standard deviations are 0.0411 and
0.0350, respectively.

V. EXPERIMENTAL RESULTS ON THERMAL LESION SAMPLES

A. Method

Thermal lesions around 2-cm diameter were created in fresh
canine liver samples with dimensions of 40 mm 40 mm and
20-mm thickness by ablating the tissue with a 450-kHz gen-
erator and a deployed RF electrode for 5 min at 50 W power.
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Fig. 10. Axial strain profiles across the center of the inclusion comparing between ideal and estimated values along (a) the vertical and (b) the horizontal directions.

Liver with a thermal lesion was encased in gelatin cubes with di-
mensions of 80 mm for elastographic imaging. Echo data were
obtained using an Aloka SSD 2000 (Aloka Inc., Tokyo, Japan)
real-time scanner and a 3.5-MHz phased array transducer. The
signal format of the Aloka SSD 2000 phased array transducer
consists of 121 A-lines arranged over a 90 sector, with 0.75 in-
crements between A-lines. The ultrasound RF signals were digi-
tized using a 12-bit data acquisition board (Gage Applied Tech-
nologies Inc., Lachine, QC, Canada) at a sampling rate of 50
MHz. Data were stored in a personal computer for off-line anal-
ysis. To simulate the effects of angular data acquisition of RF
echo signals, the phased array transducer was linearly translated
over the sample using a precision linear stage, so that each loca-
tion in the sample was scanned from multiple angles (Fig. 14).
The distance between acquisitions was 0.5 mm, and the total
distance traversed was 40 mm, mimicking the echo data that
could be recorded using compound acquisition with a modern
linear array. At each location data were acquired before and after
a unidirectional 0.1% compression. The echo data in these RF
sets were then rearranged so that the A-lines at the same angle
were grouped together to form an angled RF data frame, as il-
lustrated in Fig. 14. Each of these regrouped RF frames was
analyzed separately to generate “displacement images” at each
angle. Elastograms were obtained using a window length of 3
mm and 75% overlap between data segments.

B. Results

Axial and lateral displacement images generated from the an-
gular displacement images are shown in Fig. 15. Observe that
the displacement images are very smooth with the lesion outline
visible in both images. The elastograms obtained from the dis-
placement estimates are shown in Fig. 16. The thermal lesion
is clearly depicted in the axial strain elastogram in Fig. 16(a),
while the lateral strain elastogram in Fig. 16(b) has lower strain
values due to the axial direction of the applied compression.
However, the outline of the thermal lesions can still be clearly
seen. The shear strains depicted in Fig. 16(c) are also small due
to the 0.1% compression. The results demonstrate feasibility of
utilizing angular displacements to compute normal and shear

strains tensors using experimental data. A Poisson’s ratio image
for this experiment was not calculated since the thermal lesion
phantom may not be under a plane-strain state as described in
the previous section.

VI. DISCUSSION AND CONCLUSION

In this paper, we describe a method to estimate the lateral and
axial components of displacement vectors throughout a medium
subjected to a unidirectional compression. The method uses
multiple insonification beam angles. Such acquisitions can be
obtained by modern array transducers that apply angular beam
steering for spatial compounding. Local angular displacements
observed for different angles of ultrasound beams are estimated
from the RF echo signals using a 1-D cross-correlation method.
Observed displacements for different beam angles are then fit
to a linear model, yielding the components of the displacement
in the and directions. As shown in Fig. 7, displacements
observed at different beam angles follow the theoretical values
from the model closely. The fitted curve is almost indistinguish-
able from the theoretical curve. The estimated components of
the displacement are also very close to the predefined values.

The results in this paper demonstrate the unique relationship
that exists between the angular displacement information and
the constituent displacements in the and directions. This re-
lationship is utilized to obtain accurate estimates of the displace-
ment vectors over the entire region of tissue imaged. These an-
gular displacement signatures would vary with the applied com-
pression, Young’s modulus of the tissue imaged, and the corre-
sponding pixel position in the elastogram. Accurate and precise
estimations of the displacement vectors enable the generation
of both normal and shear strain elastograms, which are shown
in this paper. In addition, Poisson’s ratio images could also be
generated.

The high-precision estimation of the displacements and
strains in the lateral direction provides additional informa-
tion regarding the mechanical conditions that exist during an
elastography experiment. For example, the presence of slip or
nonslip conditions [34], [35] is revealed, the location of the
compressor relative to the axis of symmetry of the target can
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Fig. 11. Lateral strain profiles across the center of the inclusion comparing between ideal and estimated values along (a) the vertical and (b) the horizontal
directions.

Fig. 12. Pairs of the ideal (left) and estimated (right) images of (a) @d =@x,
(b) @d =@z, and (c) shear strain = 0:5(@d =@x+ @d =@z), where d and
d are the displacements in the z (axial) and x (lateral) directions, respectively.

be indicated, and the uniformity of the applied compression
is brought out. In addition, generation of lateral strain elas-
tograms allows computation of Poisson’s ratio images, which
may provide an ability to differentiate between materials with
different Poisson’s ratios or with inclusions having Poisson’s
ratio contrast. These differentiations may have a significant
impact in the characterization of normal and abnormal tissues.

Other valuable strain tensor components that can be derived
from knowledge of the components of the displacement vectors

Fig. 13. (a) Ideal Poisson’s ratio image (uniform value of 1) and (b) estimated
Poisson’s ratio image with ROI’s (square boxes) for calculating the means
and standard deviations of the Poisson’s ratio inside and outside the inclusion,
respectively. The means inside and outside are 0.9578 and 0.9587, respectively.
The standard deviations inside and outside are 0.0411 and 0.0294, respectively.

Fig. 14. RF data sets in sector format (top) acquired at each lateral position.
These scans were rearranged into a linear format (bottom) by grouping A-lines
at the same angle.

in the , , and directions (or axial, lateral, and elevational dis-
placements) are shear strains. Shear strain elastograms demon-
strate, for example, any tumor slip [34], [35] that may occur



1488 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 12, DECEMBER 2004

Fig. 15. Experimental axial and lateral displacement images for an in-vitro
thermal lesion.

Fig. 16. Corresponding (a) axial, (b) lateral and (c) shear strain elastograms.

during compression. This parameter may have useful implica-
tions in the differentiation of fibroadenomas from cancerous tu-
mors. Since cancerous tumors infiltrate into surrounding normal
tissue and include calcifications and spiculations, they appear
to be far less mobile and not slip during compression as do fi-
broadenomas [35]. In addition sliding of thyroid nodules was
noted 61% of the time (22/36) at the nodule/gland interface of
benign thyroid nodules, while seven malignant nodules demon-
strated no sliding artifact [34]. In this case, a lack of sliding was
probably due to an adhesive effect at the margin of cancerous le-
sions that was lacking in benign lesions. These results demon-
strate the potential utility of using shear strain elastograms to
clearly characterize this condition.

The algorithm used in this paper does not utilize the in-
compressibility assumption proposed by Lubinski et al. [25].
In addition, we do not utilize the extensive interpolation and
recorrelation required for the algorithm proposed by Konofagou
and Ophir [27], which would increase the computational com-
plexity. However, the algorithm provides higher precision in
the displacement and strain information than that is reported by
Konofagou and Ophir [27]. The primary tradeoff involves the
collection of multiple angular RF data sets using our approach,
while the Konofagou and Ophir [27] method uses a single pair
of precompression and postcompression echo signal frames.
The lateral resolution of displacement estimates obtained using
our technique is also not dependent on the ultrasound pitch
of the transducer. Since we use multiple insonification angles,
the angular displacements estimated have the same spatial
resolution as displacements obtained along the axial direction.
The resolution depends mostly on the window length and the
overlap [36]. However, a detailed evaluation of the spatial
resolution for our technique is beyond the scope of this paper.

The technique introduced in this paper is proven to be suc-
cessful with simulated RF echo signals. Implementation of the
technique on a clinical ultrasound system would require the
use of beam steering on linear array transducers to obtain RF
echo signal frames at different insonification angles. Many clin-
ical equipment manufacturers have already implemented beam

Fig. 17. The coordinate system of an ultrasound beam u ' generated by 2-D
linear array with beam steering angle � in the xz-plane, which is equal to angle
NAO and PAM, and beam steering angle ' in the yz-plane, which is equal to
MAO and PAN.

steering along angular directions for compounding B-mode im-
ages to reduce speckle noise artifacts. Our future work is to
apply this technique on a clinical transducer that provides RF
signal frames at different insonification angles. More work is re-
quired to select the appropriate angular increments and the max-
imum insonification angles for optimal performance in strain
tensor imaging.

Since the compression used in elastography causes 3-D dis-
placements, 3-D strain tensor imaging is necessary. The normal
and shear components of the strain tensor estimation algorithm
proposed in this paper can be easily extended to the 3-D case
to estimate elevational displacements and strains. For this case,
3-D data sets, where the transducer beams are steered along both
lateral and elevational directions, which could be obtained using
1.75 D or 2-D array transducers, can be incorporated into the al-
gorithm.

APPENDIX

Consider a 2-D linear array with beam steering features that
can steer beams in both and directions, as shown in Fig. 17.
The ultrasound beam is steered in the -plane with angle

and in the -plane with angle . The unit vector in
the direction can be decomposed into components in the

, , and directions as follows. First, decompose into
two orthogonal components on the ANO plane. The component
parallel to the AN direction is , and the component parallel
to -axis is . Then, decompose the component further
into two orthogonal components on the ANP plane. We thus
have parallel to the -axis and parallel
to the -axis. Therefore, the projection of a displacement vector

at point O as in (1) can be rewritten to be

(8)

where , , and are the componentsof the vector . The
observed displacement in (2) can be updated to be

(9)

where is the noise in the estimation along the and an-
gles. Suppose there are beams passing through point O
with and steering angles in the -plane and the -plane,
respectively, for and . We can rewrite
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the observed displacements for different beam angles in a ma-
trix form as in (3). Now the matrix and vectors in the equation
are

...

...

...

...
...

...

...
...

...
...

...
...

...

...

...

(10)
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